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Abstract: Concussion injuries remain a significant public health challenge. A significant unmet
clinical need remains for tools that allow related physiological impairments and longer-term health
risks to be identified earlier, better quantified, and more easily monitored over time. We address this
challenge by combining a head-mounted wearable inertial motion unit (IMU)-based physiological
vibration acceleration (“phybrata”) sensor and several candidate machine learning (ML) models.
The performance of this solution is assessed for both binary classification of concussion patients
and multiclass predictions of specific concussion-related neurophysiological impairments. Results
are compared with previously reported approaches to ML-based concussion diagnostics. Using
phybrata data from a previously reported concussion study population, four different machine
learning models (Support Vector Machine, Random Forest Classifier, Extreme Gradient Boost, and
Convolutional Neural Network) are first investigated for binary classification of the test population
as healthy vs. concussion (Use Case 1). Results are compared for two different data preprocessing
pipelines, Time-Series Averaging (TSA) and Non-Time-Series Feature Extraction (NTS). Next, the
three best-performing NTS models are compared in terms of their multiclass prediction performance
for specific concussion-related impairments: vestibular, neurological, both (Use Case 2). For Use
Case 1, the NTS model approach outperformed the TSA approach, with the two best algorithms
achieving an F1 score of 0.94. For Use Case 2, the NTS Random Forest model achieved the best
performance in the testing set, with an F1 score of 0.90, and identified a wider range of relevant
phybrata signal features that contributed to impairment classification compared with manual feature
inspection and statistical data analysis. The overall classification performance achieved in the present
work exceeds previously reported approaches to ML-based concussion diagnostics using other data
sources and ML models. This study also demonstrates the first combination of a wearable IMU-based
sensor and ML model that enables both binary classification of concussion patients and multiclass
predictions of specific concussion-related neurophysiological impairments.

Keywords: machine learning; wearable sensor; concussion; physiological impairment; vestibular;
neurological

1. Introduction
1.1. Challenges in Concussion Diagnosis and Management

Concussion injuries present a public health challenge that impacts many different
professional and amateur sports [1], military training and deployment [2,3], and large
pediatric [4], elderly [5], and civilian [6] populations. A concussion can lead to disruptions
that are widespread throughout the brain [1,7]. As a result, patients can suffer from
impairments to multiple physiological systems in their bodies [7], including the central
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nervous system (CNS; brain and spinal cord), peripheral nervous system (PNS; somatic,
autonomic), sensory systems (visual, vestibular, somatosensory), neurovascular system,
and musculoskeletal system. If not properly diagnosed and treated, these impairments
can persist for months or years and negatively impact many aspects of the patient’s health.
Extensive studies over the past decade have also established the link between repetitive
head impacts and long-term degenerative decline such as chronic traumatic encephalopathy
(CTE) [8].

Current solutions for diagnosing the above multiple concussion-related impairments
and monitoring each individual patient’s response to treatments and rehabilitation either
(i) require multiple time-consuming tests carried out by multiple clinical specialists using
expensive lab equipment [9–12], often with very long delays; or (ii) are limited to subjec-
tive observations and patient self-reporting using clinical scales with limited sensitivity
to change and significant administrator-dependent variability [13,14]. The lack of easy-
to-use tools for quantifying impairments to multiple physiological systems can lead to
misdiagnosis [15,16] and poor treatment outcomes [17]. Similar challenges are also en-
countered in the management of patients with many other neurological conditions caused
by injuries, disease, aging, or genetic disorders, including stroke [18], elderly frailty [19],
multiple sclerosis (MS) [20], and Parkinson’s disease [21].

Many advanced clinical neurology tools can be used to assess concussion-induced
impairments, including structural and functional magnetic resonance imaging (MRI,
fMRI) [12,22–24], balance assessments using computerized dynamic posturography [9,25,26],
instrumented gait analysis [10,27], and blood biomarkers [28], but the cost and complexity
of these approaches limit their use to research environments. As a result, the vast majority
of concussion diagnoses still rely on clinical examinations that evaluate symptoms, neu-
rocognitive status and function, and physical behavior using a wide variety of clinical
scales and behavioral tests [13,14,29]. These examinations have been shown to have limited
sensitivity to change and significant administrator-dependent variability [13,14,29]. As a
result, there is a significant unmet clinical need for tools that allow physiological impair-
ments and longer-term health risks to be identified earlier and better quantified, as well as
to allow treatments and rehabilitation protocols to be bettered tailored to each individual
patient’s unique impairment profile. The solution described in the present study combines
a wearable neurophysiological impairment sensor with machine learning (ML) algorithms
to enable much easier-to-use and lower-cost precision patient assessments and concussion
diagnoses that can be carried out in any doctor’s office or via remote patient monitoring.

1.2. Machine Learning and Wearable Motion Sensors in Concussion Management

Applications of machine learning to help automate concussion diagnoses and recovery
monitoring have attracted significant research interest in recent years [30]. Data sources
include structural and functional MRI [31], electroencephalography (EEG) [32–36], clinical
scales [13,30,32,37–39], balance and vestibular diagnostic data [37], gait analysis [30,40],
eye tracking [41], blood biomarkers [42], analysis of head impact data [43–45], and a variety
of wearable physiological sensors [33]. Wearable sensors are of particular interest because
of their low cost, ease of use, and compatibility with remote patient monitoring. Within
the wide range of physiological metrics that can now be measured using wearable devices,
assessments of balance and gait have the greatest utility for identifying the multiple physi-
ological system impairments that can result from concussions [46] and other neurological
conditions [47,48]. This utility stems from the fact that balance and gait can be disrupted by
the widely distributed impact-induced disruptions in the brain, vestibular system, visual
system, or spinal cord that can accompany concussion injuries. Involvement of the primary
sensory integration brain structures (e.g., brainstem, cerebellum) results in impaired central
integration of key sensory system inputs (visual, somatosensory, and vestibular) and im-
paired generation of motor control outputs that are critical to enabling balance control [49]
and stable gait [50]. Visual and somatosensory inputs are further impaired by the visual
system and spinal cord disruptions. Balance and gait impairments are also correlated
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with cognitive impairment [46,51]. However, very few concussion specialists and patients
have access to gold-standard laboratory research tools such as computerized dynamic
posturography [9,25,26,49] for assessing balance and instrumented gait analysis [10,27,50]
for assessing gait. This limited access has generated significant research interest in the past
decade in the use of wearable motion sensors for measuring concussion-related balance
and gait impairments [52,53]. Wearable motion sensors have already shown promise for
use in the development of concussion gait and balance biomarkers with sensitivity and
reproducibility superior to clinical rating scales for concussions [52,53] and a wide spec-
trum of other neurological conditions [54–57]. ML classification of wearable motion sensor
data thus represents one very promising path forward for improving upon existing clinical
options for diagnosing and managing concussions.

1.3. Phybrata Sensing

We recently introduced physiological vibration acceleration (phybrata) sensing [58],
a non-invasive balance and neurophysiological impairment assessment tool that utilizes
a head-mounted accelerometer to detect the contributions of individual physiological
systems to a phenomenon that is unique to a head-mounted sensor—the biomechanical
stabilization of the head and eyes as the reference platform that the body relies on for
balance and movement. The phybrata sensor attaches behind the ear using a small dispos-
able adhesive and testing simply requires the patient to stand still for 20 s with their eyes
open (Eo), and again for 20 s with their eyes closed (Ec). During this static balance testing,
the phybrata sensor uses a microelectromechanical system (MEMS)-based inertial motion
unit (IMU) to detect microscopic involuntary motions of the body, both normal motions
characteristic of healthy individuals and pathological motions caused by physiological
impairments that impact balance and postural stability. As we previously described in
detail [58], the direct measurement of acceleration motions at the head allows the phybrata
sensor to detect signal components with a much wider range of frequencies compared
to motion sensors mounted elsewhere on the body, which in turn allows impairments to
individual physiological systems (CNS, PNS, sensory, musculoskeletal) to be identified,
quantified, and monitored using the unique biomechanical vibrational signature of each
system, and reveals the sensory reweighting across multiple physiological systems that
is triggered by impairment to any single physiological system. Although many wearable
motion sensors contain both an accelerometer and a gyroscope, accelerometers are signif-
icantly more power-efficient than gyroscopes [59], and the use of a single accelerometer
in the phybrata sensor makes it more practical for long-term activity monitoring [60,61].
Previous research has shown that a single tri-axial accelerometer mounted on the sternum
is adequate for monitoring people’s locomotor activities [60,62,63].

The above impairment classification leverages previous spectral analyses of postural
sway time series data in which distinct frequency bands are observed to correspond to
specific mechanisms of postural control [64–68] for example >1 Hz (spinal reflexive loops,
proprioception, multi-joint and muscle activity); 0.5–1 Hz (CNS participation, both cerebel-
lar and cortical); 0.1–0.5 Hz (vestibular regulation); 0.02–0.1 Hz (visual regulation). The
much wider spectral content of phybrata signals compared to motion sensors mounted
elsewhere on the body also reveals the sensory reweighting across multiple physiolog-
ical systems that is triggered by impairment to any single physiological system, as the
postural control system dynamically regulates to reduce dependence upon impaired in-
puts [58]. Disruptions to these neuromotor and neurosensory systems accompany many
neurological conditions, including concussions [58,69,70], and are closely tied to concussion
symptoms [7,15]. Digital biomarkers derived from unique spatial–domain, time–domain,
and frequency–domain features and sensory reweighting profiles detected in phybrata
signals were shown to demonstrate well-defined normative values that distinguish be-
tween healthy and impaired individuals across a wide population base with no previous
baseline measurement required [69]. For the specific case of concussion injuries, receiver
operating characteristic (ROC) analyses of phybrata digital biomarkers have demonstrated
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classification of healthy vs. concussed individuals with sensitivity, specificity, accuracy, and
area under the curve (AUC) all above 90%, as well as separate independent classification
of neurological and vestibular impairments, also with sensitivity, specificity, accuracy, and
AUC all above 90% [58].

1.4. Distinguishing Neurological vs. Vestibular Impairments

Distinguishing between head-impact-induced vestibular system disruptions and brain
injuries is vital since the appropriate course of treatment and rehabilitation will typically
be quite different. Damage to the vestibular balance organs, vestibular nerve, and multiple
connected neurological circuits are associated with many cognitive and physical symp-
toms arising from concussions [71,72], and damage to the vestibular system is often the
predominant driver of long-term symptoms [73]. A recent ML cluster analysis of concus-
sion patients revealed the presence of two distinct groups, one with prominent vestibular
disorders and another with no clear vestibular or balance problems [37]. However, many
concussion patients are still managed uniformly, despite the nature of their injuries, in the
hopes that the pertinent physiological impairments will be addressed. Treatment efficiency
and patient outcomes can be significantly improved using a tool such as phybrata testing
to identify, quantify, and track changes in impairments to specific physiological systems.

Current gold-standard solutions to achieve the above ROC diagnostic performance
require multivariate composite models that combine data from multiple time-consuming
and expensive tests such as computerized dynamic posturography, eye tracking, and
neuro-cognitive assessments to generate more complex multimodal concussion
biomarkers [32,35,74–76]. The above ROC analyses utilized extensive manual feature
inspection and statistical data analysis to select features in the phybrata signals that are
predictive of specific physiological impairments and were limited to digital biomarkers de-
rived from Eo and Ec phybrata powers [58] to quantify and monitor the progression of these
impairments. In this paper, we assess the ability of four different ML models to identify
and rank the importance of a wider range of phybrata features and feature sets to further
refine the derivation of concussion biomarkers and automate impairment classification.

1.5. Present Study

Phybrata datasets have previously been leveraged to develop and train a convolu-
tional neural network (CNN) ML model that can be used for a wide range of analytical
applications [77]. The unique spatial–domain, time–domain, and frequency–domain fea-
tures and feature sets observed in phybrata signals allowed the CNN model to achieve high
levels of classification performance following training with relatively small datasets [77].
In this paper, we explore opportunities to further enhance the diagnostic performance
of the phybrata sensor using a wider range of ML models. Of particular interest in the
current paper are lower computational complexity ML models that may allow impairment
classification to be incorporated directly into the phybrata sensor. Such a wearable device,
capable of cloud-independent classification and quantification of multiple physiological
impairments, would greatly enhance remote patient monitoring for the management of
many chronic medical conditions.

The present study utilizes data from a previously reported concussion study popula-
tion [58] to investigate the following two use cases, as illustrated in Figure 1:

Use Case 1. Binary classification of study population into “healthy” vs. “concus-
sion” groups.

Use Case 2. For the above “concussion” group, multiclass prediction of specific
physiological impairments (“vestibular” vs. “neurological” vs. “both”).

For Use Case 1, training, validation, and binary classification performance are eval-
uated and compared across four different ML models: Support Vector Machine (SVM),
Random Forest Classifier (RF), Extreme Gradient Boost (XGB), and Convolutional Neural
Networks (CNN). Further details and links to source code for the models themselves
can be found in the Appendix A. In addition, two different data preprocessing pipelines
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are evaluated for each ML model: a) time-series averaging (TSA), and b) non-time series
feature extraction (NTS). In Use Case 2, the best performing models from Use Case 1 are
then evaluated for their ability to enable multi-class predictions of specific physiological
system impairments (“vestibular” vs. “neurological” vs. “both”) in individuals diagnosed
as “concussed”.

Figure 1. Classification use cases investigated in the present study.

2. Materials and Methods
2.1. Study Population, Data Collection, Derivation of Phybrata Biomarkers

As we previously reported [58], data were analyzed from 175 patients at three clinical
sites. Phybrata testing was included in regularly scheduled clinical patient assessments,
the study was conducted in accordance with the Declaration of Helsinki under Western
IRB Study Number 1,188,786, and informed consent was obtained for all participants in
the study. Study participants included 94 females and 81 males (ages 18.1 ± 10.9 years,
min 7 years, max 66 years), including 92 patients diagnosed with concussion (51 female,
41 male, ages 18.8 ± 13.2 years, min 7 years, max 74 years) and 83 healthy participants
(43 female, 40 male, ages 17.2 ± 7.7 years, min 8 years, max 74 years). Comprehensive
clinical concussion assessments were first completed for all patients, followed by testing
with the phybrata sensor. Of the 92 patients diagnosed with concussion, 26 were diagnosed
with vestibular impairments via clinical assessment, 40 with neurological impairments,
and 26 with both vestibular and neurological impairments. A total of six patients with
incomplete phybrata signal datasets were excluded from the ML analyses, leaving a sample
size of 169 patients.

Patients were tested using the previously reported phybrata sensor [58,69] attached to
the patient’s mastoid using a disposable medical adhesive while patients stood still for 20 s
with Eo and then again for 20 s with Ec. During testing, participants were instructed to
stand upright in a relaxed position with their feet together and their arms at their sides
while maintaining their gaze in a straight-ahead direction. The phybrata sensor utilizes a
3-axis accelerometer to record x (anterior–posterior (A–P), or front–back), y (vertical), and z
(medial–lateral (M–L), or left–right) acceleration time series data in units of g. During each
20 s test data are recorded at a sampling rate of 100 Hz, generating a total of 2000 samples
for each of the 3 axes (x, y, z). The accelerometer signals are filtered to remove drift. Addi-
tional details of the sensor device, testing procedures, and data analysis were previously
reported [58,69]. Phybrata time-series data and spatial scatter plots, Eo and Ec phybrata
powers, average power (Eo + Ec)/2, Ec/Eo phybrata power ratio, time-resolved phybrata
signal power spectral density (PSD) distributions, sensory reweighting profiles, and ROC
curves were compared for individuals with no objective impairments and those clinically
diagnosed with concussions and accompanying vestibular impairment, neurological im-
pairment, or both vestibular and neurological impairments. In our previous work [58],
manual feature extraction and ROC analyses indicated that the average power (Eo + Ec)/2
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may be utilized to support clinical diagnosis of concussion, while Eo and Ec/Eo may be
utilized as independent measures to confirm accompanying neurological and vestibular
impairments, respectively. All three measures demonstrated AUC, sensitivity, specificity,
and accuracy above 90% for their respective diagnoses.

2.2. Data Preprocessing

The following two preprocessing pipelines were utilized to prepare the phybrata time
series data for the ML analysis in Use Cases 1 and 2:

1. Time-Series Averaging (TSA): For each Eo and Ec patient test phase, the three phybrata
time-series signals (x, y, z) and the phybrata power (calculated using the vector sum
of the three acceleration components [58,69]) were averaged over one-second time-
steps (100 samples per step), reducing the dimensionality of each time series from
2000 samples to 20 samples. Once averaged, the data were either used in their existing
form for CNNs or converted such that each time-step represents a column instead
of a row for classical ML models. There are two reasons for using this averaging
approach as an alternative to using the raw signal. First, the raw data contains
6000 measurements per patient test (100 Hz sampling over 20 s for each of the x,
y, and z axes), which presents challenges for training classical ML models, since
the number of data features greatly exceeds the number of patients. This excessive
number of features can lead to models that overfit and generalize poorly to data
from new patients. Second, the computational advantages in using an averaged time-
series instead of a full time-series signal recording can enable much faster and lower
computational complexity training and classification, allowing the use of remote
sensor devices that do not require cloud connectivity for computational support. No
frequency features were extracted from the TSA preprocessed data. Further details of
the phybrata power calculations and data processing are included in the Appendix A.

2. Non-Time-Series (NTS) Feature Extraction: Standard statistical measures (variance,
mean, standard deviation, min, max and median) were calculated for each of the
three phybrata time-series signals (x, y, and z accelerations) and several additional
power and frequency features extracted for both Eo and Ec test phases, including
phybrata powers within the physiological-system-specific frequency bands discussed
above. To extract the power features, the phybrata power was first calculated at each
value in the accelerometer time-series data. The power values were then summed
for each respective test phase (e.g., Eo Power and Ec Power) and the powers for
the two phases were averaged (e.g., (Ec + Eo)/2). Phybrata signal PSD curves were
also calculated using Welch’s method [78], and these PSD curves were then used to
calculate phybrata powers within specific frequency bands. PSD variations within
specific spectral bands, as well as correlated PSD variations across multiple spectral
bands, were shown to help quantify the sensory reweighting that often accompanies
many neurophysiological impairments [58] and may thus also serve as useful ML
classification features. A more detailed description of Welch’s method is included in
the Appendix A.

All feature extraction using the above data preprocessing pipelines was carried out
prior to segmentation of the data into training, validation, and test sets for ML modeling
and performance comparisons.

2.3. Modeling

Key procedural steps in the ML modeling process included the following:

1. The performance of four different ML models (SVM, RF, XGB, CNN) was assessed
using standard open-source implementations [79–81]. Model training, testing, and
validation were carried using a standard leave-one-out K-fold cross-validation proce-
dure [36,82–85], in which the dataset was first randomly split into a training set (80%)
and a test (20%) set. Validation datasets were then generated by further dividing the
training dataset into K subsets, or “folds”, where each fold is a group of test subjects,
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and each of the K folds is used once as a validation dataset (“leave one out”) while
the remaining K-1 folds are combined together as the training dataset. This procedure
guarantees that every test subject will be in a validation set exactly once and in a
training set K-1 times. The error estimate is averaged over all K trials to derive the
performance of each model. As is common practice, we use K = 5 to balance bias
and variance of test error estimates [85]. Cross-validation was applied multiple times
for different values of the hyperparameters, and the parameters that optimized each
model were selected by maximizing the concussion classification F1-score across each
of the selected validation folds (F1 ± 2 standard deviations). In this manner, cross-
validation addresses the problem of overfitting [82], since cross-validated models
that perform well over the test data and give good accuracy have not overfitted the
training data and can be used for prediction. The hyperparameters that optimized
each model are listed in Appendix A.

2. The classification performance of the four different ML models was ranked based
on the F1 scores when applied to the testing set. The F1-score represents a balanced
approach for conveying a model’s performance in terms of its correct and incorrect
classifications. Specifically, F1 weighs both false negatives (FN) and false positives
(FP) in conveying a model’s accuracy and is prioritized for ranking the performance of
the current ML models for both binary (Use Case 1) and multiclass (Use Case 2) clas-
sification experiments. All metric descriptions and formal calculations are provided
in Appendix A.

F1 =
2

1
recall +

1
precision

= 2
precision ∗ recall
precision + recall

=
tp

tp + 1
2 ( f p + f n)

(1)

3. In Use Case 1, the random assignment of “healthy” and “concussed” individuals into
training, validation, and testing datasets maintained the original proportional balance
in each dataset.

4. In Use Case 2, the random assignment of the concussed individuals into training, val-
idation, and testing datasets for multiclass prediction (“vestibular” vs. “neurological”
vs. “both”) also maintained the original proportional balance in each dataset.

The present study did not further subdivide test subjects according to age or gender.
As we previously reported [58], although there are small but measurable differences
in phybrata performance between males and females and between younger and older
participants in healthy test groups, these differences are completely masked by the much
larger variations that result from concussion-induced balance disruptions and are thus not
statistically relevant for the present diagnostic analyses.

3. Results
3.1. Use Case 1: Classifying “Healthy” vs. “Concussion”

Presented below are standard performance metrics for each combination of ML model
and preprocessing pipeline used to classify the testing set (n = 34) into “concussion” vs.
“healthy” groups. We primarily emphasize the F1 metric for comparing across conditions
because it combines precision and specificity into a single unified score; specificity and
sensitivity are also provided separately.

3.1.1. Comparison of TSA and NTS Data Preprocessing Pipelines

Table 1 compares healthy vs. concussion classification metrics (F1, sensitivity, speci-
ficity) across all combinations of ML model and preprocessing pipeline. Overall, global
features extracted from the phybrata signals using the NTS pipeline performed better than
averaged time-steps in the TSA pipeline. Averaging across all models, NTS preprocess-
ing led to an overall 10% improvement in F1 when compared to TSA preprocessing. RF
emerged as the best model for both preprocessing conditions, but with no change in F1
(TSA = 0.94, NTS = 0.94), whereas SVM F1 increased by 29% (TSA = 0.62, NTS = 0.91),
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and XGB F1 increased 3% (TSA = 0.91, NTS = 0.94). The change in CNN performance
between TSA and NTS preprocessing was not captured due to the architecture of the model
strictly requiring a time-series input signal, therefore only the TSA pipeline performance is
compared for CNN F1 (TSA = 0.91).

Table 1. Classification performance (sensitivity, specificity, F1) of four different ML models and
two different data preprocessing pipelines for binary prediction of “healthy” vs. “concussion”. The
testing dataset (n = 34) classes were representative of the training set distribution (Healthy = 17,
Concussed = 17).

Use-Case Model Preprocessing Pipeline Specificity Sensitivity F1

Concussed
vs.

Healthy

RF
TSA 0.94 0.94 0.94
NTS 0.88 0.99 0.94

SVM
TSA 0.94 0.47 0.62
NTS 0.88 0.94 0.91

XGB
TSA 0.88 0.94 0.91
NTS 0.88 0.99 0.94

CNN TSA 0.88 0.94 0.91

3.1.2. Machine Learning Model Comparisons

Table 1 also allows a comparison of the overall classification performance of the four
different ML models. Collapsing across TSA and NTS preprocessing and averaging each
of the three metrics, RF outperformed all ML models for F1 (RF F1 = 0.94, SVM F1 = 0.77,
XGB F1 = 0.93). RF and SVM achieved the highest specificity score (RF specificity = 0.91,
SVM specificity = 0.91, XGB specificity = 0.88), whereas RF and XGB achieved the highest
sensitivity score (RF sensitivity = 0.97, SVM sensitivity = 0.71, XGB sensitivity = 0.97).
Compared within TSA preprocessing, RF and SVM achieved the highest specificity score,
whereas RF and XGB achieved comparable sensitivity scores. Based upon the F1 scores
for TSA preprocessing, RF was the stand-alone best model, including the neural network
(CNN F1 = 0.91). For NTS preprocessing, RF and XGB were identical in their superior
performance across all metrics (specificity = 0.88, sensitivity = 0.99, F1 = 0.94). The fact that
the RF model performs well over the test data and gives good accuracy indicates that the
validated model has not overfitted the training data and is a suitable candidate for further
experimental prediction [82].

3.1.3. Concussed vs. Healthy SHAP for RF NTS Model

Shapley additive explanations (SHAP) is a method for explaining how complex ma-
chine learning models make decisions with the data they receive by computing the magni-
tudes of the contributions from each individual feature to a model’s output [86]. Figure 2
presents the SHAP values for features derived from the x-axis phybrata signals of training
set patients for the best performing RF model. Feature importance is ranked from top to
bottom (left y-axis). The two most robust features in terms of their contributions to classi-
fication are the Ec power and average power, consistent with previous results [58]. The
third and fourth most robust predictors were the sum and median power, which showed
a similar pattern of values in relation to outcome. These power features are followed
by the x acceleration features, particularly standard deviation and variance in the global
x (A–P) signal. Notable features that were considered reasonably useful for RF training and
prediction were eyes-open power, the variance of power, and the Ec/Eo power ratio. The
y (vertical) and z (M–L) features were found to be less robust in prediction for RF. The actual
values of the features (right y-axis) are suggestive that higher x (A–P) accelerations and
phybrata powers (red) are linked with a prediction of concussion, while lower accelerations
and powers (blue) and smaller x feature values are linked with a prediction of healthy,
with the exception of the global minimum for x (Min. of Accel X) and z (Min. of Accel Z).
Less significant z and y features for RF also appear clustered around the center axis at the
bottom of the plot, indicating minimal predictive impact on model output.
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3.2. Use Case 2: Concussion Impairment Classification

In Use Case 1, the binary classification (healthy vs. concussion) F1 performance for
all ML models was highest using NTS preprocessing, except for RF where NTS and TSA
FI performance was equivalent. In Use Case 2 we further assess the predictive utility of
NTS preprocessing features when used with the three bestt performing ML models for
the multiclass prediction of three specific concussion-related impairment states (vestibular
impairment, neurological impairment, or both).

3.2.1. Comparison of Model Performance

Table 2 summarizes the multiclass performance for the three NTS models: RF (speci-
ficity = 0.93; sensitivity = 0.89; F1 = 0.90); SVM (sensitivity = 0.83; specificity = 0.72;
F1 = 0.73); and XGB (specificity = 0.93; sensitivity = 0.83; F1 = 0.85). RF was clearly the best
performing model, showing superior performance across multiple performance metrics
including a 5% improvement in F1 over XGB and 17% improvement in F1 over SVM.

Table 2. Classification performance (sensitivity, specificity, F1) of three different ML models using
the NTS data preprocessing pipeline for multiclass prediction of concussion-related impairments.
The testing dataset (n = 18) classes were representative of the training set distribution.

Use-Case Model Preprocessing Pipeline Specificity Sensitivity F1

Vestibular
vs.

Neurological
vs.

Both

RF NTS 0.93 0.89 0.90

SVM NTS 0.83 0.72 0.73

XGB NTS 0.93 0.83 0.85
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Figure 3 presents RF test ROC curves for the multiclass impairment prediction, with
each curve representing the specific impairment vs. the other two diagnoses (vestibular vs.
rest; neurological vs. rest; both vs. rest). ROC curves represent the tradeoff between the
True Positive Rate (TPR) and False Positive Rate (FPR) for an optimized decision threshold.
This decision threshold is learned during model training and translated to the testing set
used to generate the curves in Figure 3. The area underneath each curve (AUC) in Figure 3
quantifies model performance in relation to TPR and FPR. Vestibular and neurological
ROC curves showed AUC scores of 0.92, and 0.90 respectively, while the ROC curve for
patients with both impairments exhibits an AUC of 1.00.

Figure 3. ROC curves for multiclass impairment prediction using the RF model and NTS prepro-
cessing pipeline. Each curve represents the specific impairment vs. the rest of the classes (one vs.
rest) and depicts the trade-off between True Positive Rates (TPR) and False Positive Rates (FPR)
for each physiological impairment condition. The ROC performance is based upon the optimal
threshold selected by the model for the testing set. The three colored curves correspond to vestibular
impairment = green, neurological impairment = blue, both = yellow. The dotted black line represents
random performance.

Figure 4 depicts the RF testing set confusion matrix (n = 18) for the three impairment
classes. RF correctly classified all vestibular (1.0, 5/5) patients, most neurological (0.75,
6/8) patients, and all patients with both (1.0, 5/5) impairments. The two mistakes in the
test set both relate to model predictions of vestibular impairments for patients who had
been clinically diagnosed with neurological impairments.

3.2.2. Specific Impairment SHAP for NTS RF Model

Figure 5 presents SHAP value rankings of feature importance for the multiclass appli-
cation of the RF model using the NTS preprocessing pipeline. The Ec/Eo power ratio was
clearly the most robust predictor overall in the NTS RF model, contributing significantly to
the classification of neurological (SHAP = 0.14) and vestibular (SHAP = 0.13) impairments
as opposed to both (SHAP = 0.01). Ec and Eo power features made the second and fourth-
largest contributions, and also captured unique aspects of variation in each impairment
that differ from the Ec/Eo power ratio. In particular, Ec power contributed to neurological
(SHAP = 0.05) and vestibular (SHAP = 0.08) impairment classifications, but very little
for individuals with both (SHAP = 0.02). Conversely, Eo power and Sum Power account
for individuals with both (Eo SHAP = 0.05; Sum power SHAP = 0.06) significantly better
than Ec power, slightly less for neurological (Eo SHAP = 0.03; Sum power SHAP = 0.05)
and significantly less for vestibular (Eo = 0.02; Sum power SHAP = 0.02) impairments.
Finally, standard deviation of power and Average Power (Ec + Eo)/two rounded out the
top six features for predicting neurological impairment (Std. power SHAP = 0.02; Av-
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erage power SHAP = 0.02), vestibular impairment (Std. power SHAP = 0.01; Average
power SHAP = 0.03) and both impairments (Std. power SHAP = 0.03; Average power
SHAP = 0.01). The highest-ranking phybrata frequency band feature is the “Area under
PSD (0.1–0.5) Hz of Accel. in z”, which is the frequency band corresponding to vestibular
regulation of postural control. It is important to note here that the relative contribution of
various phybrata features to specific impairments may be related to the ML model as well
as the data consumed by the model, so that the SHAP value rankings shown in Figure 5
may change for different ML models.

Figure 4. Testing set confusion matrix of RF model. Model predictions for each impairment (x-axis)
are contrasted with actual impairment outcomes (y-axis) to categorize the correct and incorrect
predictions made.

Figure 5. Mean SHAP value contribution (x-axis) of each feature (y-axis) for every impairment condition (blue = neurological,
pink = vestibular, green = both), ranked from top to bottom in terms of importance. Taking each class together, the total
mean SHAP value reflects each feature’s global impact on model classification.
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4. Discussion

Identifying an accurate, reliable, and easy-to-use physiological impairment predictor
for concussion injuries has been a long-standing pursuit in traumatic brain injury research
and sports medicine. The present study demonstrates the first combination of a wearable
motion sensor and machine learning model that enable the classification of both concussion
injuries and specific concussion-related neurophysiological impairments. For Use Case 1,
Table 3 compares the present results to other published results for ML-based binary classifi-
cation of concussion patients vs. healthy control populations using a variety of other data
sources. The combination of phybrata sensing and ML delivers overall performance (sensi-
tivity, specificity, F1, AUC) exceeding these previously reported alternative approaches to
ML-based concussion diagnostics.

Table 3. Comparison of results for binary classification of concussion patients (nr = not reported).

Data Source ML Model(s) Sensitivity Specificity F1 AUC Reference

Phybrata sensor RF, SVM, XGB, CNN 0.94 0.94 0.94 0.98 present work

Multimodal: Neurocognitive tests,
clinical scales, symptoms checklists,

balance and gait testing
CNN nr nr 0.85 0.95 [30]

MRI SVM 0.89 0.79 0.84 0.84 [31]

Multimodal: EEG,
neurocognitive tests, standard
concussion assessment tools

Genetic Algorithm (GA)
classifier 0.92 0.75 0.81 0.92 [32]

EEG SVM 0.82 0.80 0.81 nr [34]

EEG Genetic Algorithm (GA)
classifier 0.98 0.60 nr 0.90 [36]

Clinical scales and assessment
metrics: retrospective analysis

C5.0 Decision Tree,
Recursive Partitioning,
Random Forest, XGB

0.97–0.99 0.43–0.58 0.71–0.78 nr [38]

Eye tracking CNN 0.63 0.74 0.67 0.75 [41]

3 blood biomarkers Random Forest 0.98 0.72 nr 0.91 [42]

Head impact data SVM, Random Forest, CNN 0.84 0.88 0.86 0.9 [45]

The performance observed for Use Case 1 (Table 1, Figure 2, Table 3) demonstrates that
the NTS RF model is well suited to identifying features in phybrata signals that distinguish
between healthy individuals and those diagnosed with concussion injuries. This result
is significant because the lower computational complexity of the RF model, compared
for example to CNN models, may allow impairment classification to be incorporated
directly into the phybrata sensor. Such a wearable device, capable of cloud-independent
classification and quantification of multiple physiological impairments, would greatly
enhance remote patient monitoring and management of many chronic medical conditions.
RF models are also of interest because they are robust to overfitting and can produce
competitive results compared to more computationally complex algorithms [87].

One limitation of the current work is that the sample size for comparing patient groups
was relatively small (n = 169). This can present uncertainty for several components of
the ML process including training, hyperparameter and model selection, and evaluating
model performance. However, the effect sizes previously reported for the current study
population [58] can be used to calculate the predictive power expected from this sample
size [88]. For example, the mean and standard deviation (SD) values for the Average
Phybrata Power (Eo + Ec)/two for the baseline and concussion populations are (i) Baseline:
sample size = 83, Mean = 0.355, SD = 0.104; (ii) Concussion: sample size = 92, Mean = 1.348,
SD = 0.955. Based on this effect size, the present study cohort should allow a predictive
power greater than 0.90 using an α value of 0.05. This high expected predictive power,
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together with the consistent performance observed throughout ML training, testing, and
validation, indicate that the present results present a valid assessment of the classification
performance of the ML models that we investigated in combination with the phybrata
sensor data.

Consistent with our previous studies [58], the present results also demonstrate that Eo
and Ec phybrata power measurements deliver robust metrics for differentiating between
healthy and concussed individuals. The phybrata power provides a composite metric
for phybrata motion along the x, y and z axes, all of which make distinct contributions
to the power signal. The NTS RF SHAP values suggest that higher phybrata power
values are indicative of concussions regardless of Eo or Ec phase, whereas lower phybrata
power reflects healthy functioning. This result is consistent with the observation that the
postural instabilities induced by head impact injuries lead to easily observed increases in
phybrata-related motion of the body. The RF model results indicate that elevated levels
of phybrata-related motion along all three (x, y, z) axes accompany concussion injuries,
with contributions that can arise from impairments to multiple physiological systems and
related sensory reweighting [58].

Our previous ROC analyses [58] indicated that the average power (Eo + Ec)/2 has
the best diagnostic performance for clinical diagnosis of concussion, while Eo and Ec/Eo
have the best diagnostic performance as independent measures to confirm accompanying
neurological and vestibular impairments, respectively. All three measures demonstrated
AUC, sensitivity, specificity, and accuracy above 90% for their respective diagnoses. In
the present ML analyses, the NTS RF results confirm the predictive utility of Ec power
and average power in differentiating healthy individuals from concussion patients. In the
context of identifying specific concussion impairments, the present results also confirm
that the phybrata power ratio (Ec/Eo) is highly correlated with phybrata fluctuations
caused by neurological and vestibular impairments. The Ec/Eo power ratio was clearly the
most robust predictor for separate neurological and vestibular impairments, while the sum
power and Eo power most significantly accounted for individuals with both impairments.

Our SHAP results differ slightly from previous statistical analyses [58] in that the
Ec/Eo ratio most significantly accounts for separate neurological and vestibular impair-
ments, whereas Eo power explains individuals with both impairments most strongly. This
means that the NTS RF model utilizes features derived using both the Eo and Ec phybrata
powers to gain relevant predictive insight into multiple physiological impairment condi-
tions. In this context, it is important to note that SHAP feature ranking is a model-sensitive
framework for understanding the contribution of various features to ML model predictions.
Different models may leverage different features and feature sets to generate predictions
about each impairment, which is expected to lead to variability in the identification and
ranking of the specific phybrata features that contribute to the classification of different
physiological impairments. The present results for Use Case 2 (Table 2, Figure 5) highlight
the utility of NTS RF for not only characterizing dysfunction but delivering highly pre-
cise multiclass predictions (F1 = 0.90). As we previously reported, Eo and Ec phybrata
features were differentially predictive of clinical impairment [58], and the present NTS RF
model results confirm this past work. The one published machine learning study relevant
to Use Case 2 carried out a retrospective cluster analysis on the balance and vestibular
diagnostic data of concussion patients using two different clustering tools (K-means and
self-organizing map) [37], and demonstrated the presence of two distinct groups, one with
prominent vestibular disorders and another with no clear vestibular or balance problems.
However, this study did not include ROC analyses of diagnostic sensitivity, specificity, F1,
or AUC.

An important result of the present study is that, compared to our previously reported
manual feature inspection and statistical data analysis [58], the RF model was able to
identify a wider range of relevant phybrata signal features that contributed to impairment
classification, and achieved similar diagnostic performance. This result indicates that the
large set of time domain, spatial domain, and frequency domain features and distinct
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frequency bands [64–68] that reflect the contributions of different physiological systems to
balance and postural stability can be mined as a rich source of information for understand-
ing concussion pathology and delivering strong diagnostic performance using machine
learning-based approaches. For example, as illustrated in Figure 5, several phybrata PSD
frequency bands (including the band corresponding to vestibular regulation of postural
control) contribute to multiclass impairment predictions in the concussion patient cohort.
As we previously reported [58], phybrata PSD plots reveal the sensory reweighting across
multiple physiological systems that is triggered by impairment to any single physiological
system. Such composite sensory reweighting features, based on correlated PSD variations
across multiple phybrata spectral bands, may enable the derivation of phybrata biomarkers
that enable more sensitive, earlier, and more specific diagnoses of neurological conditions
based on unique impairment signatures. This will be a topic of future investigations.

The present results indicate that phybrata measurements in both Eo and Ec test phases,
as well as derivative measures such as their average, ratio, and sum, are important for cap-
turing variability in patients with different physiological system impairments and should
be utilized when assembling a profile of patient dysfunction. Further work needs to explore
vestibular impairment in greater detail as it is an important neurosensory system serving di-
verse functions [89,90]. Vestibular impairments accompany many neurological conditions
and can lead to widespread disruptions throughout the central nervous system [71–73].
For this reason, a major focus has been on general mechanisms of recovery, repair, and
compensation in associated neural circuits and functional processing regions [91]. The
manner in which specific physiological disruption mechanisms are reflected in phybrata
measurements is now being studied for many other neurological conditions in addition
to concussions.

The static balance and postural stability testing capabilities of the phybrata sensor
also have recently been expanded to include locomotion by developing on-body sensor
calibration and phybrata implementations of widely used dynamic motion tests such as
Activities of Daily Life (ADL) and Timed-Up-and-Go (TUG) [61]. A single head-mounted
phybrata sensor was shown to enable classification and quantification of complex gait
parameters with performance matching current gold standard solutions that require expen-
sive clinical video motion capture systems [61]. Combining static balance and dynamic
gait testing significantly expands the available set of observable phybrata features that can
be used in the derivation of impairment and disease biomarkers. Mapping this rich set of
phybrata features to impairment severity and recovery trajectories may provide important
insights into tailoring treatment and rehabilitation for many different neurological condi-
tions that are accompanied by balance and locomotion disruptions, including concussions,
stroke, multiple sclerosis, Parkinson’s disease, elderly frailty, and peripheral neuropathies.
This wide range of potential applications makes it even more important to leverage ma-
chine learning for feature identification and importance ranking, and places priority on
low-computational-complexity ML models that can be integrated into wearable devices.

It is also important to consider that impairments to the vestibular, neurological, and
other physiological systems will trigger changes in phybrata signals that can depend on a
range of factors that include the nature and severity of the injury, the developmental age of
the patient [23,92], and the phybrata testing phase (Eo vs. Ec) [58,69]. Further explorations
of the influence of these factors on the rich set of observable phybrata features may provide
deeper insights into individual impairment pathologies and potential routes to further
enhance the diagnostic capabilities of ML algorithms in combination with phybrata data.

5. Conclusions

In this study, we investigated the performance of four ML models (SVM, RF, XGB,
CNN) used to refine the neurophysiological impairment assessment capabilities of phy-
brata wearable sensors, utilizing data from a previously studied concussion patient cohort.
Two distinct data preprocessing pipelines (TSA, NTS) were first investigated for binary
classification of the test population as heathy vs. concussion. The NTS model approach
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was found to outperform the TSA approach, with the best algorithms achieving an F1
score of 0.94. Next, the three best-performing NTS models were compared in terms of their
multiclass prediction performance for specific concussion-related impairments (vestibular,
neurological, both). The NTS RF model achieved the best classification performance in the
testing set with an F1 score of 0.90. ML models identified a wider range of relevant phy-
brata signal features that contributed to impairment classification and achieved diagnostic
performance similar to previously reported manual feature inspection and statistical data
analysis. This wider range included phybrata PSD spectral band features corresponding
to specific physiological system contributions to postural control, which may enable the
derivation of composite sensory-reweighting biomarkers that enable more sensitive, ear-
lier, and more specific diagnoses of neurological conditions based on unique impairment
signatures. The overall classification performance achieved in the present work exceeds
previously reported approaches to ML-based concussion diagnostics.

The present results demonstrate that lower computational complexity ML models
such as NTS RF are well suited to identifying features in phybrata signals that distinguish
between healthy individuals and those with concussion injuries, and can further identify
the presence of specific underlying neurological and vestibular impairments. The marriage
of phybrata and ML holds significant predictive, diagnostic, and prognostic potential at
scale and presents important new opportunities for understanding the pathology and pro-
gression of complex neurological conditions, as well as remote monitoring and proactive
patient management in a wide range of medical, athletic, military and consumer applica-
tions.

6. Patents

USPTO Provisional patent application 63/113,917, filed 11/15/2020.
Physiological impairment biomarkers and detection methods.
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Appendix A

Section 2.2 Data Preprocessing and Comparison of ML Models
Machine Learning Model Information
The Support-Vector Machine and Random Forest classifiers described in this work are

both drawn from the open-source machine learning package scikit-learn (https://github.
com/scikit-learn/scikit-learn (accessed on 16 June 2020)). The gradient boost classifier

https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
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(XGBoost) was also taken from an open-source framework (https://github.com/dmlc/
xgboost (accessed on 16 June 2020)). Finally, the convolutional neural network described
in this work was constructed using an established open-source deep learning framework
known as PyTorch (https://github.com/pytorch/pytorch (accessed on 16 June 2020)). The
hyperparameters used for each optimized model are listed below.

Use Case 1: Binary Classification of Concussion
Non Time-Series (NTS) Data Preprocessing
Support Vector Machine (SVC)

• C = 20
• decision_function_shape = “ovr”
• kernel = “rbf”
• degree = 3
• probability = True
• class_weight = “balanced”

Random Forest Classifier (RF)

• oob_score = True
• n_estimators = 150
• class_weight = “balanced”
• min_samples_leaf = 2
• criterion = “gini”
• max_depth = None
• max_features = squareroot(n_features)

XGBoost (XGB)

• n_estimators = 15
• max_depth = 6
• gamma = 0
• learning_rate = 0.3
• min_child_weight = 1
• subsample = 1

Time-Series Averaging (TSA) Data Preprocessing
Support Vector Machine (SVC)

• C = 15
• decision_function_shape = “ovr”
• kernel = “rbf”
• degree = 5
• probability = True
• class_weight = “balanced”

Random Forest Classifier (RF)

• oob_score = True
• n_estimators = 150
• class_weight = “balanced”
• min_samples_leaf = 2
• criterion = “gini”
• max_depth = None
• max_features = squareroot(n_features)

XGBoost (XGB)

• n_estimators = 50
• max_depth = 8
• gamma = 0

https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://github.com/pytorch/pytorch
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• learning_rate = 0.4
• min_child_weight = 1
• subsample = 1

Convolutional Neural Network (CNN)
Convolutional Layer

• input_channels = 4
• output_channels = 64
• kernel_size = 6
• stride = 1
• activation_function = “ReLU”

Convolutional Layer

• input_channels = 64
• output_channels = 128
• kernel_size = 6
• stride = 2
• activation_function = “ReLU”

Linear Layer

• input_channels = 640
• output_channels = 100
• activation_layer = “ReLU”
• Linear Layer
• input_channels = 100
• output_channels = 1

Use Case 2: Multiclass Prediction of Concussion Impairments

Non-Time-Series (NTS) Data Preprocessing
Hyperparameters are identical to NTS models in Use Case 1

Time-Series Averaging (TSA) Data Preprocessing
For each Eo and Ec patient test, the three phybrata time-series signals (x, y, z) and the

phybrata power (calculated using the vector sum of the three acceleration components)
were averaged over one-second time-steps (100 samples per time step t), generating twenty
averaged time-steps (20t) for each 20-s patient test. In the SVM, RF, and XGB ML models,
every t becomes a feature (d) for each of the accelerometry predictors (d; power, x, y, z) form-
ing an n × (20t ∗ 4d) matrix for each of the Eo and Ec conditions and n patients. The CNN
model architecture requires that the input data be formatted as an (n ∗ 20t) × 4d matrix.

Phybrata Power Calculations
Phybrata power is calculated as follows:

p = mB ∗ a2 ∗ t

mB is the average mass of the human brain (mB = 1.2 kg). For each individual point in time,
the RMS acceleration is calculated as (ax

2 + ay
2 + az

2)1/2. The phybrata power is calculated
for each time sample duration ∆t (∆t = 0.01 s for 100 Hz sampling rate) and then summed
across the full 20-s time series for each of the Ec and Eo test phases.

Non-Time-Series (NTS) Feature Extraction—Phybrata Signal PSD Calculations
Welch’s method [78] splits a time-series into overlapping segments, computes pe-

riodograms for each segment using a discrete Fourier Transform, squares the results to
generate a power spectral density (PSD) curve for each periodogram, and then averages all
the results to generate a single smoothed PSD curve that is representative of the entire time-
series signal. This PSD curve can then be used to calculate phybrata signal powers within
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specific frequency bands. The Welch’s method calculations in the present work used the fol-
lowing parameters for each of the time-series signals: total number of samples = 2000 (20 s
signals with a sampling rate of 100 samples/segment); segment length = 100 samples;
segment overlap = 50%; total number of segments = 40.

ROC Calculations
The following abbreviations are used:
TP = True Positives; TN = True Negatives; FP = False Positive; FN = False Negative.
Formulas for specific evaluation metrics:

Sensitivity = (TP)/(TP + FN)

Specificity = (TN)/(TN + FP)

F1 = (TP)/(TP + (1/2 × (FP + FN)))
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