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Abstract: The detection of cracks is an important monitoring task in civil engineering infrastructure
devoted to ensuring durability, structural safety, and integrity. It has been traditionally performed
by visual inspection, and the measurement of crack width has been manually obtained with a
crack-width comparator gauge (CWCG). Unfortunately, this technique is time-consuming, suffers
from subjective judgement, and is error-prone due to the difficulty of ensuring a correct spatial
measurement as the CWCG may not be correctly positioned in accordance with the crack orientation.
Although algorithms for automatic crack detection have been developed, most of them have specif-
ically focused on solving the segmentation problem through Deep Learning techniques failing to
address the underlying problem: crack width evaluation, which is critical for the assessment of civil
structures. This paper proposes a novel automated method for surface cracking width measurement
based on digital image processing techniques. Our proposal consists of three stages: anisotropic
smoothing, segmentation, and stabilized central points by k-means adjustment and allows the char-
acterization of both crack width and curvature-related orientation. The method is validated by
assessing the surface cracking of fiber-reinforced earthen construction materials. The preliminary
results show that the proposal is robust, efficient, and highly accurate at estimating crack width in
digital images. The method effectively discards false cracks and detects real ones as small as 0.15 mm
width regardless of the lighting conditions.

Keywords: surface cracks; crack characterization; infrastructure durability assessment

1. Introduction

Over the last two decades, several techniques have been proposed to detect crack
formation in materials and structures together with estimating its dimensions (width,
length, and depth). The first image-based algorithms devoted to crack detection explored
segmentation techniques targeting different types of civil engineering materials and infras-
tructures such as concrete, walls, and load testbeds. Recently, numerous advances have
been made to develop techniques that consider the time evolution of loading with Digital
Image Correlation (DIC) techniques [1,2] or hybrid methods that use a set of techniques
and their combinations to improve the segmentation process [3–5]. In this way, it has been
possible to perform experiments on different types of samples, which in some cases have
allowed the evaluation of the use of different fiber types (e.g., synthetic, vegetal or animal)
on different construction materials (e.g., mortar, concrete, and adobe) [6–8], as well as the
study of the loading conditions over time on columns [9], beams and slabs [3], and walls [4]
and the design of analytical models for estimating crack width [10] and surface analysis
using machine learning techniques [11–14].
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One of the main challenges for extracting and isolating the crack from the rest of the
image is the implementation of segmentation algorithms. Research in this field has focused
on two paradigms: (1) algorithms based on heuristic image processing and (2) algorithms
based on Deep Learning (DL) tools.

The former includes techniques that evaluate the changes in the structure as a func-
tion of load [1,15–17], techniques that use one or more cameras for homography [18] or
photogrammetry [15,19–22], and those that simulate a loading process and then analyze
the material under pressure [19,23]. In general, the proposed solutions can be classified
into techniques based on region growth [16,22], combinations of mathematical morphology
and optimal threshold selection [5,24,25], techniques based on the Hessian matrix [26,27],
and methods based on a sequence of partial filters that perform noise reduction as segmen-
tation goes on [4,5,13]. The main advantage of techniques based on heuristic processing is
that they can be directly applied to the samples without requiring any previous training.
Nevertheless, they strongly depend on the type of material, implying that they might not
always work properly.

The latter techniques have recently raised interest among researchers mainly because
DL allows the implementation of robust solutions that can be applied in a wide variety of
materials/structural elements such as paving, walls, and columns. In addition, it allows
the use of different illumination conditions, orientation, distance, and objects [27–30].
DL-based algorithms rely on a learning process, which involves a previous labeling of
images, so that the network can make a prediction through the learning process. Several
types of network architectures have been explored in the literature [14,30,31]. The main
difference across them is the generated output: images composed of blocks classified as
failures [28,30], pixel-level binary segmentation [29,32–34], or a combination of both [34,35].

Both heuristic and DL paradigms exhibit different types of responses and require
specific adjustments according to the exploited approach [31,36]. Surprisingly, despite
the great advances in terms of segmentation, the literature presents limited progress with
respect to crack width analysis [26]. Most related work found in the literature addresses
crack width and length estimation without considering that width might change along
with the material [27,29,33]. In these works, the middle section of the crack is indeed
analyzed. However, no technique to measure the width as it progresses along the crack’s
path is observed. An accurate image-based estimation of the crack width remains an open
problem [9,24,31]. It is important to mention that different crack widths can be related to
very different mechanical/durability effects within civil engineering materials [37]. Thus,
an accurate crack width estimation is crucial since very fine cracks might be harmless and
do not require further attention while wider cracks might require immediate attention and
action. One of the main challenges in this topic is how to correctly measure the width
while taking into consideration that the crack might exhibit a highly variable path, and
therefore its width must be measured orthogonally to the path. Once this problem is solved,
it becomes then relevant to consider the number of points to evaluate along the path.

Currently, the most popular method for crack measurement and characterization is by
visual inspection using a crack-width comparator gauge (CWCG) [38], where the width
of the crack is recorded manually over a distance interval using this CWCG (Figure 1).
Although this technique allows for the rapid measurement of cracks in materials and
structures, it is prone to serious errors: (i) the overlap between the measuring rule and
the crack is not accurate as it depends on the inspector’s experience; (ii) depending on the
orientation of the crack curvature, the crack measurement angle may not be accurate as
it might not be tangentially measured; (iii) the measurement interval between two points
might not be regular and may under or over represent the average crack width as cracks
do not necessarily have a normal distribution [9] and (iv) the measurement is made by
visual observation; therefore, it is subject to the inspector’s subjective measurement [39].
The above problems lead to the fact that the crack measurement can be underestimated
or overestimated.
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Figure 1. Crack-width comparator gauge (CWCG) for measuring the crack width; image resolution
14.7 pixels/mm.

To avoid these errors, it is necessary to perform a non-contact measurement of the
sample in such a way that there is no intervention on the crack to be measured. This
requires the acquisition of images in which cracks are clearly exposed. However, there are
some limitations inherent to the acquisition; for example, the incident angle of the light
could generate shadows on the surface (Figure 2) that could lead to errors in crack detection.
Depending on the material under analysis, the surface may generate false crack regions [31].
In this context, it is necessary to establish the correct position of the light source for the
object to be analyzed. In general, the light should be positioned perpendicularly to the
object to eliminate shadows and avoid false crack regions. This situation has been analyzed
with different approaches, all of which are strongly dependent on the type of sample to be
used. However, techniques using DL-based segmentation have proven to be more versatile
for handling samples of different types of material, angles, and distances [30].

This paper proposes a novel image-based method for estimating crack width with a
three-stage algorithm that effectively considers width variations along the crack’s path. By
measuring the orientation angle that is normal to the crack curvature, the method allows
for a more accurate estimation of the cracks present in the material or structure. Much of
the work found in the literature has not focused on this problem. On the contrary, research
has focused on solving the segmentation problem. Although segmentation is a highly
relevant and complex problem, so is width estimation. Its correct measurement is essential
to determine the actual condition of civil structures. Automating this process can be done
after addressing the segmentation problem.

The rest of the paper is organized as follows: Section 2 describes the method for crack
width estimation. Section 3 presents the results obtained with different sample materials.
Finally, Section 4 concludes by summarizing the main concepts and results and giving
perspectives on future work.
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Figure 2. Test image with cracks and shadowed regions; original image area (500 mm × 500 mm), sub-image area
(82 mm × 82 mm), resolution 11.5 pixel/mm, shadow region area (25 mm × 25 mm): Arrow: detail of a suspected fault
region that is actually a shadow.

2. Method

To determine the width of the cracks on an image, the proposed algorithm exploits
three stages: (i) preliminary filtering; (ii) adaptive segmentation; and (iii) profile estimation
(Figure 3). This section describes these stages. The following subsections describe each of
these stages together with their corresponding intermediate steps.

Figure 3. The proposed three-stage algorithm for crack width estimation. The partial results for each imagen of the
algorithm are described in Sections 2.1–2.3.

2.1. Step I: Preliminary Filtering

One of the main challenges in the crack detection process is to reduce the false cracks,
i.e., the regions that have visual characteristics similar to those of a real crack, such as
shadows or elements embedded in the material, such as fibers, and digital noise. Therefore,
the objective of the preliminary filtering stage is to reduce the number of false cracks
through two filtering sub-stages: (i) color space change; and (ii) Perona–Malik filter.

The first sub-stage involves a color change using the well-known L*a*b color space [40].
This technique maximizes the luminance channel while allowing the attenuation of the
effects due to shadows or light levels on the object. For this purpose, the algorithm performs
an L*a*b channel transformation on the original RGB image. Only the L-channel of this
transformation is retained.

The second sub-stage uses the filtering technique proposed by Perona and Ma-
lik [41–43]. This filter achieves noise reduction while preserving the fundamental structures
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of the image such as the edges. Let us consider a grayscale image L of dimensions (n × m)
represented by gray values f (x, y) ∈

(
R2) in positions (x, y). The proposed filter is defined

by Equation (1):
∂tL = div(c(‖∇L‖) ∇L), with ∂t=0L = L (1)

where div(·) represents the divergence operator, ∇ is the gradient operator, and c(·) is
a non-increasing smooth diffusion operator with c(0) = 1 and c(s)→0 with s→∞, which
depends on the location of the point in the image.

According to variable t, this operation is iterative. To achieve a result, it requires a
number of previously user-defined iterations. In our proposal, the number of iterations is a
fixed parameter. Concerning the diffusion operator, different models can be found in the
literature [41]. In this work, we implement the linear model proposed by Weickert [44] that
uses a technique known as coherence filter [45]. Figure 4 shows a performance example of
the filtering stage.

Figure 4. Preliminary filtering step: (a) original image captured with a Canon XTI Rebel 6i camera, (b) L-channel from the
L*a*b space, and (c) coherence filter applied to the L-channel; sample area 500 mm × 500 mm.

2.2. Step II: Binary Segmentation

Let us assume that the result of the previous stage stopped at time t. In addition, let us
consider W = ∂tL as the image resulting from the coherence filter. Applying operator u(·)
over matrix W generates a vector w = u(W) of dimensions (nm × 1) (see Appendix A).
The next procedure involves the search of threshold δ, which relates each value of vector w
to a binary value, in other words, the process known as segmentation. To that end, let us
further define vector w as a monotonically increasing function with values ordered through
an order function w+ = sort(w). The threshold’s value can be determined by Equation (2):

δ = argmax︸ ︷︷ ︸
i

(
w+(i)(nm− i)

)
∀i = 1, . . . , nm (2)

Image segmentation can be defined as the process of relating all pixels in the image
to a binary value ∀ f (x, y) > δ→ B(x, y) = 1 , otherwise B(x, y) = 0, where B(x, y) is a
matrix of dimensions (n × m) (Figure 5).
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Figure 5. (a) Vector w+ in the original image, (b) the maximum index for Equation (2), (c) the
coherence filter output, and (d) binary segmentation; sample area 500 mm × 500 mm.

Once the binary edges have been determined, our proposal proceeds to determine
the central position of the potential cracks. For this purpose, the method employs the
skeleton algorithm based on the distance transformation process [46], which allows the
simplification of the image to determine the centroids of each crack.

The distance transform is a measure of the distance between a pixel and its edge. The
farther the pixel from the edge, the higher its value [24,47]. Subsequently, the method
applies the top-hat filter in such a way that only the pixels with the maximum value remain
stable. This procedure eases the application of the topological filter to find the skeleton of
the structure (Figure 6). Even though it is possible to directly apply this last filter to the
image shown in Figure 6a, the resulting skeleton would be incorrect since other regions
that are not part of the central structure of the crack could appear given that the crack
exhibits a greater width in other regions.

Let S be the binary matrix containing the crack skeleton (Figure 6d) and M a coordinate
matrix satisfying Equation (3):

Mi = ∀x ∈ [1, .., m] ∧ ∀y ∈ [1, .., n] ∃ (x, y) | S(x, y) = 1 (3)

Depending on the number of coordinates having the logical value 1, the number
of indices may vary for each p-tuples. Since the pixels of the skeleton are neighbors
to each other, one way to reduce the spacing is to determine a minimum distance dmin
corresponding to the minimum distance between a point and its neighbor.

The proposed procedure iterates the number of clusters of the k-means algorithm [48]
until a certain distance between the centers is reached. Assume that C = kmeans(M, k) is
a subset of tuples of matrix M, i.e., C ⊂ M for k centroids. The purpose is to find distance
dmin according to k given in Equation (4):

dmin > argmin︸ ︷︷ ︸
k

(
‖Ci − Cj‖

)
∀i, j | i 6= j ∧ ∀k ∈ N+ (4)

Figure 7 illustrates this concept.
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2.3. Step III. Profile Width

Once the central point and neighboring spacing have been determined in the image,
the next step involves the calculation of an optimal orientation angle that is normal to the
crack curvature at each point. For this purpose, we use a 40 × 40-pixel mask centered on
each point described above, and over this point, we extract a binary sub-region, previously
defined as matrix B. The central angle can be estimated as the angle of the major axis
of an ellipse that fits the boundary of the binary region (details of this algorithm can be
found in [49]). This ensures that the measurement of the ellipse’s width is correct and
in accordance with the path and curvature of the crack (Figure 8a). Once both the angle
and the position have been defined, the method proceeds to determine the width by
superimposing a profile line greater than the width of the crack (Figure 8b).
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As the cracks have a significantly different intensity level with respect to the back-
ground, it is possible to determine a cluster that identifies two groups of pixels {background,
crack} through the k-means algorithm. Let Pi be the i-th vector comprising the intensity
levels of length t. The width of the crack can be calculated as (Equation (5)):

width(i) = ∑(kmeans(Pi(1, t/2) == class_crack)+

(kmeans
(

Pi
( t

2 + 1, t
)
== class_crack

) (5)

where class crack is previously defined as the lower intensity value of the two groups, and
the values of the vector indices range from 1 to t.

3. Results

The proposed method was evaluated on a set of earthen construction material (ECM)
samples since this type of construction material is very susceptible to cracking [50,51]
and, thus, different types of fibers (i.e., vegetal, synthetic, and animal) are used to reduce
cracking and to compare this cracking reduction to an ECM sample without fibers (plain
mixture). As previously explained, the algorithm searches for the optimal angle of ori-
entation on the crack’s curvature according to a user-defined spacing for estimating its
width and measurement angle, in the same way as a human operator would do with a
crack monitor (Figure 9). Since each crack is locally analyzed, the computing time varies
according to the number of cracks present in the sample.

It is important to highlight that the number of width samples can be modified by the
user implying that the resulting crack width will vary according to the number of samples
(Figure 10). Due to sample variation, it is possible to estimate the error and the standard
deviation. Therefore, it is possible to obtain a confidence interval for the measurement
of the samples and to estimate the optimal number for such measurements. This fact is
relevant since it allows obtaining a more accurate measurement compared to the current
methods, which are limited in the number of crack width samples.
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The dataset used to validate the proposed method was generated from an ongoing
study that analyzed the influence of the width of different fiber types (i.e., vegetal, synthetic,
animal) in terms of the cracking reduction of ECMs that were also compared to a plain
ECM (no fiber) (Figure 11). Depending on factors such as fiber type and dosages, it is
possible to observe different cracking patterns, which generate a variable number of cracks,
angles, and widths [51,52]. Additionally, to evaluate the method’s performance under
different scenarios, samples were exposed to both natural and artificial lighting.

Despite the different lighting conditions in the image dataset, the proposed method
exhibits a stable behavior due to the extraction of the luminance channel from the L*a*b
transformation, thus reducing the effect produced by the type of light source in the sample
(see Figure 12).
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Figure 11. Dataset of samples generated from ECMs reinforced with different fiber types and a plain ECM. Samples were
taken with two light sources: natural and artificial (area under analysis 500 mm × 500 mm).
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On the other hand, in noisy areas generated by non-regular surfaces, the coherence
filter allows a reduction in most of the structures that do not correspond to real cracks, thus
maintaining their continuity and reducing the number of false alarms (Figure 13c). This
effect is more noticeable in some samples of vegetal fibers (V/2 and V/3 fiber), for which
surfaces exhibit irregular zones that could be erroneously segmented as cracks (Figure 13c).
However, a possible undesired effect is that some measurement points can be filtered out
when the crack width is very small (less than 0.15 mm).
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In general, the results indicate that the crack samples, which exhibited different types
of fibers and lighting, were correctly analyzed by the proposed method and that the width
of the cracks was determined with high accuracy (Figure 13b). Furthermore, for those areas
in which there is no relevant change between the surface and the background, the method
discards the possible candidate regions (Figure 13c). This is achieved upon the analysis of
the distance between the crack’s background and surface. The above concept is represented
by purple (fuchsia) lines without the blue markers.

To statistically validate the proposed method, a manual width estimation process
was performed on the images of the dataset. A total of 330 crack width measurements
were extracted. For each sample, 30 crack width measurements were obtained taking into
account the crack curvature. Each of the manual points was randomly selected with respect
to the dispersion of the cracks in the samples. Both results, manual and automatic, were
compared by means of a t-test with non-equivalent variance (Welch Test [53]).

Table 1 summarizes the results obtained. Note that each sample comes from the same
distribution according to the values obtained in Z-score and p-value for each of the samples
(manual versus automatic). The most significant differences were found in those images
with a low point extraction. In such images, a higher number of samples is necessary to
make a valid comparison (Figure 11, sample V/4).
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Table 1. The method’s performance applied automatically and manually for 30 random points.

Automatic Measurement Manual Measurement
(30 Points)

t-Test
Comparison Image Features

Image
Code Count Mean

(Pixel)
std

(Pixels)
Mean

(Pixels)
std

(Pixels) Z-Score p-Value Light Type k Fiber
Type

V/1 30 5.35 1.99 5.26 1.44 −0.25 0.801 Midday sun 20 Vegetal

V/2 30 9.90 4.95 9.55 2.04 −0.43 0.671 Midday sun 20 Vegetal

V/3 10 6.42 1.43 6.56 2.08 0.20 0.842 Light (3000 K) 10 Vegetal

V/4 5 4.48 0.54 4.32 1.11 −0.50 0.624 Light (3000 K) 20 Vegetal

S/1 39 7.37 4.72 6.21 4.65 −1.03 0.308 Afternoon Sun 20 Industrial

A/1 75 7.28 2.40 7.80 1.87 0.88 0.386 Afternoon Sun 20 Animal

A/2 606 7.61 3.72 7.80 1.87 0.11 0.906 Afternoon Sun 10 Animal

A/3 95 8.38 3.26 8.83 3.06 0.49 0.622 Light (3000 K) 20 Animal

A/4 192 23.15 9.39 22.71 8.22 −0.31 0.761 Midday sun 10 Animal

A/5 234 17.86 7.15 17.67 7.79 −0.38 0.699 Light (3000 K) 10 Animal

NoFiber/1 95 12.43 6.36 12.47 7.39 −0.39 0.694 Afternoon Sun 20 No Fiber

NoFiber/2 308 14.37 6.42 14.83 8.14 0.22 0.827 Light (3000 K) 20 No Fiber

TOTAL 1719 regions

According to the conditions defined in Table 1, the crack width distribution was eval-
uated to analyze its behavior (Figure 14). Recall that the method performs a point spacing
between the set of measurements, thus ensuring that each measurement is completely
unbiased in a parameterized way (parameter k). The differences in crack width across the
samples are associated with a mechanical stress present in the interaction between the
fiber and the mixture [50,52]. Still, it is possible to visualize zero, one, or more underlying
distributions depending on the type of crack present in the sample.

We discuss the possible types of distributions below.

(1) No clear distribution: Samples V/3 and V/4 show this case. In these samples, it was
possible to extract only a limited number of measurement points due to the small
number of cracks present in the sample. Thus, it is not possible to associate the data
with a specific distribution. This limitation of the method is a particular point for
future improvement.

(2) Normal distribution: This phenomenon is present in samples with a regular cracking
pattern. It is clearly observed in samples A/1, A/2, and A/3. Additionally, in sample
A/2, the number of measurements was increased from 75 to 606 through parameter
k (Figure 10). By increasing the number of measurements, it is possible to observe a
normal behavior and a lower error in relation to the manual process (p-value 0.906
versus p-value 0.308).

(3) Bimodal distribution: This phenomenon can be clearly observed in samples No
Fiber/1, A/4, and A/5 (Figure 13). These samples exhibit two types of cracks (coarse
and fine), which have a vertical and/or horizontal cracking behavior. In some cases, a
greater width was found in the horizontal cracks. However, it is worth mentioning
that all the cracks have internal angles that can only be appreciated in images with a
higher magnification (Figure 13a).
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Figure 14. Frequency distribution of the measurements performed automatically.

The previous analysis is complemented with a boxplot (Figure 15). Overall, it can be
observed that the cracks exhibit a variation of less than five pixels (0.75 mm) in the IQR
range for each sample. The above does not apply to samples A/4 and A/5, in which the
cracking pattern has a larger variation; wide open and closed crack widths can be found in
the same sample with an approximate variation of 15 pixels (2.25 mm). It is important to
note that the proposed method was evaluated on cracks with a width greater than one pixel
(1 pixel = 0.15 mm); however, this relationship depends on the image resolution, which
can be improved if the resolution of the sample images is increased. In addition, it can be
observed that the median and mean in most of the analyzed samples are very close to each
other, thus ensuring the numerical stability of the method by greatly reducing the number
of false alarms (see Figure 14, median: green dotted line, mean: orange line). As previously
discussed, the main variations can be found in samples V/3 and V/4 due to an insufficient
number of measurements to define a distribution. In the rest of the distributions, the
behavior is normal, either with univariate or with bivariate distributions due to the type of
cracks present in the samples.
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Figure 15. Boxplot of the measurements performed automatically.

4. Conclusions

This paper has presented an efficient and highly accurate method for estimating crack
width in digital images and this method can be easily applied to the cracking assessment
of construction materials, such as mortar, concrete and adobe, which is an important task
to evaluate in civil engineering materials and structures. The proposed method considers
the orientation of the crack curvature and ensures that the measurement is unbiased
and parameterized (i.e., at regular intervals) and was evaluated on a dataset of earthen
construction material (ECM) samples that present samples reinforced with different fiber
types (i.e., vegetal, synthetic, animal) as well as a plain sample (no fiber).

The dataset presents different crack widths that are within the range of 0.15 to 5 mm.
Images were digitized using two types of light sources (natural and artificial) to evaluate
the method’s performance in real situations (laboratory and external environment). For ex-
ternal environments, two additional lighting conditions were used: sunlight and afternoon
sun to check the effect of shadows on the cracks.

The results show that there is no statistical difference between the manual and au-
tomated measurement. This represents a great advantage since the measurement time
of the proposed method is at least 20 times shorter than that of the manual process. In
addition, it was possible to obtain a robust confidence interval due to the larger number of
measurement points compared to the manual method, which is tedious, time-consuming,
prone to human error, and potentially biased. The method is independent to the type of
light used, which facilitates the analysis of samples in outdoor environments.

The main difference between our method and DL-based techniques is that the latter fo-
cuses exclusively on the segmentation stage. It is true that segmentation is fundamental for
crack detection, and our method acknowledges the importance of involving a segmentation
stage. However, determining how best to estimate crack width remains an open problem
with just a few works in the literature addressing this topic. Most of the methods already
reported in the literature perform crack analysis by considering groups of pixels without
any continuity. However, cracks exhibit a tortuous behavior, and it becomes essential to
preserve their path along the material. Threshold-based algorithms directly applied on the
image tend to break this continuity thus limiting any further analysis on the crack width.
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This limitation justifies the use of the Perona–Malik technique in our proposal which allows
us to highlight the path’s continuity while reducing noise (Table 2, noise removal column).

Table 2. Comparison with other techniques and their main features.

Technique Noise Removal Length
Estimation

Route Tracing
(Tortuosity)

Light
Source Setup

Spatial Width
Distribution Ref

Edge distance + Linear fit None (automatic
threshold) No No Yes No [15]

Percolation +
Binarization Percolation processing No No No No [16]

Percolation + Neighbor
boundary Percolation processing No No No No [22]

Skeletonization between
two points

None (clumping
process) No Yes No No [23]

Digital image correlation
(DIC)

None (automatic
threshold) Yes No Yes No [2]

Top-Hat + Otsu
Binarization

Gaussian
function-based spatial

filter
No No No No [5]

Feature extraction and
SVM algorithm Steerable Filter Yes No No No [4]

Genetic Algorithm Multi-sequential image
filter Yes Yes No No [13]

Deep Learning Fast-RCNN + TuFF No No No No [29]

Hessian structure
propagation None No Yes No No [27]

Deep Learning YOLO Yes No Yes No [33]

filtering + edge
searching. Frangi filtering Yes No No No [26]

Bwdist transform + Arc
Length

Morphological
operations (Aperture) Yes Yes Yes No [24]

M2GLD Min-Max Gray Level
Discrimination No No No No [25]

Proposed technique L*a*b + Coherence Filter Yes Yes No Yes

Another major advantage of our method lies in the estimation of the actual crack
width. Some works assume that width can be measured either horizontally or vertically
and do not consider the crack’s motion or angle. A limited number of studies report on
this analysis but do so without considering the crack as an object of variable width. This
last concept is fundamental as, at the pixel level, the crack can be visualized as a group
of pixels with tortuous motion, with width and angle variations according to the type of
stress applied to the sample (Table 2, route tracing column).

Finally, width estimations must be performed on the whole sample at regular intervals,
so that the measurement result is unbiased. Most of the previous studies do not take this
point into consideration; they only analyze crack bodies, or they only perform an analysis
at the pixel level and do not measure the real width of the cracks as suggested by the
international building codes (Table 2, spatial width distribution).

The major limitation of the proposed method can be appreciated in samples with
limited crack width, which considerably reduces the number of measurement samples. In
these cases, in future work, an analysis of the type of crack should be defined prior to the
definition of the number of measurements on each sample.
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Appendix A

Let X be a matrix of dimensions (n × m) and let ei be the i-th canonical basis vector of
dimensions (m × 1), i.e., ei = [0, · · · , 0, 1, 0, · · · , 0] with a value of 1 at the i-th position and
the rest with zeros. Operator u(·) can be defined as Equation (A1):

u (X) =
m

∑
i=1

(ei ⊗ I)Xei (A1)

where ⊗ represents the Kronecker product, I is the identity matrix of dimensions (n × n).
The result of this operation for every matrix X of dimensions (n × m) is transformed into a
vector of length (nm × 1). The inverse process, i.e., transforming a vector of length (nm × 1)
into a matrix of dimensions (nm × 1) can be defined by Equation (A2):

t (u(X)) =
m

∑
i=1

(ei ⊗ I) u (X)eT
i = X (A2)

We will write t(·) as the vector-matrix transformation process, it being consistent
with the number of existing elements in the vector and resulting in a matrix of dimensions
(n × m).
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