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Abstract: We propose GourmetNet, a single-pass, end-to-end trainable network for food segmen-
tation that achieves state-of-the-art performance. Food segmentation is an important problem as
the first step for nutrition monitoring, food volume and calorie estimation. Our novel architecture
incorporates both channel attention and spatial attention information in an expanded multi-scale
feature representation using our advanced Waterfall Atrous Spatial Pooling module. GourmetNet
refines the feature extraction process by merging features from multiple levels of the backbone
through the two attention modules. The refined features are processed with the advanced multi-scale
waterfall module that combines the benefits of cascade filtering and pyramid representations without
requiring a separate decoder or post-processing. Our experiments on two food datasets show that
GourmetNet significantly outperforms existing current state-of-the-art methods.

Keywords: semantic segmentation; food segmentation; multi-scale features; spatial attention;
channel attention

1. Introduction

Semantic segmentation is an important computer vision task that has advanced
significantly due to deep learning techniques [1–6]. Most semantic segmentation methods
focus on standard datasets, such as MS-COCO [7] and Cityscapes [8], but there is great
potential in diverse applications such as remote sensing [9], agriculture [10] and food
recognition [11,12]. Unfortunately, methods for food segmentation are still lagging in
development and this paper aims to advance the state-of-the-art.

Food segmentation methods are useful in a variety of applications including nutrition
monitoring [13–15], food volume estimation [16,17], calorie estimation [18,19], ingredi-
ent detection [20,21], recipe generation [22,23] and food preparation. The application of
nutrition monitoring using smartphones can significantly benefit from accurate food seg-
mentation by alleviating the user from manually entering food labels and portion size for
each meal. In this context, the user takes a picture of the meal and food segmentation
automatically detects each food item and provides an estimate of the portion size. This
information can be further used to assess the nutritional content of a meal and monitor
the nutrition intake of an individual over a time period in order to provide recommen-
dations for dietary improvements for health benefits. This scenario is supportive of the
World Health Organization’s Sustainable Development Goals (SDGs) to achieve improved
nutrition, ensure sustainable consumption patterns, ensure healthy lives and promote
well-being for all at all ages.

Food segmentation is a challenging problem due to high intra-class variability, that
is, a food element can be presented in a widely diverse set of shapes, sizes, colors, and
combinations with other ingredients. Another characteristic of food analysis is that some
food items are routinely paired, allowing the network to infer correlations between the
occurrence of different classes.
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Early food segmentation works were based on traditional computer vision meth-
ods [24,25]. Segmentation of food images was performed in a deep learning framework
as an initial step towards calorie estimation in im2calories [19]. However, the dataset
in im2calories was not made public for further research. The UNIMIB2016 dataset [26]
was introduced for food segmentation with polygon annotations for 73 food categories.
Initial segmentation results were obtained in [11,12] based on the popular SegNet [4] and
DeepLab [5] methods respectively. Another publicly available dataset is the UEC FoodPix
dataset [27], where DeepLabv3 [28] was used to perform semantic segmentation. Our
approach employs attention mechanisms on multi-scale waterfall features and significantly
outperforms the current state-of-the-art in the aforementioned datasets.

We propose GourmetNet, a single-stage network for food segmentation, that is end-
to-end trainable and generates state-of-the-art results without requiring multiple iterations,
intermediate supervision or postprocessing. Our method is inspired by recent advances
in multi-scale feature representations [6,29] and dual attention methods [30] to create a
contextual multi-scale framework that improves the pixel-level detection of different foods
for segmentation. Examples of food segmentation obtained with GourmetNet are shown
in Figure 1.

Figure 1. Food segmentation examples using GourmetNet.

The main aspect of our novel architecture is the extraction of both channel and spa-
tial attention information for an expanded multi-scale feature representation using the
advanced Waterfall Atrous Spatial Pooling (WASPv2) module [29]. The WASPv2 mod-
ule generates multi-scale features by increasing the Field-of-View (FOV) for the network
while better describing shapes, colors and textures from images, resulting in a significant
improvement in accuracy for food segmentation.

GourmetNet predicts the location of multiple food classes and performs segmentation
of multiple food items based on contextual information due to the multi-scale feature
representation. The contextual approach allows our network to include information from
the entire image, including all channels and shapes, and consequently does not require
post analysis based on statistical or geometric methods, for example, there is no need to
use the computationally expensive Conditional Random Fields (CRF).
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The main contributions of this paper are the following:

• We propose GourmetNet, a single-pass, end-to-end trainable, multi-scale framework
with channel and attention modules for feature refinement;

• The integration of channel and attention modules with waterfall spatial pyramids
increases performance due to improved feature extraction combined with the multi-
scale waterfall approach that allows a larger FOV without requiring a separate decoder
or post-processing.

• GourmetNet achieves state-of-the-art performance on the UNIMIB2016 and UEC
FoodPix food segmentation datasets. The GourmetNet code is shared on github
(https://github.com/uditsharma29/GourmetNet (accessed on 8 November 2021)).

The rest of this paper is organized as follows. After the introduction, related work
on food segmentation, multi-scale features and attention mechanisms is overviewed in
Section 2. The proposed GourmetNet framework and its components, including the chan-
nel attention module, the spatial attention module, and the waterfall module, is presented
in Section 3. Experimental methods, datasets and evaluation metrics are discussed in
Section 4. Results of ablation studies, comparisons with the state-of-the-art, and repre-
sentative examples are shown in Section 5. Conclusions and future work are outlined
in Section 6.

2. Related Work

Semantic segmentation methods have improved significantly following the break-
through introduction of the Deconvolution Network [2] and Fully Convolutional Networks
(FCN) [1]. The U-Net architecture [3] extended the convolution-deconvolution framework
by concatenating features from the convolution layers with their counterparts in the de-
convolution part of the network. Using an encoder–decoder approach, SegNet [4] used
the initial layers of the VGG backbone [31] in the encoder stage with up-sampling decon-
volution layers in the decoder stage. SegNet was further developed in [32] to include
Bayesian techniques to model uncertainty. Aiming to expand the learning context of the
network, Pyramid Scene Parsing (PSPnet) [33] combined scene parsing with semantic
segmentation. The Efficient Network (ENet) approach [34] sought to develop a real-time
semantic segmentation method, resulting in a significant improvement in processing speed
compared to other methods.

DeepLab [5] is a popular architecture that proposed the Atrous Spatial Pyramid
Pooling (ASPP) module, leveraging the use of atrous (dilated) convolutions [35] and
Spatial Pyramid Pooling (SPP) [36]. ASPP incorporates branches with different rates
of dilation for their convolutions, increasing its field of view and better learning global
context. DeepLabv3 [28] improved this approach by applying atrous convolutions in a
cascade manner, progressively increasing the dilation rates through the layers. A further
improvement was reported in the DeepLabv3+ [37] which adds a simple but effective
decoder to the architecture in DeepLabv3 and uses separable convolutions to decrease the
computational cost of the network without a significant drop in performance.

2.1. Waterfall Multi-Scale Features

The Waterfall Atrous Spatial Pooling (WASP) module was introduced in WASPnet [6]
for semantic segmentation. The WASP module was designed to leverage the reduced size
of cascaded atrous convolutions while maintaining the larger FOV through multi-scale
features in the pyramid configuration. The WASP architecture effectively addressed the
issue of high memory requirement present on the ASPP module, and reduced parameters
by over 20% while improving improve segmentation performance compared to the original
ASPP architecture used in DeepLab. Additionally, the WASP multi-scale feature extraction
was found to be useful for human pose estimation and generated state-of-the-art results
with the UniPose method [38].

An improved version of the WASP module, named WASPv2, was proposed for the
task of multi-person pose estimation in the OmniPose framework [29]. This new feature

https://github.com/uditsharma29/GourmetNet
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extraction model combines the learning of the multi-scale features using the waterfall
approach while making use of low-level features from the backbone to embed spatial
information and maintain high resolution throughout its layers. The WASPv2 module
shows increased performance for pose estimation and further reduction in computational
cost, presenting promising potential to be applied for semantic segmentation. In this paper,
we adopt the WASPv2 module and re-purpose it with channel and spatial attention for
semantic segmentation in GourmetNet.

2.2. Attention Mechanisms

Attention was initially proposed in sequence-to-sequence (seq2seq) models for neural
machine translation [39,40]. The introduction of the transformer model [41] is a significant
breakthrough in Natural Language Processing (NLP), where the multi-head self-attention
layer in the transformer aligns words to obtain a representation of the sequence. The
attention approach was expanded to computer vision tasks in [42], by using a Recurrent
Neural Network (RNN) to associate generated words with certain parts of the image.

The use of attention to improve semantic segmentation methods was explored by [43],
taking the approach of training attention heads across scales for semantic segmentation.
Similarly, the Dual Attention Network (DANet) [44] uses the channel and spatial attention
to improve the network’s understanding of the global context for the image. The method
in [45] performs the reverse operation for attention, also aiming to better understand the
entire context of the image.

Expanding on attention decoders, BiSeNet [46] fuses two branches for low and high
level features bilaterally aiming to construct a real-time approach for segmentation. In
similar fashion, the Dual Attention Decoder [30] applies the low-level features to perform
its attention module on high level features while creating a channel mask to its low-level
features. GourmetNet leverages the promising use of attention to further improve its
multi-scale approach.

2.3. Food Segmentation

Food segmentation methods were initially developed using traditional computer
vision techniques. Local variation and normalized graph cut [47] were used by [24] to
extract the segmentation. The approach in [25] focused on the color and shape of the food
items based on the JSEG segmentation [48], which contains two independent steps: color
quantization and spatial segmentation. The biggest challenges for food segmentation and
related tasks, such as volume estimation, are due to its high intra-class variability regarding
texture, density, colors, and shapes.

Deep learning based methods have proven to be more effective than rule based tech-
niques for food segmentation. Initial applications for food segmentation with deep learning
include the mobile application of im2calories [19], having a long list of non-integrated steps
for the food segmentation task. This method relies on the GoogleNet model [49] to detect
instances of food, followed by another GoogleNet model trained to detect the food type,
and finally performs pixel level semantic classification with DeepLab [5].

In addition to introducing the UEC Foodpix dataset, [27] proposes a multi-step ap-
proach for food segmentation by applying YOLOv2 [50] for food detection followed by
segmentation using the DeepLabv3 method [28] with an Xception net backbone [51].

Slightly increasing the integration of networks for the task of food segmentation,
Reference [52] applies an encoder–decoder architecture to perform binary segmentation
on food images. The method combines the first three layers of the ResNet-101 [53] and a
decoder. SegNet [4] and DeepLab [5] architectures are adopted by [11,12] respectively to
perform semantic segmentation on the UNIMIB2016 dataset [26].

3. Proposed Method

The proposed GourmetNet framework, illustrated in Figure 2, is a single pass, end-
to-end trainable network for food segmentation. Inspired by [30], we introduce attention
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mechanisms with the multi-scale feature extraction of the WASPv2 module. GourmetNet
re-purposes the use of the dual attention module to extract context prior to the multi-
scale feature extraction and decoder stage from the WASPv2 module and the spatial
pooling modules.

Figure 2. The proposed GourmetNet architecture for food segmentation. The input image is fed
through a modified ResNet backbone and the features are refined by the spatial and channel attention
modules before the multi-scale WASPv2 module which produces the output semantic segmentation
result. The numbers below each block indicate the number of feature channels.

We determine that attention is more useful when it operates on features coming
directly from the backbone, as opposed to waiting until after the feature extraction during
the spatial pooling modules. This is done because features from the backbone are richer
in information and the attention modules have more to work with. Further, GourmetNet
combines the improvements in feature representations from WASPv2 and the attention
extraction of information from both channel and spatial attention modules.

The processing pipeline of GourmetNet is shown in Figure 2. The low-level features
are extracted from the input image through the first block of a modified ResNet feature
extractor and include a dilated last block for the generation of a large FOV. The high-level
features are the output of the last block of the modified ResNet feature extractor. All
features are then processed through the attention modules in order to better extract the
spatial understanding from the low-level features and richer contextual information from
the high-level features.

3.1. Backbone

We employ the ResNet backbone modified with atrous convolutions as done in [5].
For feature extraction, the first four blocks of ResNet-101 are used. However, the last block
is modified for multi-scale feature learning. Instead of using regular convolutions, this
block uses atrous convolutions. Further, each convolution in this block uses different rates
of dilation to capture multi-scale context. The output size of the feature maps is determined
by the output stride. For an output stride of s, the output is reduced by s times from the
original image. Having a higher output stride affects the quality of dense predictions
but reduces the size of the model. For practical reasons, we use an output stride of 16 in
our experiments.

3.2. Attention Modules

GourmetNet utilizes two attention modules to generate masks and refine the low-level
and high-level features extracted from the modified ResNet backbone. The placement of
the attention modules in the GourmetNet framework is illustrated in Figure 2. The spatial
attention branch uses the low-level features from the backbone to create a mask containing
spatial information to refine the high-level features prior to the waterfall module. The
channel attention branch uses the high-level features to create a mask containing channel
information from the feature maps, and applies it to refine the the low-level features.

The dimensions of the generated spatial mask are h × w × 1, where h and w are the
height and width of the low-level feature maps. The same mask is broadcast across all
feature maps in the high-level features space.
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3.2.1. Channel Attention

Channel attention utilizes high-level features which consist of 2048 feature maps with
width and height reduced by a factor of four compared to the original dimensions of the
input image. Our modified channel attention module progressively reduces the number of
feature maps to 256. These maps produce the channel attention mask used as one of the
inputs to the WASPv2 module after pixel-wise multiplication with the low-level features
from the backbone.

The channel attention module architecture is shown in Figure 3. The 2048 high-level
feature maps from the modified ResNet backbone are processed with 1 × 1 convolutions to
reduce the number of feature maps to 512, followed by a global average pooling layer and
another 1 × 1 convolution stage, reducing the number of feature maps to 256. The output
of the module is then multiplied pixel-wise with the low-level features from the backbone,
producing the refined low-level features with 256 channels. The channel attention module
operation can be expressed as follows:

frl = fl ∗ (K1 ~ AP(K1 ~ fh), (1)

where ~ represents convolution, frl represents the refined low-level features, fl are the
low-level features extracted from block 1 of the backbone, ∗ represents element-wise
multiplication, K1 is a kernel of size 1 × 1, AP denotes Average Pooling, and fh represents
the high-level features extracted from backbone. The dimensions of the channel mask are
1 × 1 × c where c is the number of channels in the low-level feature space. This mask is
broadcast to all the pixels in the low-level feature maps.

Figure 3. Channel attention module architecture. The high-level features from the backbone are fed to
a 1 × 1 convolution to reduce the number of maps to 512, followed by a global average pooling layer
(GAP) and another 1 × 1 convolution, generating 256 maps. These maps are then multiplied with the
low-level features from the backbone, generating the refined low-level features. The numbers below
each block indicate the number of feature channels.

3.2.2. Spatial Attention

Spatial attention utilizes low-level features that are extracted from the first block of
the modified ResNet backbone, by converting features maps into the spatial attention
mask. This mask is then used to refine the high-level backbone features using element-
wise multiplication.

The spatial attention module is shown in Figure 4. It receives the 256 channels of
low-level features from the first block of the modified ResNet backbone, and reduces
them to 128 channels via 1 × 1 convolution. This is followed by a set of two parallel
pooling operations, one for spatial average pooling (SAP) and one for spatial max pooling
(SMP). The outputs of both spatial pooling operations are then concatenated and processed
through a 5 × 5 convolution in order to extract spatial information with a larger FOV. The
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output of the module is then multiplied pixel-wise with the high-level features from the
backbone, producing the refined high-level features with 2048 channels. The mathematical
representation of the spatial attention module can be described as follows:

frh = fh ∗ (K5 ~ (SAP(K1 ~ fl)⊕ SMP(K1 ~ fl))), (2)

where ~ represents convolution, frh represents the refined high-level features, fh are the
high-level features extracted from the backbone, * represents element-wise multiplication,
K1 and K5 are kernels of size 1 × 1 and 5 × 5 respectively, SAP and SMP denote Spatial
Average Pooling and Spatial Max pooling operations, respectively, ⊕ is a concatenation
operation, and fl represents the low-level features extracted from block 1 of the backbone.

Figure 4. Spatial attention module architecture. The low-level features from the backbone are fed to a
1 × 1 convolution to reduce it to 128 maps. The maps are then fed to both a SAP and SMP layers, with
their respective results being added. A final 5 × 5 convolution is used prior to the multiplication with
the high-level features from the backbone, resulting in the refined high-level features for GourmetNet.
The numbers below each block indicate the number of feature channels.

3.3. Multi-Scale Waterfall Features

Following the refinement of the low-level and high-level features via the attention mod-
ules, we perform multi-scale feature extraction and decoding through the WASPv2 mod-
ule [29]. The WASPv2, depicted in Figure 5, increases the FOV by applying a set of atrous
convolutions with dilation rates of [1, 6, 12, 18] assembled in a waterfall configuration.

Figure 5. The advanced waterfall (WASPv2) module architecture with channel attention and spatial
attention refined features.
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The waterfall architecture utilizes progressive filtering in an efficient cascade architec-
ture, while maintaining the multi-scale FOV found in the spatial pyramid configurations.
The refined low-level features are concatenated with the high-level features to obtain a
multi-scale representation with increased FOV. The final layers with 1 × 1 convolutions
acts as an inbuilt decoder, generating the final segmentation maps for our GourmetNet
model without requiring a separate decoder module or postprocessing.

4. Experimental Methods
4.1. Datasets

We perform food segmentation experiments with GourmetNet on two datasets: the
UECFoodPix dataset [27] and the UNIMIB2016 dataset [26]. The UEC FoodPix dataset is a
large scale dataset for food segmentation collected by researchers in Japan. It consists of
9000 images for training and 1000 images for testing, labelled with manually annotated
masks to segment 102 food categories. The main challenges of the UEC FoodPix dataset
include the presence of multiple food classes on the same plate without a significant
separation, diverse camera angles, various arrangements of the plates, and variation of
the image size. Annotations for the UEC FoodPix dataset were generated using a coarse
automated tool and manually refined by the authors [54].

The UNIMIB2016 dataset is a popular food dataset, especially for the tasks of food
classification and recognition. The dataset was collected by researchers from the University
of Milan, Italy, and consists of 1010 tray images that include 73 different food categories
with a total of 3616 food instances. This dataset provides food region information as
polygons that can be converted to masks for performing semantic segmentation. Most
images contain several plates on a tray with each plate containing one food item. All
images are shot from a constant angle and at the same high resolution (3264 × 2448). The
dataset is divided into 650 images for training and 360 images for testing. Annotations
were created using an automated tool [55] to generate polygons using the Douglas-Peucker
algorithm [56]. A drawback of this annotation method is the more coarse borders resulting
from the polygon method.

4.2. Parameter Setting

We trained GourmetNet in all experiments for 100 epochs by applying a batch size of
8. We implemented a multi-step learning rate routine with a base learning rate of 10−5 and
steps of 0.3 at epochs 40 and 70. The model was trained with the Cross-Entropy (CE) loss
using the Stochastic Gradient Descent (SGD) optimizer [57]. The weight decay was set to
5 × 10−4 and momentum to 0.9 [58]. All experiments were performed using PyTorch on
Ubuntu 16.04. The workstation had an Intel i5-2650 2.20 GHz CPU with 16 GB of RAM and
an NVIDIA Tesla V100 GPU.

The experiments were performed with an input size of 320 × 320 for the UEC Food-
Pix [27] dataset and on an image size of 480 × 360 for the UNIMIB2016 [26] dataset, in
order to match resolution with prior literature during accuracy comparisons. Since the
code for the dual attention decoder is not publicly available, we wrote our own code based
on the architecture described in [30].

4.3. Evaluation Metrics

The evaluation of the GourmetNet experiments was based on the Mean Intersection
over Union (mIOU), a standard metric used for semantic segmentation. The IOU was
calculated as:

IOU =
TP

TP + FP + FN
(3)

where TP, FP and FN represent True Positives, False Positives and False Negatives, re-
spectively. The mIOU was obtained by the simple average score of IoU for all classes and
instances in the dataset.



Sensors 2021, 21, 7504 9 of 16

5. Results

We evaluated GourmetNet on the UEC FoodPix and UNIMIB2016 datasets, and
compared our results with other methods and the previous state-of-the-art.

5.1. Ablation Studies

During our experiments, we performed a series of ablation studies to analyze the
performance gains due to different components of GourmetNet. Tables 1 and 2 present
our ablation results on the UNIMIB2016 and the UEC FoodPix datasets. In these ablation
studies GourmetNet was used with the following options: no module, Dual Attention
Decoder [30], ASPP [5], WASP [6], WASPv2 [29], and our Channel Attention and Spatial
Attention modules. All of the experiments were performed with a modified ResNet-101
backbone for feature extraction.

Table 1. Results of GourmetNet ablation experiments for various configurations on the UNIMIB2016
dataset. The segmentation accuracy is indicated by the mIOU score, while the model complexity is
described by the number of parameters and GFLOPS.

Dual Channel Spatial ASPP WASP WASPv2 GFLOPs #Params mIOUAttention Attention Attention

87.20 47.95 M 68.25%
X 51.56 45.58 M 69.44%
X X 54.60 59.41 M 69.73%
X X 46.98 47.49 M 69.25%
X X 48.81 47.00 M 70.29%

X 47.02 46.9 M 69.17%
X X 53.62 48.7 M 70.28%

X X 72.00 46.9 M 70.58%
X X X 78.60 48.8 M 71.79%

X X X X 78.60 49 M 69.79%

The results of Table 1 show that the mIOU performance of GourmetNet progres-
sively increases with the inclusion of the multi-scale modules and attention modules. The
WASPv2 presented the largest gain to the network as a single contribution, increasing the
mIOU by 1.6% (from 68.25% to 69.17%). The dual attention decoder results in a 0.8% mIOU
increase when added to the network in combination to the WASPv2 module to 70.29%.
When individually utilizing our modified channel attention and spatial attention modules
in addition to the WASPv2 module, the mIOU increased to 70.28% and 70.58%, respectively.
The most effective configuration was found to be the inclusion of both our modified channel
and spatial attention modules in addition to the WASPv2 module, resulting in the highest
mIOU of 71.79% for the UNIMIB2016 dataset, a significant increase of 2.06% compared to
the results obtained with Dual Attention and ASSP.

Table 2. Results of GourmetNet ablation experiments for various configurations on the UEC FoodPix
dataset. The segmentation accuracy is indicated by the mIOU score, while the model complexity is
described by the number of parameters and GFLOPS.

Dual Channel Spatial ASPP WASP WASPv2 GFLOPs #Params mIOUAttention Attention Attention

51.33 47.95M 62.33%
X 30.21 45.58M 62.48%
X X 31.89 59.41M 62.49%
X X 27.47 47.49M 61.95%
X X 28.91 47M 63.14%

X 27.5 46.9M 63.54%
X X 31.4 48.7M 64.30%

X X 42.3 46.9M 64.29%
X X X 46.2 48.8M 65.13%

X X X X 31.9 49M 63.92%
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Table 2 shows the performance of GourmetNet for the UEC FoodPix dataset with the
same variations in its components. Consistent with the results for the previous dataset,
GourmetNet shows a progressive increase in performance with the addition of each com-
ponent. The best results achieve an mIOU of 65.13% when incorporating both Channel and
Spatial attention modules in addition to the WASPv2 module. The results in Tables 1 and 2,
show that the mIoU performance of GourmetNet is better for the UNIMIB2016 dataset com-
pared to the UEC FoodPix dataset. This is due to differences between the two datasets that
make UEC FoodPix more challenging, as it contains a larger number of classes, more com-
plex boundaries between food items on the same plate and higher variation in background
setting, camera angles and lighting conditions.

For completeness, we perform the experiment where we combine both the Dual
Attention Decoder [30] and the channel and spatial attention modules in our proposed
configuration. This configuration was not optimal, as we observe that the performance
diminishes by 1.8% from 65.13% by our proposed architecture to 63.92% for the UEC
FoodPix dataset (Table 2). In this configuration, we apply attention twice: once before the
waterfall module and once in the dual attention decoder. However, the WASPv2 module
performs better without the dual attention decoder, as indicated in the results of Table 2. A
similar observation was made from the results of the UNIMIB2016 dataset in Table 1.

To assess the GourmetNet model complexity, we present the GFLOPS and the number
of parameters for each configuration. These results show that the top performing WASPv2
module requires fewer parameters and is more computationally efficient than the popular
ASPP architecture. The addition of the channel and spatial attention modules slightly
increases the number of parameters but significantly increases the computational load.

5.2. Comparison to State-of-the-Art

Following our ablation studies, we compared our GourmetNet method with the cur-
rent state-of-the-art for food segmentation, when results were available. We also included
results using top performing methods for semantic segmentation, such as DeepLabv3+
and WASPnet. The IOU results obtained for the UNIMIB2016 dataset are shown in Table 3.
GourmetNet achieves top performance, showing significant mIOU gains in comparison
to other methods. For the UNIMIB2016 dataset, GourmetNet achieves 71.79% mIOU,
compared to 68.87% achieved by DeepLabv3+, which is a 4.2% improvement.

Table 3. GourmetNet results and comparison with SOTA methods for the UNIMIB2016 dataset.

Method mIOU

DeepLab [12] 43.3%
SegNet [11] 44%

WASPnet [6] 67.50%
DeepLabv3+ [37] 68.87%

GourmetNet (Ours) 71.79%

Example results for the UNIMIB2016 dataset are shown in Figure 6. These examples
illustrate that GourmetNet successfully identifies the location of food groups with accuracy
for challenging scenarios including food items that share irregular borders and shapes.
Challenging conditions include the detection of food items that overlap but are described
by a single segmentation mask, for example, pasta containing grated cheese on it.

We next performed testing on the UEC FoodPix dataset, which is more challenging
due to occurrences of multiple food items in proximity, different angles, and different
resolutions for training and testing images. The mIOU results are shown in Table 4.
GourmetNet outperforms the current state-of-the-art achieving 65.13% mIOU, a significant
performance increase of 5.8% compared to DeepLabv3+ and 17.2% compared to the dataset
baseline set by [27]. The examples in Figure 7 demonstrate successful segmentations for
the UEC FoodPix dataset. These examples show that GourmetNet deals effectively with
food accuracy, localization, and shape. Challenging conditions are due to different food
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types overlapping and in close proximity or with different items composing a single dish,
for example, a bowl of soup containing vegetables and tofu in its broth.

Table 4. GourmetNet results and comparison with SOTA methods for the UEC FoodPix dataset.

Method mIOU

UEC FoodPix [27] 55.55%
DeepLabv3+ [37] 61.54%

WASPnet [6] 62.09%
GourmetNet (Ours) 65.13%

Figure 6. Segmentation examples using GourmetNet for the UNIMIB2016 dataset.

5.3. Food Classes Performance Analysis

Table 5 lists the performance of GourmetNet for different food classes at both ends of
the performance spectrum for the UEC FoodPix dataset. Food items that present constant
shape and color, that are displayed with separation from other items, present a more solid
consistency and achieve a higher mIOU from the GourmetNet model. Examples of classes
containing these characteristics are croquette and pancakes. Another important factor for
high accuracy is the fact that the class is visually distinct from the other classes, that is,
udon noodle and goya chanpuru. Food classes that are routinely served in a separate bowl,
such as mixed rice, also achieve a high mIOU score.
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Figure 7. Sample images, ground truth masks and corresponding predictions from the UEC Food-
Pix dataset.

Table 5. Comparison and analysis of food segmentation performance class-wise for the UEC FoodPix
dataset. The left section mentions classes with the highest mIOU while the right section mentions the
classes with the lowest mIOU.

Food Name mIOU Food Name mIoU

Croquette 92.16% Fried Fish 16.29%
Pancake 91.67% Tempura 17.46%

Udon Noodle 88.67% Vegetable Tempura 18.23%
Goya Chanpuru 88.61% Salmon Meuniere 30.28%

Mixed Rice 87.54% Chip Butty 31.03%

On the low performing side of Table 5, classes that present food items in close prox-
imity to other food items have the lowest scores. For example, fried fish has a significant
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overlap and cross-error with other fried food items. A similar cross-error is observed for
tempura and vegetable tempura, as well as chip butty being more routinely mistaken with
other types of chips from the dataset. Another source of error is the presence of sauces or
garnishing, altering the shape and color of the food item, and consequently increasing its
variability. One example of this occurrence is salmon meunière.

6. Conclusions

We presented GourmetNet, a novel, end-to-end trainable architecture for food segmen-
tation. GourmetNet incorporates the benefits of feature refinement from the channel and
attention modules with the improved multi-scale feature representations of the WASPv2
module. The GourmetNet model expands semantic segmentation to the food domain and
achieves state-of-the-art results on food segmentation datasets.

The goal of GourmetNet is to achieve improved food segmentation accuracy, conse-
quently improving the performance of related tasks, such as automatic nutrition monitor-
ing, food volume estimation, recipe extraction, or meal preparation. In future work, the
GourmetNet framework can be improved by making the process more computationally
efficient and increasing segmentation accuracy, so that food segmentation can be incor-
porated in a larger system for food volume estimation for dietary recommendations or
assistance for meal preparation.
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