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Abstract: The demand for object detection capability in edge computing systems has surged. As
such, the need for lightweight Convolutional Neural Network (CNN)-based object detection models
has become a focal point. Current models are large in memory and deployment in edge devices is
demanding. This shows that the models need to be optimized for the hardware without performance
degradation. There exist several model compression methods; however, determining the most
efficient method is of major concern. Our goal was to rank the performance of these methods using
our application as a case study. We aimed to develop a real-time vehicle tracking system for cargo
ships. To address this, we developed a weighted score-based ranking scheme that utilizes the model
performance metrics. We demonstrated the effectiveness of this method by applying it on the baseline,
compressed, and micro-CNN models trained on our dataset. The result showed that quantization is
the most efficient compression method for the application, having the highest rank, with an average
weighted score of 9.00, followed by binarization, having an average weighted score of 8.07. Our
proposed method is extendable and can be used as a framework for the selection of suitable model
compression methods for edge devices in different applications.

Keywords: deep neural network compression; compression method evaluation; weighted score-
based ranking; embedded deep learning; edge computing

1. Introduction

In deep learning, object classification tasks are solved using Convolutional Neural
Networks (CNNs). CNNs are variants of Deep Neural Network (DNN) architectures that
accept batches of images as input and return the probability vectors of all the possible
outcomes [1]. These architectures are used as the backbone of state-of-the-art DNN-based
object detection methods. R-CNN [2] was one of the most successful methods proposed to
solve object classification, localization, and segmentation problems. R-CNN used AlexNet
(a variant of the CNN architecture developed in [1], having over 62M trainable parameters
and requiring a storage size of 250MB) as the backbone of the network. Other CNN
architectures used as the backbone of object detection models are ResNet-50 [3], which
requires over 95MB of storage space, and VGG16 [4].

Recent works have shown that microarchitectures (e.g., SqueezeNet [5], ShuffleNet [6],
EfficientNet [7], MobileNet [8]) with fewer parameters and small model sizes can achieve
the same level of accuracy as the macroarchitectures (e.g., Inception [9], AlexNet [1],
ResNet-50 [3], VGG16 [4]).

Modern object detection methods have shown excellent results in terms of accuracy
and generalization. This is due to the complexity of the networks used as the models’
backbone. This complexity hinders their applications on edge computing devices that are
usually liable to computational power and memory constraints. To deploy such models on
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these pieces of hardware while maintaining the performance (i.e., accuracy, robustness), it
is necessary to optimize the models efficiently.

Different studies have proposed different compression methods, such as bit reduction,
low-rank matrix decomposition, network pruning, sparsity, domain residual, knowledge
distillation, etc. These methods have shown excellent results in terms of model size
reduction, fast inference, and computational efficiency, without a significant decrease in
accuracy when compared with the original model [5,10]. However, identifying the most
effective and efficient methods based on the application requirements is challenging.

In this work, we propose a weighted score-based ranking scheme to address this
problem. Our proposed scheme utilizes the performance metrics of the compressed models
to evaluate and rank the compression methods. We show the effectiveness of this scheme
by applying it on the baseline, compressed, and micro-CNN models trained on our dataset.

2. Project Description
2.1. Project Background

The research projects ROROGREEN and Smart Car Deck Solution (SCDS) are initia-
tives developed by DFDS, Denmark (Europe’s largest Ferry operator), and Tallink AS, Esto-
nia (an Estonian based shipping company), respectively. These projects set out to develop
an automatic vehicle detection (classification and localization), positioning, and tracking
system for the cargo ships operated by both companies. The projects aim to digitize, auto-
mate, and optimize the end-to-end process of vessel stowage, loading/discharge of cargo
units, and terminal operations. The actualization of these projects is crucial because it is
envisioned that other shipping companies in Europe will also benefit from the projects’
results in the future.

2.2. Project Requirements

The ROROGREEN and SCDS projects require a real-time automated solution that can
track and monitor different objects on the decks of a cargo ship. Our goal is to achieve this
using a cost-effective camera-based edge device that is capable of processing the images
from the camera locally and in real-time. Our proposed solution is based on modern
CNN-based object detection methods, which will be optimized for the proposed hardware.
For the evaluation of the optimization methods implemented in this work, we used a
portion of the entire dataset that consisted of 1400 images of different categories gathered
locally. The sample of the dataset is described in Figure 1.

Figure 1. Sample of objects, including a person class, to be detected in the ROROGREEN and SCDS
projects. There are eleven images and each corresponds to the respective target class.
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To fulfil the goal of the projects, we proposed a solution that leverages modern object
detection methods. These methods serve as the backbone for the other functionalities
of the system (e.g., tracking, positioning, monitoring). We extracted the requirements
of the projects from the projects’ goals, use cases, and areas of use. We found that the
requirements of both projects are quite similar. The ROROGREEN project aims to classify,
localize, and track two classes of vehicles according to DFDS vehicle grouping. The SCDS
project aims to detect and track ten classes of vehicles with people inclusive, which makes
it a total of eleven classes. It is worth noting that DFDS’s vehicle classes are also embedded
in Tallink’s vehicle categories.

The base networks of modern CNN-based object detection methods are usually deep.
These usually require hardware having high processing power, high memory (flash size),
and high RAM size. These requirements are usually lacking in resource-constrained
devices; as such, deploying the models without optimization is impossible. Therefore,
model compression is mandatory for efficient computation and storage, which, in turn,
reduces the inference time without a significant drop in model accuracy. This will also
minimize the overall power consumption of the system.

As discussed above, it is evident that our goal is to develop a real-time, low-power,
cost-effective, and efficient solution using camera-based embedded hardware. This im-
plies that the trained custom model must be optimized to meet the system/hardware
requirements as highlighted below.

• High accuracy;
• Small model size;
• Small peak memory footprint;
• Fast inference;
• Computational efficiency.

3. Problem Statement

The ROROGREEN and SCDS projects aim to automate the loading and offloading
operations of the cargo units by using the real-time data generated (e.g., vehicle type, object
bounding coordinates, lane position, and other application parameters) by the camera-
based embedded hardware installed on each deck. The generated data are processed by
the external server, which automatically generates the loading/offloading plan, which is
validated with the standard deck plan.

Predicting the vehicle type, bounding box coordinates, and position of each object
requires modern object detection and position estimation algorithms. These methods must
be energy-efficient, less computationally intensive, and accurate. This is quite onerous
because of the choice of hardware required. The contrived visual representation of a ship
deck containing different vehicle types on respective lanes is described in Figure 2.

Figure 2. A contrived deck plan showing the vehicle loading operation. Each vehicle type occupies
different regions and the respective lane position.
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We proposed a CNN-based object detection method. This was adopted due to the
remarkable results it has shown. Modern object detection models are quite large in depth
and sometimes width. The depth is usually characterized by the number of hidden
layers in the backbone of the CNN architectures used. The depth contributes to the
total number of parameters (i.e., the weights in each layer), which usually result in large
models, as described in Figure 3. These models are power-inefficient, computationally
expensive, and require large memory for storage. This cannot be processed by our low-
power camera-based edge device. As such, the models need to be optimized/compressed
for the hardware.

Figure 3. A visual representation of a deep neural network (right) and a shallow neural network (left).

There are existing compression methods for large CNN models’ compression. Each
method has its drawbacks and determining the most suitable and effective method is of
major concern. To properly evaluate the effectiveness of each method, it is important to
understand how the method affects the original models. Therefore, we can rank all the
methods based on the following key parameters: model size, accuracy, memory footprint,
computational cost, and inference time.

4. Related Work

CNN models have shown unprecedented results in solving problems related to com-
puter vision (e.g., image classification, object detection, tracking). Due to the high computa-
tional power and memory that are required, this has impeded their adoption in embedded
applications. This problem led to a new area of research (i.e., deep neural network com-
pression) to tackle such challenges.

Several methods for model compression have been proposed in different studies.
These methods have shown remarkable results, albeit with certain drawbacks. In this
section, we categorize the methods into five groups: bit reduction, knowledge distillation,
tensor decomposition, network pruning, and microarchitecture.

4.1. Bit Reduction

Bit reduction techniques have been around for quite a while [11,12]. These techniques
aim to reduce the size of the model without a significant loss in the model performance.
In practice, this is somewhat difficult to achieve due to the loss of information when
approximating the 32-bit full precision weights and activations to a fixed point integer
representation [13,14]. Quantization can be implemented using (16, 8, or 4 bits); however,
there can be extreme cases where 2 bits or 1 bit are used to represent the weights and/or
activations. These are referred to as binarization and ternarization. Binary networks encode
the weights and activations with 1 bit (–1, 1), in contrast to ternary, which uses 2 bits (–1, 0,
1) [15].

The works of [11,12,16,17] showed the possibility of training deep networks with low
bit-width weights. The weights and activations of the networks were discretized and a
drastic reduction in model size with an insignificant drop in accuracy was achieved in [14].
An adaptive quantization framework that achieved a 20–40% higher compression rate,
in contrast to non-adaptive quantization methods that relied on a uniform quantizer, was
proposed in [18]. A vector-based quantization method that reduces the reconstruction in
the network output was introduced in [19]. The work of [18] also showed that the network
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layers contribute differently to the model prediction result; therefore, it is logical not to use
uniform bit-width quantization.

Quantization techniques have shown promising results for large model compression.
This breakthrough has caused different industries developing on-device/edge-based ar-
tificial intelligence solutions to adopt the methods. It is worth noting that the lower the
bit-width used in quantization, the higher the compression rate and the model sensitivity
to accuracy degradation.

4.2. Knowledge Distillation

The idea of transferring the knowledge learnt by a large model to a small model
is primordial. This has shown quite a reasonable result (i.e., accuracy). Ensembles (i.e.,
combining the predictions of several models) of large models were compressed using this
method [20]. The authors used the parameters learned by the large, slow, and complex
models to train an ensemble of small and fast models. This method gained traction from
the results shown by the authors. The authors of [21] trained a single model by transferring
the attributes of the ensemble of models to the single model. This achieved higher accuracy
than the prediction of the individual model of the ensemble.

The transfer of knowledge from a large and accurate model does not guarantee that
the small model will be accurate. It was demonstrated that not all the students (small
models) can learn effectively from the teachers (large models) in [22]. The authors also
pointed out that past work has not addressed this area but rather focused on the trend of
the subject.

Knowledge distillation has proven to be very relevant in many applications. This is
due to its simplicity and the ability to use synthetic data (data generated artificially) where
real data are not readily available; however, the statistical attributes of the synthetic data
must conform with the mimic real data [22].

4.3. Low-Rank Tensor Decomposition

Tensor decomposition is the generalization of low-rank matrix decomposition. Its use
case has been extended to CNNs. CNN models are composed of different layers, which
are defined by the types of mathematical operations performed in the layer. These layers
include the convolutional layer (CL), activation layer (AL), fully connected layer (FCL), etc.
A layer in the network is an array of nodes or neurons that can be expressed as a matrix
or tensor (i.e., a generalized form of a matrix). Each node is a regression function that
performs some computations (e.g., matrix multiplication) on higher-dimensional input
data and a weights matrix. Matrix-based optimization techniques (e.g., singular value
decomposition, eigendecomposition) can be applied to the convolutional and/or the fully
connected layers [10,23] to reduce the number of parameters in these layers.

When a tensor (e.g., weights matrix) is factorized into its sub-components (i.e., sub-
tensors or factors), all the sub-tensors do not contribute equally to the main tensor. This
implies that the sub-tensors can be ranked based on the order of importance. An approxi-
mate tensor can be derived, which results in having a low rank in contrast to the original
high-order tensor. Singular value decomposition (SVD) (the most commonly used matrix
decomposition method) was used to compress the weights matrix in the fully connected
layer to reduce the model size. A two-times increase was achieved in computation time
by decomposing the weights in the convolutional layers in [24]. Kholiavchenko [25] pro-
posed an iterative-based tensor decomposition technique and showed that a layer can be
decomposed several times.

It is also worth pointing out that the compression ratio of the model when adopting
this method is greatly dependent on the rank value (i.e., the most significant to the least
significant). In the case of an extreme rank value, the model size will be drastically small
and vice versa.
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4.4. Network Pruning

It has been shown in several studies that deep neural networks are usually overpa-
rameterized. This is quite common in large and complex networks [26]. It affects the model
convergence time and contributes to the computation and storage overheads. The goal
of pruning is to reduce a large network to a smaller and faster network. This is possible
because the parameters of the network do not contribute equally to the model output.
As such, the level of contribution can be ranked by the order of importance and the less
significant parameters can be pruned (i.e., set to zero). A penalty factor was introduced
to the loss function to penalize the weights that do not contribute significantly to the
network output, resulting in a smaller network, in [27]. A stochastic gradient descent (SGD)
momentum-based pruning method for setting redundant weights to zero was proposed
in [28].

The network parameters that can be pruned include the weights (connections), neu-
rons (nodes), or convolutional filters (kernels). The choice of the parameters to be explored
for pruning is dependent upon the application requirements (e.g., memory footprint, com-
putational cost, bandwidth). A weights- or connections-only-based pruning technique is
also referred to as unstructured pruning, in contrast to structured pruning, which involves
the removal of low-rank neurons or filters [28]. Redundant weights were eliminated to
compress the network size and compensate for the accuracy drop by retraining the network
in [29].

Pruning is a very old compression method [30] and has shown its strength in the
reduction of model size. The effectiveness varies with the techniques adopted (e.g., brute-
force [30], penalty-factor [31], sensitivity error [32,33]). Network pruning usually results
in an accuracy drop. When a network is over-pruned, it can render the network useless.
This is why it is important to estimate the pruning threshold, evaluate the network after
pruning, and retrain to compensate for the decrease in accuracy.

4.5. Microarchitecture

Microarchitecture is a concept for designing small and compact models. This method
is based on the background information (i.e., residual knowledge) of the critical and most
important blocks needed in the design of the CNN architecture. This is quite different from
the other methods (i.e., pruning, quantization, binarization, tensor decomposition) because
it does not rely on any external compression techniques that are usually applied to the CNN
model either after or during training. It focuses on using domain knowledge to carefully
design the network architecture. The same level of accuracy obtained by AlexNet [1] with
50-times fewer parameters was achieved in [5]. Before the term miroarchitecture was
standardized by these authors [5], smaller kernel sizes (i.e., smaller-sized convolutional
filters) were used in practice, and this has shown significant improvements in terms of
model performance (i.e., speed, accuracy) [34–36].

The research on the design of efficient and lightweight CNN models has increased
as a result of the exponential growth in the demand for real-time, efficient, and power-
consumption-aware embedded computer vision applications in diverse areas. A category of
models called MobileNet was proposed in [8]; these CNN microarchitectures have become
some of the state-of-the-art methods for image classification and object detection for low-
power and resource-constrained devices. Other models in this category are SqueezeNet [5],
ShuffleNet [6], EfficientNet [7], and TinyYOLO [37].

5. Compression Methods, Evaluation, and Ranking

Our goal is to evaluate and develop a novel method for ranking the performance of
state-of-the-art techniques for compressing deep learning models. The performance of
each technique will be ranked using the following five key metrics: model size, accuracy,
peak runtime memory usage, computational cost, and inference time. In this section, we
describe each compression method and its implementation.
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5.1. Baseline Model Description

This section describes the architecture of our baseline model. This simple and
lightweight network was developed to serve as the reference model for evaluating the
different compression methods for this work. The input layer of the network takes an RGB
image of shape (64, 64, 3) and (3, 3) kernel filters were used throughout the entire network,
resulting in a total of 1,106,209 parameters. The choice of the convolutional filter size was
inspired by the work of [34]. The network includes a stack of two sets of CONV2D, RELU,
BN, and POOL layers, followed by a set of CONV, RELU, and BN. The final block is the
dense block, which consists of FC, BN, FC, and SOFTMAX layers, as shown in Table 1.

Table 1. A table showing a summary of all the layers of the baseline model architecture.

Layer Type Output Size Parameters

CONV2D (None, 64, 64, 32) 864

BN (None, 64, 64, 32) 96

MAXPOOL2D (None, 32, 32, 32) 0

CONV2D (None, 32, 32, 64) 18,432

BN (None, 32, 32, 64) 192

MAXPOOL2D (None, 16, 16, 64) 0

CONV2D (None, 16, 16, 64) 36,928

BN (None, 16, 16, 64) 192

FLATTEN (None, 16384) 0

DENSE (None, 64) 1,048,576

BN (None, 64) 192

DENSE1 (None, 11) 704

ACTIVATION (None, 11) 0

TOTAL PARAMETERS 1,106,209

5.2. Compression Methods

CNNs play a vital role in deep learning methods for object detection. A CNN is
composed of different layers. Each layer is made up of computational nodes (i.e., neurons)
that process the input signals. The contribution made by each layer to the computation
and memory requirements of the whole network is usually unevenly distributed. This
is because of the different operations and parameters that are associated with each layer.
The majority of the weights are in the dense layers (i.e., fully connected layer), but these
account for a lesser percentage of the total floating-point operations. This implies that
optimizing the FC layers alone will result in only a dramatic reduction in the model size,
without a significant improvement in the overall speed, in contrast with optimizing the
convolutional layers.

Several methods have been proposed for CNN model compression for resource-
constrained devices. Each of these methods has its advantages and drawbacks. This makes
it very challenging to identify the most appropriate, effective, and efficient compression
method to adopt. The choice of the method is strictly dependent on the requirements of
the application. In this section, we describe the compression methods that we considered
in this work.

5.2.1. Quantization

Bit precision reduction is an important concept in mathematics that has been widely
adopted in different applications, including deep neural network compression. Quantiza-
tion limits the width of the bit that is used to represent a digit or number. The bit width
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of the operands controls the precision level of the output when mathematical operations
are performed.

The most common types of operations that are performed in CNNs are convolution
operation, bias addition, and the dot product of the weights matrix and float input tensor,
as described in Figure 4. These operations are computed in a 32-bit full precision floating
point. Quantization aims to replace the 32-bit floating-point operations with low-precision
number formats such as 1 bit, 4 bit, 8 bit, or 16 bit. Binarization transforms full precision
models into a single-bit model (the weights and activations are encoded using 1 bit).
Binarization can be described as an extreme case of quantization where the weights and
activations are encoded using 4 bit, 8 bit, or 16 bit.

Figure 4. A CNN architecture with a normalized (5× 5) input image convolved with a normalized fil-
ter (2 × 2 kernel) showing the three most common operations (convolution, pooling, and weights ma-
trix multiplication operations) in a CNN. This low-level abstraction shows the internal computation
performed on the network parameters (i.e., the input tensor (5 × 5 image), weights, and activations).

A model can be quantized either during training (Bit-Reduction-Aware Training, also
called Quantization-Aware Training) or after training (Post-Quantization). The latter often
results in a significant decrease in accuracy. However, this can be mitigated by retraining
the network to compensate for the decrease in accuracy as a result of the error induced
during the quantization operation.

We quantized the weights and activations of the baseline model using a symmetric
mode 8-bit signed full integer quantizer implemented in Keras [38], using TensorFlow [39]
as the computing engine. The mapping of the 32-bit input float tensors (i.e., weight matrix,
activations) to the 8-bit quantized range is described in Figure 5. The mapping function (i.e.,
8-bit quantizer) maps the input float tensors of the baseline model to the 8-bit quantized
output. This function is defined in Equation (1):

q8bit = round(m f i f ) (1)

where q8bit is the 8-bit quantizer, m f is the multiplier, and i f is the input float tensor.
The multiplier is the quantization constant that is multiplied with the float input tensor,
as expressed in Equation (2):

m f =
27−1

2
max(|i f |)

(2)
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Figure 5. This figure shows the mapping of the input tensor float range to the 8-bit signed integer
quantized range in symmetric mode.

5.2.2. Binarization

Binarization is a bit reduction technique that is considered an extreme case of quanti-
zation in which the weights and/or activations are encoded using a single bit (i.e., 1 bit).
A single bit can be considered the atomic bit level of a number system; therefore, a signif-
icant decrease in the model accuracy is imminent due to loss of information during the
binarization process. We did not binarize the first and last layer of the baseline model to
minimize this loss.

In the binarization process, updating the weights during backward pass using the
standard gradient descent approach is impossible because computing the loss gradient
would result in zero in almost all conditions. We adopted a Straight-Through-Estimator
(STE) pseudo function that has been proven to solve this issue.

We binarized the baseline model using Larq [40], an open-source Binary Neural
Network library built on Keras [38]. The binarization function (a non-zero sign function)
b1bit takes the float tensor as input and returns a binary output (−1 and +1), as shown in
Equation (3):

o1bit = b1bit(i f ), o1bit ∈ {−1, 1}, i f ∈ {R} (3)

where b1bit is the binarization function, o1bit is the binary output generated, and i f is the
input float tensor. During the backward pass, the loss gradient is calculated using the STE
function, which takes the output tensors as input and returns a binary output, which is
constrained to the threshold value, as expressed in Equation (4):

lossgradient =

{
1 abs(i f ) ≤ thresholdvalue

0 abs(i f ) > thresholdvalue
(4)

where the thresholdvalue is the float value that controls the lossgradient and i f is the float
tensor processed by the STE pseudo gradient function.

5.2.3. Network Pruning

Pruning is one of the oldest methods for compressing large CNN models for low-
power and resource-constrained devices. Pruning explores and exploits redundant param-
eters that do not contribute significantly to the model performance. The effectiveness of
the pruning method is dependent on how efficiently we can evaluate the parameters that
are redundant in the network.

Over-pruning the baseline model will decrease the accuracy and damage the network
completely. This can be mitigated by evaluating the model based on certain criteria after
each pruning operation in an iterative manner. There are different pruning methods (e.g.,
weight-only pruning, node-only pruning, or layer pruning).

In this work, we pruned the baseline model using the magnitude-based weight
pruning approach as opposed to the neuron-based method. We implemented this pruning
method because it does not affect (i.e., decrease) the model accuracy significantly, especially
when the base model is not complex (i.e., having few hidden layers, as with the baseline
model). The weights of the baseline model pruned were selected using rank-based criteria,
calculated using the absolute value of the individual weight in Equation (5):

rankweight = |wi|, wi ∈W (5)
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where rankweight is the rank of the individual weight, wi is the weight, and W is the weight
matrix associated with each neuron within the respective layer of the network.

5.2.4. Knowledge Distillation

Distilling knowledge (i.e., useful information) from a large model (the teacher) to a
small model (the student) has shown excellent results in model compression. The concept
of knowledge transfer is based on the idea that large models are robust and can learn
complex patterns from data such that useful information can be transferred to the small
model to mimic the behaviour of the large model.

We implemented the teacher-student model using a temperature-based softmax func-
tion at the output layer in Keras [38]. This technique was inspired by [21]. The teacher
model (i.e., VGG16) was trained on our dataset, and the class probabilities vector for each
data point (i.e., observation) was calculated and extracted. These probabilities vectors, also
called soft labels, were distilled to the small model as the target label during training. We
also trained the small model using the hard labels, and the overall losses generated by the
small model were combined and weighted, as shown in Equation (6):

Losstotal = α× H(y, σ(zs), T = 1)) + β×
H(σ(zt; T = t), σ(zs, T = t)) (6)

Losstotal is the total loss, which is the combination of the student and distillation losses.
The student loss is computed using the standard loss function by making the temperature
parameter (T = 1). The temperature parameter controls the amount of information that
can be distilled to the student. However, we need to keep in mind that the student has a
threshold that limits the amount of information that it can retain from the teacher. The α
and β are constants associated with the individual loss function taking the respective
unnormalized log probabilities (zs, zt) for each class label.

5.2.5. Tensor Train Decomposition

The decomposition of a matrix into its low-rank embedding is a very important
concept in linear algebra. Matrix decomposition is used extensively in applied data
processing for computation acceleration and data compression. Tensor decomposition is
a means of generalizing the concept of low-rank matrix decomposition by treating the
matrix as a tensor (i.e., a higher-order array). There are standard matrix decomposition
methods (e.g., QR, LU, Eigen, singular value decomposition (SVD), etc). SVD is the most
widely used method but cannot operate directly on higher-order data structures such as
tensors. Working directly on tensors offers the benefit of keeping the correlation between
data points intact.

Tensor decomposition is still relatively new. Few methods have been developed (e.g.,
Canonical Polyadic (CP), Tucker, Tensor-Ring, Tensor-Train, etc.). We adopted the TT
decomposition method due to the computational time (i.e., reconstruction and decompo-
sition time) and storage space advantages that it has over CP, Tucker, and other tensor
decomposition methods.

TT decomposition factorizes a tensor into sub-tensors called cores/factors. The num-
ber of cores is dependent on the dimensions of the input tensor. TT is based on SVD and the
factorized outputs are expressed as a train of tensors (i.e., a product of smaller core tensors).
The dense layer in the baseline model has a set of weights in its nodes transformed into TT
matrices (i.e., 4D tensor shape). The TT matrices are factorized into four TT cores and each
element of the tensor can be reconstructed as defined in Equation (7):

T(i1,i2,i3,i4) =
R1R2R3

∑
r1,r2,r3

G1(i1r1).

G2(r1i2r2).G3(r2i3i3)G4(r3i4) (7)
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where T is the original tensor, in represents the tensor indices, rn corresponds to the ranks
of the tensor, Ri are the compressed/contracted hidden indices, and Gi are the TT cores.

We retrained the baseline model using TT, which transforms the input and output
parameters of the dense layer, excluding the softmax layer, into TT matrices, and the
outputs were decomposed into tensor cores. We implemented this method using the t3f
framework [41], a tensor train library built on TensorFlow [39].

5.2.6. Microarchitecture

The concept of designing sub-blocks/modules as a micro-unit in CNNs has shown
promising results in terms of model size reduction and improved inference time without a
significant decrease in model accuracy. The CNN microarchitecture relies on the residual
knowledge that is adopted to carefully design each of the CNN sub-blocks that make up
the entire network. The microarchitecture defines the dimensions and structure of each
sub-module and how they are integrated to form the entire network.

There are several CNN microarchitectures that have been proposed for resource-
constrained devices. In this work, we trained our dataset on MobileNet V1, MobileNet V2,
MobileNet V3, and ShuffleNet. The results of these models were compared with those of
the compressed models.

5.3. Evaluation and Ranking

An object detection model performs a detection task by fusing object classification
and localization methods. Some methods involve using two separate algorithms (i.e.,
MobileNet and SSD). Other methods (e.g., YOLO) use a single model to perform both
the classification and localization tasks. To optimize such a model for memory compres-
sion, speed, and accuracy, the parts of the model contributing to these metrics need to
be optimized.

Much of the memory and computational power is expended by the base network of the
object detection model. This formed the basis of our evaluation of the compression methods
on the classification model instead of both the classification and localization models.

We based our evaluation and ranking on five key metrics: model size, accuracy,
peak runtime memory footprint, computational cost, and inference time. The results
corresponding to the key metrics obtained from the compressed models, micro-CNN
models, and the base model are described in Table 2. These results were mean values
calculated over a small number of experiments in order to reduce the error margin due to
the stochastic nature of training CNN models.

Table 2. Evaluation metrics results of the compressed models, base model, and micro-CNN models.

Uncompressed Compressed Micro-CNN

Metric Baseline Quantized Binarized Pruned Distilled Tensor-
Trained V1 V2 V3 ShuffleNet

Model Size (KB) 4429.61 1119.54 105.50 1308.82 4429.61 258.02 12,856.38 8935.84 12,171.81 7761.17

Accuracy (%) 77.23 76.95 67.10 74.64 72.04 71.47 68.88 64.43 71.18 65.99

Inference Time (ms) 22.88 13.65 5.40 22.64 22.87 17.31 39.09 20.79 16.79 40.09

Computational Cost
(MFLOPs) 66.44 7.29 6.96 66.44 66.44 64.05 94.01 52.88 15.24 158.63

Peak Memory
Footprint (KB) 8907.81 3705.47 1775.78 8900.78 8907.59 4971.88 19,857.04 12,582.8 10,550.02 12,796.72

We evaluated the baseline, compressed, and micro-CNN models on a Google Coral
Development Board with the following technical specifications: Quad Cortex-A53 and
Cortex-M4F processors, Edge TPU co-processor (supports only int8 operations), 1 GB
LPDDR4 RAM, and 8 GB eMMC flash memory [42]. The performance (i.e., key metrics) of
the compressed, micro-CNN, and base models was evaluated using the weighted score-
based ranking scheme that we developed.
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Our ranking scheme relies on two major components: the weights (i.e., relevance
scores) assigned to the criteria (i.e., key metrics) and the computed scores of the results
generated by the compressed models, base model, and micro-CNN models. It is critical
that the weights and scores should have the same scale (i.e., value range). The raw results
generated in Table 2 were not scaled and this does not meet the requirement of the weighted
score-based ranking method.

We applied a scaling and scoring function to the unscaled results generated in Table 2.
This function maps and scores each unscaled result to a value in the range (1–10). The scal-
ing function is defined as:

nscaled =
n−mmin

mmax −mmin
× (rmax − rmin) + rmin (8)

where nscaled is the scaled output value, n is the metric value to be scaled into [rmin–rmax],
nmin is the minimum of the metric value range, and nmax is the maximum of the metric
value range. The rmin and rmax represent the minimum and maximum value of the target
scale range (i.e., 1–10 as used in our experiment). The scale corresponds to the range of the
weighted relevance score assigned to each evaluation metric.

Each metric was assigned a weighted relevance score in the range (1–10); a high
weighted relevance score (e.g., 10) indicates that the corresponding metric has the highest
priority (i.e., most significant) and vice versa, as shown in Table 3. The scores (i.e., the scaled
metric values) and weights assigned to the evaluation metrics are described in Table 3.

The weighted relevance score controls the significance score of a metric during the
evaluation of the performance of the compressed models, base model, and micro-CNN
models. The weight of each metric is determined based on the application requirements.
We assigned a weight value to the individual metric, as shown in Table 3. These values
were generated based on our application requirements. The values can be adjusted to suit
other applications.

The scaled values were scored on a scale of (1–10). A score of 10 assigned to the model
per metric value means that the model with respect to the metric is the most significant,
while a score of 1 means that the model is less significant. Table 4 shows the score of
each model per metric value computed from the results (scaled metric values) obtained in
Table 3.

The weighted score was calculated by computing the product of the corresponding
weight of the relative importance score assigned to the metric and the score of the model
corresponding to the metric. The mean weighted scores of the compressed models, micro-
CNN models, and base model were ranked using an inverse ranking method similar to
Spearman’s rank approach (i.e., the largest mean weighted score was assigned a rank of
1, the second-largest mean weighted score was assigned a rank of 2, and as the mean
weighted score decreases, the rank number increases by 1 until the maximum rank number
n is reached, where n is the count of the models evaluated), as shown in Table 5.

Table 3. Weighted relevance score assigned to evaluation criteria and model results scaled to (1–10), which corresponds to
evaluation metrics’ scale range.

Uncompressed Compressed Micro-CNN

Metric Weight Baseline Quantized Binarized Pruned Distilled Tensor-
Trained V1 V2 V3 ShuffleNet

Model Size (KB) 8 4.05 1.72 1.0 1.85 4.05 1.11 10.00 7.23 9.52 6.40

Accuracy (%) 10 10.00 9.80 2.88 8.18 6.35 5.95 4.13 1.00 5.75 2.10

Inference Time (ms) 6 4.87 2.82 1.00 4.81 4.86 3.63 8.45 4.40 3.52 10.00

Computational Cost
(MFLOPs) 6 4.53 1.02 1.00 4.53 4.53 4.39 6.17 3.72 1.49 10.00

Peak Memory
Footprint (KB) 7 4.55 1.96 1.00 4.55 4.55 2.59 10.00 6.38 5.37 6.49
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Table 4. Metric scores corresponding to the scaled metric value.

Uncompressed Compressed Micro-CNN

Metric Weight Baseline Quantized Binarized Pruned Distilled Tensor-
Trained V1 V2 V3 ShuffleNet

Model Size (KB) 8 6.00 8.00 10.00 7.00 6.00 9.00 2.00 4.00 3.00 5.00

Accuracy (%) 10 10.00 9.80 2.88 8.18 6.35 5.95 4.13 1.00 5.75 2.10

Inference Time (ms) 6 3.00 9.00 10.00 5.00 4.00 7.00 2.00 6.00 8.00 1.00

Computational Cost
(MFLOPs) 6 5.00 9.00 10.00 5.00 5.00 6.00 4.00 7.00 8.00 3.00

Peak Memory
Footprint (KB) 7 7.00 9.00 10.00 7.00 7.00 8.00 3.00 5.00 6.00 4.00

Table 5. Compressed models, base model, and micro-CNN models ranked by the weighted mean score.

Uncompressed Compressed Micro-CNN

Metric Weight Baseline Quantized Binarized Pruned Distilled Tensor-
Trained V1 V2 V3 ShuffleNet

Model Size (KB) 8 48.00 64.00 80.00 56.00 48.00 72.00 16.00 32.00 24.00 40.00

Accuracy (%) 10 100.00 98.00 28.80 81.80 63.50 59.50 41.30 10.00 57.50 21.00

Inference Time (ms) 6 18.00 54.00 60.00 30.00 24.00 42.00 12.00 36.00 48.00 6.00

Computational Cost
(MFLOPs) 6 30.00 54.00 60.00 30.00 30.00 36.00 24.00 42.00 48.00 18.00

Peak Memory
Footprint (KB) 7 49.00 63.00 70.00 49.00 49.00 56.00 21.00 35.00 42.00 28.00

Weighted Mean Score 6.62 9.00 8.07 6.67 5.80 7.18 3.09 4.19 5.93 3.05

Rank 5 1 2 4 7 3 9 8 6 10

We calculated the mean weighted score per model for all metrics by computing the
ratio of the arithmetic mean of the weighted scores and the sum of the weights assigned to
all metrics. The equation is defined as:

W =
∑n

i=1 wimi

∑n
i=1 wi

(9)

where W is the mean weighted score, i is the metric index, n is the total number of
evaluation metrics, wi is the weighted relevance score assigned to each metric, and mi is
the calculated score of the model corresponding to the metric.

The ranking result showed that the application’s most effective, efficient, and suit-
able compression method is quantization with the rank of 1 (having the largest mean
weighted score of 9.0), followed by binarization (having a mean weighted score of 8.07),
as shown in Figure 6. As the rank number increases, the methods’ effectiveness, efficiency,
and suitability to meet the application requirements decrease.



Sensors 2021, 21, 7529 14 of 17

Figure 6. Compression methods ranked by the mean weighted score.

6. Discussion

The state-of-the-art methods for compressing deep learning models have shown
excellent results in terms of peak runtime memory reduction, low latency, model size
reduction, and computational efficiency, without a significant decrease in accuracy. These
results vary from one compression method to another. The application requirements
also differ, thus making it challenging to choose the optimal compression method for
different applications (e.g., our ROROGREEN and SCDS projects). To address this, we
propose a weighted score-based ranking scheme that enables us to evaluate and rank the
compression methods based on their computed weighted mean scores. The weighted mean
score is dependent on the metric scores and the weights assigned to the evaluation criteria,
as shown in Table 4. The values in Table 4 correspond to the metric scores computed for
each scaled evaluation criterion with respect to all the models evaluated.

The weight assigned to each evaluation metric determines the relevance score of the
individual criterion. A high relevance score assigned to the metric with respect to the score
range gives the metric a high effect when calculating the weighted metric score and the
weighted mean score, as shown in Table 5. The metric scores correspond to the scaled
metric values in Table 3. The scaled metric values correspond to the scaled model results in
Table 2. The scaling ensures that all the values (i.e., the results obtained for all the metrics
during model evaluation) use a common range. This eliminates the dominance effect of
larger values regardless of the units when calculating the weighted mean scores. The metric
scores ensure that the least and the most significant values of the evaluation metrics have
the same interpretation (e.g., the lower the model size, the higher the compression rate
with respect to the original model, whereas the higher the accuracy, the better).
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We compare and rank the result of the computed weighted mean score of the baseline,
compressed (i.e., quantized, binarized, pruned, distilled, and tensor-trained), and micro-
CNN (i.e. MobileNetV1, MobileNetV2, MobileNetV3, and ShuffleNet) models, as shown
in Figure 6. The weighted mean score for each model indicates the suitability score of
the compression method that produces the model. A higher suitability score is desirable.
The higher the weighted mean score (i.e., suitability score), the higher the rank (the highest
rank is equivalent to 1 and it decreases as the rank value increases). The model with the
highest weighted mean score (i.e., a rank of 1) is considered the most efficient and effective
model for the hardware. As such, the compression technique that produces the model
is considered the most suitable compression method for optimizing the base model for
the application.

The limitation of our proposed scheme is the selection of weights for the performance
metrics. These weights must reflect the priorities (i.e., level of significance) of the appli-
cation criteria. This is considered a limiting factor because the weights are dependent on
the application requirements, such as the available hardware resources (e.g., processor
capability, flash size, RAM, etc.), model requirements, and the other requirements that are
specific to the application (e.g., real-time capability, on-device model performance, etc.),
and thus must be chosen appropriately. We do not consider this a major limiting factor
because we have demonstrated how we selected the weights that are appropriate for the
performance metrics in our case studies (ROROGREEN and SCDC projects).

Choosing the optimal model compression method for on-device AI applications is
challenging due to the lack of an application-specific framework for evaluating methods
for deep learning model compression for resource-constrained edge devices. We addressed
this issue using our proposed weighted score-based ranking scheme. The scheme helps us
to identify the quantization technique as the optimal method for compressing our object
detection and tracking models for the application based on our requirements.

7. Conclusions and Future Work

In this work, we evaluated and ranked the state-of-the-art methods for CNN model
compression for resource-constrained edge devices using a weighted score-based ranking
scheme that we developed. Our ranking method uses five key metrics (i.e., model size,
accuracy, inference time, computational cost, and peak memory footprint) computed for
each model generated by the compression methods. We introduced an individual weight
to these key metrics. The individual weight reflects how relevant/important the metric is
in our application.

This work was motivated by the lack of a clear framework/method for selecting
the most efficient methods for compressing CNN models for edge computing devices
(e.g., micro-controllers, small computer boards, portable devices, mobile devices, DNN
hardware accelerators, etc.). As such, we developed a weighted score-based ranking
scheme to address this issue.

We applied our method to the baseline model developed, compressed versions of
the baseline model produced by the state-of-the-art compression methods that we imple-
mented, and the micro CNN models trained on a portion of the SCDS and ROROGREEN
dataset. According to the ranking of the mean weighted scores computed, the quantized
model obtained the highest rank, with a mean weighted score of 9.00, followed by the
binarized, model having a mean weighted score of 8.07. ShuffleNet has the lowest rank
in Table 5, with a mean weighted score of 3.05. This clearly shows that the quantiza-
tion technique is the most suitable model compression method for both the SCDS and
ROROGREEN projects.

Determining the most effective, efficient, and optimal method/methods for optimizing
deep learning models for edge devices can be very challenging. We addressed this issue
using our weighted score-based evaluation and ranking method.

In the future work, we will focus on how we can further improve the metrics of the
best-ranked method (i.e., the quantized model).
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Abbreviations
The following abbreviations are used in this manuscript:

AL Activation Layer
BN Batch Normalization
CNN Convolutional Neural Network
CP Canonical Polyadic
Conv2D Convolution 2D
DNN Deep Neural Network
F-RCC Faster Region-Based Convolutional Neural Network
FC Fully Connected
FCL Fully Connected Layer
ReLU Rectified Linear Unit
SVD Singular Value Decomposition
SGD Stochastic Gradient Descent
TT Tensor Train
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