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Abstract: Weakly supervised video anomaly detection is a recent focus of computer vision research
thanks to the availability of large-scale weakly supervised video datasets. However, most existing
research works are limited to the frame-level classification with emphasis on finding the presence
of specific objects or activities. In this article, a new neural network architecture is proposed to
efficiently extract the prominent features for detecting whether a video contains anomalies. A video
is treated as an integral input and the detection follows the procedure of video-label assignment.
The extraction of spatial and temporal features is carried out by three-dimensional convolutions,
and then their relationship is further modeled using an LSTM network. The concise structure of the
proposed method enables high computational efficiency, and extensive experiments demonstrate
its effectiveness.

Keywords: video anomaly detection; three-dimensional convolution; LSTM; weakly supervised;
spatial-temporal features; max-pooling

1. Introduction

In the past few decades, video anomaly detection has increasingly become a research
focus because of its wide application, such as in public safety and online video censorship.
Along with the popularity of camera hardware, the number of videos acquired by smart-
phones and surveillance cameras has increased so drastically, that manual processing of
these videos becomes unfeasible in many scenarios due to its low efficiency.

Anomaly detection refers to the problem of finding irregular patterns that do not con-
form to the expectation [1]. Anomalies in a video include not only common irregularities,
like vandalism, assault, and traffic accidents, but also some events under certain contexts
such as a car entering a pedestrian-only zone. Though it seems that the identification of
an abnormal object or event is the unique critical factor to consider, the context of a video
is of equal importance for detection. Accordingly, video anomaly detection is different
from human action recognition and event recognition, because it is more complicated
to define a video anomaly than to barely detect an event or action; it involves a much
wider range of activities, and can have a large inter-class variance as a result of complex
contexts. In addition, given that video anomaly detection focuses on whether a video
contains anomalies, it is as well different from video anomaly localization, which aims
to identify all the abnormal frames in a video. The recent research trend suggests that
detection and localization can be combined into a single end-to-end pipeline; however, the
performance of such a combination remains to be explored since using a video anomaly
detector to find the localization of abnormal frames may not be accurate as expected due to
its nonlinear characteristics.

In practice, anomaly usually happens in a short time slot, while the principal part
of the video can still be considered normal. A natural way to find out whether a video
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contains an anomaly is to follow the idea of multiple instance learning (MIL), where a video
is considered normal only when there is no anomaly in all its segments. To comply with
this requirement, it is necessary to identify both the activities and the context of a video.
In the early works towards video anomaly detection, features such as object trajectory
and spatiotemporal context were manually selected and calculated for classification [2,3].
Scenarios considered in these works were simple: videos were assumed to be well-trimmed,
and each frame was required to be annotated. However, it is very time-consuming to
obtain such a video dataset; for that reason, no large-scale datasets were available for
training and objectively evaluating an algorithm or framework. In recent years, deep
learning methods have become the dominant technique in computer vision and pattern
recognition. Unlike the traditional methods, features used in common deep learning
methods are selected and optimized automatically. Deep learning methods achieved
impressive performances in video anomaly detection and have improved benchmarks on
many datasets by a large margin [4], and their applications have been proved to be effective
especially in complicated scenarios.

Based on the way of human intervention and the information used for training, usual
deep learning methods for video anomaly detection can be classified into supervised,
unsupervised, and weakly supervised methods. Supervised deep learning methods rely on
the clear identifications of normal and abnormal activities; successful training depends on
sufficient samples with accurate frame-level annotations, so their applications are limited
by the availability of large-scale datasets. Unsupervised methods, on the other hand, do
not require labeled samples; instead, the training set is composed of only normal videos
to understand how the normal scenarios should be. Subsequently, a video is considered
abnormal if it is dissimilar to the normal ones in the training set; the robustness of a model,
therefore, relies on how representative the training videos are, and how the difference
between normal and abnormal videos is defined and measured. Insufficient training or
unrepresentative training samples can lead to a high false-positive rate.

Many powerful and effective deep learning methods have been proposed [4]; along
with improved accuracy, the architectures of neural networks become deeper, and there-
fore, more training samples are required to avoid underfitting and biased training. Since
assigning a unique label to a video is much easier than annotating each frame, the recently
published weakly supervised datasets provide a good solution for this problem [5–7]. An
example of these videos is illustrated in Figure 1. These large-scale datasets contain much
more training samples than other available datasets. Meanwhile, these video-level labels
provide important guidance for a network to discern anomalies from normal scenes. With
the emerging of tremendous videos generated every day, assigning a video-level annota-
tion turns to be more reasonable for video anomaly detection. Consequently, methods for
weakly supervised datasets have become popular.

Though a deep learning method requires no manual feature engineering, defining an
effective architecture and choosing a suitable framework are critical for its performance.
The focus of video anomaly detection is to identify events, activities, and contexts presented
in temporal-sequential frames; therefore, dynamic spatial–temporal features are required.
In this article, a new framework is proposed to efficiently detect anomalies using weakly
supervised video datasets. Three-dimensional (3D) convolutions with max-pooling are
adopted to extract the prominent spatial–temporal information, and then the long short-
term memory (LSTM) network [8] is used to further model the relationship between these
features for classification.
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Figure 1. An example of a weakly surprised anomaly video in the UCF-Crime dataset [5] under the 
subcategory of abuse (Abuse028_x264.mp4). (The video contains 1412 frames, where the abuse scene 
lasted around 56 frames corresponding to approximately 4% of the total frames). 
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learned from the training set. Autoencoder is a commonly adopted technique for these 
methods; with sufficient samples, the trained autoencoder can generate small 
reconstruction errors for normal videos and large errors for abnormal ones. In [9], a fully 
convolutional network (FCN) was proposed to learn both motion features and regular 
patterns; the regularity score of a video is computed based on the reconstruction error of 
the autoencoder. The LSTM architecture was later used in [10] to model the temporal 
relationship between video frames; the combination of FCN and LSTM achieved better 
performances. Other efficient networks, like recurrent neural network (RNN) and 
inception models, were also integrated into the autoencoder methods in [11,12], which 
further improved the performance of detection.  

Some of the methods used transfer learning technique and combined the extracted 
features with other classification methods to carry out the detection [7,13–16]; for example, 
in [14,15], with the features extracted from the pre-trained VGG model [17], unmasking 
processes were carried out for assigning anomaly scores of video frames. Anomaly 
detection was treated as multi-class classification in [16], and then methods such as k-
means clustering and support vector machine were used for classification. Recently, 
generative adversarial networks (GANs) were also proposed for anomaly detection in 
[18,19]; a properly trained generator can produce highly realistic fake frames that are 

Figure 1. An example of a weakly surprised anomaly video in the UCF-Crime dataset [5] under the
subcategory of abuse (Abuse028_x264.mp4). (The video contains 1412 frames, where the abuse scene
lasted around 56 frames corresponding to approximately 4% of the total frames).

2. Materials and Methods
2.1. Related Work

Many deep learning methods have been proposed for video anomaly detection. The
main difference between these existing methods is the way of how to discern the anomalies
from the normal scenarios. A video or a video frame is commonly handled as an outlier
when an object or event presented in it is significantly different from the ones learned from
the training set. Autoencoder is a commonly adopted technique for these methods; with
sufficient samples, the trained autoencoder can generate small reconstruction errors for
normal videos and large errors for abnormal ones. In [9], a fully convolutional network
(FCN) was proposed to learn both motion features and regular patterns; the regularity score
of a video is computed based on the reconstruction error of the autoencoder. The LSTM
architecture was later used in [10] to model the temporal relationship between video frames;
the combination of FCN and LSTM achieved better performances. Other efficient networks,
like recurrent neural network (RNN) and inception models, were also integrated into the
autoencoder methods in [11,12], which further improved the performance of detection.

Some of the methods used transfer learning technique and combined the extracted
features with other classification methods to carry out the detection [7,13–16]; for example,
in [14,15], with the features extracted from the pre-trained VGG model [17], unmasking
processes were carried out for assigning anomaly scores of video frames. Anomaly detec-
tion was treated as multi-class classification in [16], and then methods such as k-means
clustering and support vector machine were used for classification. Recently, generative ad-
versarial networks (GANs) were also proposed for anomaly detection in [18,19]; a properly
trained generator can produce highly realistic fake frames that are indistinguishable for
the discriminator, then a high anomaly score will be assigned to a video when a sequential
video frame is significantly different from the predicted one.

Along with the availability of large-scale weakly classified datasets, weakly supervised
methods are the recent focuses in video anomaly detection. For example, the methods
proposed in [5,20–22] adopted the ranking frameworks for the detection, and in order to
capture the anomalies, each video in the training set was divided into 32 video segments
that were fed separately into the network for training; the outputs of these video segments,
which corresponding to their scores, were then ranked and the highest score was chosen to
indicate whether the input video contains anomalies. These weakly supervised methods
achieved impressive performance. Nevertheless, even with the small segments of a video,
a large score can be assigned to a normal scene and a low score for an abnormal scene.
Therefore, training with video segments can still lead to bias of discerning anomalies from
normal ones. A graph convolution neural (GCN) network was proposed to solve this
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problem in [23]; the wrongly selected normal segment in an anomaly video was treated as
a label noise and an iterative optimization process was used to eliminate label noise. The
proposed GCN network achieved better results; however, the training was computationally
expensive and can lead to unstable performance due to unconstrained latent space.

2.2. Proposed Method

Most of the current weakly supervised models adopted the way of dividing a video
into a predefined number of segments to identify the segments that contain anomalies, like
the way for a strongly supervised dataset. However, such a division is not accurate in most
cases because without knowing the exact spatial and temporal location of anomalies, the
integrity of an event can be broken or inter-related events can be separated, which will
confuse the classifier; meanwhile, handling multiple segments is time-consuming, and
class imbalance may become a problem during the training given anomaly only happens
in a small time slot.

To solve the aforementioned problems, a more natural way was adopted to decide
whether a video contains anomalies conforming to the idea of MIL: a video is treated as an
integral input and is considered normal only when it contains no anomaly. Max-pooling
operations are used to replace the division of a video and to capture the most prominent
spatial-temporal features corresponding to possible anomalies. In such a way, a video is
classified based on the unique score generated by the framework. Hence, detection of
anomalies in a video becomes a binary classification with the final output score in the range
of [0, 1], where 0 (zero) means no anomaly detected, and 1 (one) means anomaly present.
The architecture of the proposed framework is illustrated in Figure 2. It contains three
principal parts: the first part is composed of three blocks, with each one including a 3D
convolutional layer followed by a max-pooling layer, the stacking of convolutional layers
aiming to capture both the temporal and the spatial features of the input video; the second
part, is an LSTM architecture followed by a global max-pooling layer, which is used to
further model the inter-related features from the first step and extract the most important
ones for classification; and the third part, contains two dense layers to generate the final
score of the video.
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Figure 2. The architecture of the proposed framework. The new framework consists of three parts, each one delineated
by a red rectangle: the first one includes three blocks composed of one convolutional layer followed by a pooling layer;
the second one is composed of an LSTM network and a global pooling layer, and the third one is a combination of two
dense layers to generate the final score. The changes of input and output shapes are illustrated by a video assumed to have
1000 frames of 3 color channels with height and width of 120 and 160 pixels, respectively. The framework does not have
restrictions on image size, nor the number of frames; it takes a video as an integral input and outputs a unique score to
indicate whether it contains anomalies.
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2.2.1. Convolutional Layers

As discussed in Section 2, the detection of anomalies in a video relies on the correct
extraction of spatial and temporal features of the video. 3D convolutions have been proved
to be effective in doing this task; thus, three convolution blocks are used. In the first layer
of the first block, 4 filters are used, with a spatial kernel of 3 × 3 size, to find the spatial
relationships on each video frame, and a temporal step of 2 to focus on the changes of
objects and backgrounds between neighboring frames; the output after the convolution is
then put into a max-pooling layer, but only spatial pooling is used to keep more information
of sequential temporal features.

The extracted features are used as the input for the second block where they are
convoluted by 8 filters of 4 × 3 × 3 size. The temporal receptive field is increased to 4 so
that the layer can capture features presented in a longer temporal duration. Meanwhile, the
temporal pooling size in the following pooling layer is set as 2 to extract the more prominent
features along with the time change. The increased temporal pooling is compensated by
the increased number of filters in this block.

In the last block, the number of filters is doubled again to 16, with the size of 8 × 3 × 3.
The doubled temporal step aims for a further combination of information along with the
temporal change, and more filters are used to compensate for the increased temporal
pooling size (doubled to 4) to obtain the most prominent features.

The output after these three blocks is a combination of the abstract spatial and temporal
features ready to be used for further processing. Only three blocks are used here because
3D convolution is computationally expensive, especially when the spatial or temporal
receptive field is large; also, too many max-pooling layers may suppress the contextual
information too much, leading to the loss of the important temporal relationship between
video frames. Consequently, features obtained in this step can still be called “local” features,
and their long-temporal changes and relationship need to be further modeled. Fortunately,
the convolution operations keep the temporal sequences of the extracted features, so these
discrete spatial-temporal features can be processed as a time sequence series. The LSTM
network is an efficient architecture to suit this requirement.

2.2.2. LSTM Architecture

While the LSTM was initially developed to solve the vanishing gradient problem
for training traditional RNNs, its insensitivity to gap length forms a big advantage over
other sequence learning methods in many applications. A single memory unit in the LSTM
architecture consists of a cell state and its three gates: an input gate, an output gate and a
forget gate. Figure 3 illustrates the structure of a memory unit with the operations defined
as follows:

it = σ(wi[ht−1, xt] + bi) (1)

ft = σ
(

w f [ht−1, xt] + b f

)
(2)

ot = σ(wo[ht−1, xt] + bo) (3)

c̃t = tanh(wc[ht−1, xt] + bc) (4)

ct = ft ∗ ct−1 + it ∗ c̃t (5)

ht = ot∗ tan h(ct) (6)

where it is the input gate, ot is the output gate, ft is the forget gate, σ is the sigmoid function,
tan h is the hyperbolic tangent function, ct and ht are the cell state and the hidden state of
the time step t, w and b are the weights, operator ∗ stands for the element-wise product,
respectively. Intuitively, the input information is selectively chosen, discarding the useless
part and then combined with the prior information from its precedent unit through a series
of nonlinear functions; the prior information is stored in the hidden state extracted from
the previous inputs. Along with the training of LSTM, the hidden states store all the useful
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information from the previous sequences and can be seen as a substantial summary of
those video frames, which is essential for the detection of anomalies.
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Figure 3. A memory unit in the LSTM architecture (ct is the cell state at the time step t, and ht is the
hidden state used in the proposed method).

Therefore, in the second part of the proposed framework, the features extracted in the
first part are flattened according to their temporal sequence, and then the formed series
is fed into the LSTM network for training. A total of 1024 units are used in the network
to capture the memory features of each timestep along the timeline; therefore, along with
the training of the LSTM network, the important spatial-temporal features for each time
step are stored in the hidden state as a 1024-dimension vector. Given that videos are
weakly classified, the state of the last cell of the LSTM network, which corresponds to the
reminiscent information at the end of a video, may not contain any useful information for
detecting anomalies that happened in the video (a case in point can be seen in Figure 1).
Hence, instead of using only the states of the last cell of the LSTM network, all the hidden
states are taken into account since they contain all the necessary information for detection.

The hidden states are then put into a global max-pooling layer to extract the most
prominent spatial-temporal features among different time phases. The output of the second
part is a 1024-dimensional vector that represents the highly condensed contents of the
video covering the abstract spatial-temporal relationships of the video frames and the most
prominent features ready to be used for classification. Such a pooling operation in the
hidden states aims to identify the anomalies even if they happen in a short time slot of a
video; it does not require the video to be divided into a pre-defined number of segments
and, therefore, is more flexible in finding anomalies when they are presented along with
many normal scenes or events in a weakly supervised video.

2.2.3. Dense Layers

The third part of the framework is composed of two dense layers. The first layer
contains 128 units and uses the rectified linear unit (ReLU) as the activation function:

f (x) =
{

x i f x > 0
0 otherwise

(7)

and the second layer, which is also the last layer of the framework, uses the sigmoid
function to generate the final score.

The final output of the proposed framework is a value ranging from 0 (zero) to 1 (one)
to indicate whether the video contains anomalies; in the ideal case of binary classification,
a score of 1 (one) means that a video contains anomalies, and a score of 0 (zero) means no
anomaly in the video. Therefore, the following binary cross-entropy loss is used as the
loss function:

Loss = −t log(p)− (1 − t) log(1 − p) (8)
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where t stands the ground truth score of the training sample and p stands for the output
score of the framework.

With the three-parts architecture and the loss function defined in Equation (8), the
proposed framework can be trained by proper datasets and used for detection in new
videos. The small kernel sizes of architecture facilitate the computation and implementation,
which enables high efficiency with potential use for both offline and online detection.

3. Results

The proposed framework followed a sound procedure to extract the critical features
for anomaly detection. To demonstrate its effectiveness and objectively compare with other
state-of-the-art methods, experiments were carried out on two currently available weakly
supervised datasets: UCF-Crime and XD-Violence datasets.

The UCF-Crime dataset is a large-scale video dataset introduced in [5]. It consists of
1900 long and untrimmed real-world surveillance videos with a total duration of 128 h.
The dataset has been further divided into 13 types of anomalies including abuse, arson,
robbery, and road accident, and can be used for activity recognition. However, in our
experiments, we discarded these further classifications and only considered a video as
either normal or abnormal. As an objective comparison to the performance of other
methods, the division of training and testing set follows the way defined in [5]: the training
set contains 810 abnormal videos and 800 normal videos, while the testing set contains 140
abnormal videos and 150 normal videos.

XD-Violence is another large-scale video dataset proposed for violence detection [7].
The dataset contains 4754 videos with a total duration of 217 h; besides the videos, au-
dio signals were also provided so that multi-model fusion can be used to improve the
detection accuracy. The videos were acquired from multi scenarios, including clips from
games, movies, and YouTube. The training set is composed of 3953 videos; among them,
2048 videos contain no anomalies while the remaining 1905 ones contain different levels
of violence. The dataset also provides sub-classifications according to the violence type;
but, like in the UCF-Crime dataset, such information was discarded in the experiment. The
testing set contains 300 normal videos and 500 abnormal videos.

The two aforementioned datasets were selected because both are large-scale and
contain a considerable number of training samples, so the framework is less likely to have
problems of undertrained or overfitting.

3.1. Data Pre-Processing and Augmentation

The training of the proposed framework was straightforward and end-to-end. A
video was treated as an integral input formed by sequential video frames and fed to the
network. The aspect ratio of a video was assumed to be the traditional 4:3; so, for each
video frame, the width and the height were rescaled to 160 and 120 pixels, respectively. All
the color channels of the video frame were divided by 255 to normalize their values into
the range [0, 1].

Given the training videos were weakly labeled, the exact spatial and temporal locations
of the activities or objects, which determine the video attribute, are unknown. Consequently,
some data augmentation techniques, like cropping and translation are not applicable due
to their possible modification of sensitive information of an event or object. Nevertheless, a
safe way was adopted to extend the training samples by generating a new training sample
by flipping horizontally all the video frames; such a mirrored change does not lose any
critical information for detection, nor alternates any critical features of activities when
the background and context have the same alternation. Such augmentation of data can
benefit the training, because it emphasizes the detection of events and activities themselves,
without adding any artificial interpolation information to the process.
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3.2. Data Training

Following the procedure of LSTM, each video was fed into the framework as one
integral input, so the batch number was set to 1 (one). The stochastic gradient descent
(SGD) algorithm was used as the optimizer for both datasets with a learning rate of 0.0002.
Hyper-parameters for each layer were fixed as introduced in Section 2 for both datasets.

The proposed framework had no restriction on the number of frames contained in
the input video. Therefore, the input videos can have any time duration and number of
frames. However, if the time duration of a video was too long, the combined sequential
video frames become a burden to the CPU/GPU memory and could lead to an overflow,
either in the training when updating the weights, or in the testing when calculating the
final score. To handle this problem, the maximum number of frames contained in an input
video was set to be 4000; if a video contains more than 4000 frames, it was split into clips
with each one containing 4000 frames (the last and the second last clip can have overlaps
to satisfy this requirement). For each epoch of the training phase, a clip was randomly
selected for the oversized video and fed into the network. For testing, each of the split clips
was processed separately, and the final score of the video was defined as the maximum of
these scores:

S = max
i

Si (9)

where Si was the score of the i-th split video clip. This strategy was adopted only because
of the consideration of computational limits from hardware.

4. Discussion
4.1. Quantitative Analysis

The proposed framework outputs a score ranging from 0 (zero) to 1 (one) that can
be considered as the possibility of a video containing an anomaly. For such a binary
classification, the area under the ROC curve (AUC) is a conventional index to show how
accurate the classifier is.

The receiver operating characteristic curve (ROC) is a graph showing the perfor-
mance of a classifier at different thresholds; the vertical axis is the true positive rate (TPR),
which is also called sensitivity, and the horizontal axis is the false positive rate (FPR). The
calculations of TPR and FPR were defined as:

TPR =
TP

TP + FN
(10)

FPR =
FP

FP + TN
(11)

where TP, FP, TN and FN stand for the numbers of true positive, false positive, true
negative, and false negative video samples in the testing set, respectively. AUC provides
an aggregate index of performance across all possible thresholds for classification by
measuring the area underneath the ROC curve from (0,0) to (1,1). The AUC shows how
well the classification is without focusing on a specific threshold, indicating, therefore, the
overall performance of a classifier.

Given that the AUC is a commonly adopted index for the UCF-Crimes dataset, Figure 4a
shows the changes of AUC for the 50 epochs of training; the highest AUC value is 0.8523.
Table 1 listed the experimental results of the proposed framework along with the results of
other state-of-the-art methods reported in the literature. To the best of our knowledge, it is
currently among the best results concerning this dataset.
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Figure 4. Performance on the two large-scale datasets: (a) The evolution of ROCs during the training
for the UCF-Crime dataset (the color of the curve transits from green—early epochs, to red—late
epochs); (b) the evolution of PRCs during the training for the XD-Violence dataset (the color of the
curve transits from green—early epochs, to red—late epochs).

Table 1. A comparison between the performances of the proposed framework and other state-of-the-
art methods on the UCF-Crime dataset (best value found in bold).

Method Main Features AUC (%)

[5] C3D [24] 75.41

[20] C3D, TCN 78.66

[23] TSN 82.12

[25] C3D 83.03

[26] I3D 82.30

[27] C3D/I3D, RTFM 84.03

Our method 3D Convolution, LSTM 85.23

For the XD-Violence dataset, the average precision (AP) of the precision-recall curve
(PRC) was more frequently used to show the performance of a classifier. In a PRC curve,
TPR becomes the horizontal axis, and the vertical axis is the precision calculated as:

Precision =
TP

TP + FP
(12)

where TP and FP follow the definition in Equations (10) and (11). The main difference
between a ROC curve and a PRC curve is that the number of true negative samples is
not used in PRC, so PRC focuses more on the positive cases, and is more used when
there is class imbalance. Figure 4b illustrates the evolution of the PRC curves during the
training, and Table 2 presents the performance of the proposed framework along with
the ones reported by other existing methods. One can see that the proposed framework
also achieved the highest AP score with an impressive enhance to 0.9517 from the baseline
of 0.73 on this dataset. Results on both datasets demonstrated the effectiveness of the
proposed framework.

Table 2. A comparison between the performances of the proposed framework and other state-of-the-
art methods on the XD-Violence dataset (best value found in bold).

Method Main Features AP (%)

[5] C3D 73.20

[7] C3D 67.19

[7] C3D, Audio 78.64

Our method 3D Convolution, LSTM 95.17
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4.2. Further Discussions

As can be realized from the data in Tables 1 and 2, the proposed framework outper-
formed other state-of-the-art methods. It achieved a higher accuracy on the XD-Violence
dataset than on the UCF-Crime dataset. One of the possible reasons was that the videos
of the UCF-Crime dataset have lower resolutions because they were mainly acquired by
surveillance cameras, while most of the videos in the XD-Violence were acquired by high-
definition cameras and, therefore, have clearer representations of the objects and events
ongoing. Also, the anomalies in the UCF-Crime dataset were acquired from different view
angles, and sometimes in far-field view, which adds more difficulties to detection.

Meanwhile, the XD-Violence dataset focuses on anomalies with violent activities,
while the UCF-Crime dataset covers much more types of anomalies, so the large inter-
variance among these types could decrease the detection performance. Also, though the
UCF-Crime dataset contains a decent total number of videos with anomalies, the videos of
each sub-categorical anomaly remain to be few. Hence, the trained framework can fail to
detect certain types of anomalies, and the intra-variance inside the same type of anomaly
may further decrease its performance. In summary, larger datasets that cover more samples
and types of anomalies are still in demand to further improve detection accuracy.

Given that the training of the new framework shared the same configurations for the
two datasets, it would be interesting to see whether the performance of detection can be
further improved if the two training datasets are merged. The results of combined training
are illustrated in Figure 5. With more available samples and the diverse backgrounds of
datasets, the training took longer time to achieve stable performance. One can see from the
evolution of these curves that the combined training had a qualitatively better performance
on the XD-Violence testing data (blue over red), but lower performance on the UCF-Crime
testing data (blue under red). Quantitative analysis showed that the best AUC on the UCF-
Crime dataset lowered to 0.8236, while the best AP on the XD-Violence dataset increased to
0.9528, slightly higher than the result obtained before. The two datasets have controversial
tendencies of improvement. The combined training increased the true positive rate in
the XD-Violence dataset without increasing too much false positive rate, which leads to
a higher AP score. Nevertheless, since UCF-Crime covers more types of anomalies, one
can see that compared to the training before, the false positive rate was higher, which
means certain anomalies could not be detected without misclassifying normal videos,
so the overall performance decreased. A possible reason for this phenomenon was that
the normal videos in the training samples were more from the XD-Violence dataset than
from the UCF-Crime dataset (2048:800), the imbalance may lead to different criteria on
detecting whether a video is normal in the UCF-Crime testing data. Regardless, even
with the lowered AUC score, the performance of the new proposed framework is still
state-of-the-art.
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5. Conclusions and Future Work

An efficient new framework was proposed to perform video anomaly detection. 3D
convolutions and the LSTM architecture were used to extract the spatial and temporal
features of videos for detection. The proposed framework followed the natural way of de-
tecting anomalies in a video and has no restriction nor special pre-processing requirements
on the video. The framework does not have restrictions on the temporal duration of the
input video. It has a concise structure and is easy to be implemented; the efficient structure
enables the possibility of both offline and online detection. Experiments on two large-scale
weakly supervised datasets have been carried out, and the results demonstrated its effec-
tiveness over other state-of-the-art methods. An exhaustive search in the hyperparameter
space of the model may benefit even further the performance of the proposed method.
Our future work will explore this aspect and devote to the fusion among multiple-channel
information for detection; for example, by combining the videos with the sounds from the
built-in microphone like the work carried out in [7] with the XD-Violence dataset.

Video anomaly detection has been a focus due to the large demands from differ-
ent applications. The current framework achieved a state-of-the-art performance with
a straightforward and effective architecture, but still has unsatisfactory performance in
detecting certain types of anomalies. Further improvement and advances in video anomaly
detection methods, rely on the availability of more large-scale video datasets that include
sufficient training samples and cover various types of anomalies. To summarize, the main
contributions of this study are:

• A new framework that provides an effective way of detecting anomalies by combining
three-dimensional convolutions and the LSTM network.

• The structure of the new framework has high computational efficiency, which enables
its application to videos with different resolutions and for different tasks.

• Experiments carried out in this study not only demonstrated the effectiveness of the
new framework, but also improved the benchmarks on two large-scale datasets.
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