
sensors

Review

Dragonfly Algorithm and Its Hybrids: A Survey on
Performance, Objectives and Applications

Bibi Aamirah Shafaa Emambocus 1,†, Muhammed Basheer Jasser 1,*,†, Aida Mustapha 2 and Angela Amphawan 1

����������
�������

Citation: Emambocus, B.A.S.; Jasser,

M.B.; Mustapha, A.; Amphawan, A.

Dragonfly Algorithm and Its Hybrids:

A Survey on Performance, Objectives

and Applications. Sensors 2021, 21,

7542. https://doi.org/10.3390/

s21227542

Academic Editors: YangQuan Chen,

Nunzio Cennamo, M. Jamal Deen,

Simone Morais, Subhas

Mukhopadhyay and Junseop Lee

Received: 27 August 2021

Accepted: 11 October 2021

Published: 13 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computing and Information Systems, School of Engineering and Technology,
Sunway University, Petaling Jaya 47500, Selangor, Malaysia; 17037730@imail.sunway.edu.my (B.A.S.E.);
angelaa@sunway.edu.my (A.A.)

2 Department of Mathematics and Statistics, Faculty of Applied Sciences and Technology, Universiti Tun
Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia; aidam@uthm.edu.my

* Correspondence: basheerj@sunway.edu.my
† These authors contributed equally to this work.

Abstract: Swarm intelligence is a discipline which makes use of a number of agents for solving
optimization problems by producing low cost, fast and robust solutions. The dragonfly algorithm
(DA), a recently proposed swarm intelligence algorithm, is inspired by the dynamic and static
swarming behaviors of dragonflies, and it has been found to have a higher performance in comparison
to other swarm intelligence and evolutionary algorithms in numerous applications. There are only
a few surveys about the dragonfly algorithm, and we have found that they are limited in certain
aspects. Hence, in this paper, we present a more comprehensive survey about DA, its applications in
various domains, and its performance as compared to other swarm intelligence algorithms. We also
analyze the hybrids of DA, the methods they employ to enhance the original DA, their performance
as compared to the original DA, and their limitations. Moreover, we categorize the hybrids of DA
according to the type of problem that they have been applied to, their objectives, and the methods
that they utilize.

Keywords: dragonfly algorithm; swarm intelligence; optimization

1. Introduction

Optimization algorithms are essential for numerous optimization applications where
usually certain parameters are minimized or maximized by considering an objective function.
Optimization algorithms can be classified as either deterministic or non-deterministic [1].
Deterministic algorithms are exact methods, and usually they need a substantial amount of
time and resources for solving large optimization problems. Hence, non-deterministic algo-
rithms, also called heuristic algorithms, are being increasingly used and developed. They
can be based on various natural processes; for example, trajectory-based, physics-based or
population-based, which can be either nature- or bio-inspired [1]. Swarm intelligence algo-
rithms are classified as nature-inspired population-based heuristic optimization algorithms.

Swarm intelligence is a discipline which is utilized for solving optimization problems
by producing low cost, fast and robust solutions. Its technique consists of making use of
a number of agents, thereby forming a population in which individuals interact among
themselves and with their environment, to give rise to a global intelligent behavior. There
exist numerous swarm intelligence algorithms, such as ant colony optimization (ACO), grey
wolf optimization (GWO), firefly algorithm (FA), whale optimization algorithm (WOA),
bee colony optimization (BCO), and particle swarm optimization (PSO).

The Dragonfly Algorithm (DA) is a swarm intelligence algorithm that was proposed
in 2016 [2], and it is inspired by the behavior of dragonflies in nature. It has been found
to have a higher performance than some of the most popular evolutionary algorithms,
such as the genetic algorithm (GA), and swarm intelligence algorithms such as particle
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swarm optimization (PSO). Owing to its high effectiveness and efficiency, it has been
utilized in multifarious applications and attempts to further improve its performance have
been made and hence a number of hybrids of DA have been proposed. Our motivation
for working on this algorithm is that DA and its hybrids have proven to be useful in
multifarious applications and they also have a higher performance as compared to other
swarm intelligence algorithms and their hybrids.

We have found that there are insufficient studies relating to the applications of the
dragonfly algorithm and its hybrids. Although there are some surveys about the dragonfly
algorithm, we have identified certain limitations relating to the surveys on DA. The hybrids
of DA have never been categorized according to the type of problem that they have been
applied to, whether continuous and single-objective problems, binary and single-objective
problems, or continuous and multi-objective problems. The different versions of the
hybrid algorithms, that is, the continuous, binary or multi-objective versions have not been
considered. There are no taxonomies which categorize the hybrids of DA according to
their objective, that is whether they improve the effectiveness or efficiency of the original
DA or both. Moreover, all the hybrids that have been proposed focus on improving
the effectiveness of the original DA; however, there are no taxonomies which cluster
the hybrids based on the method employed to improve the effectiveness. In this paper,
we present a more comprehensive survey on the dragonfly algorithm by covering the
aforementioned limitations.

Table 1 shows a comparison between our survey and the previous surveys on DA in
terms of the contents presented in the surveys.

Table 1. Comparison between our survey and previous surveys.

Our Survey [3] [4] [5] [6]

Background on DA X X X X X

Applications of DA based on domain X X X X X

Analysis of the performance of DA as compared to
other swarm intelligence algorithms X X X X

Consideration of the limitations of DA and
proposed future directions X X X X X

Analysis of the performance of the hybrids of DA
as compared to original DA X X X X X

Consideration of the methods employed to
enhance the original DA obtaining the hybrids X X X X X

Analysis of the limitations of the hybrids of DA X

Categorization of hybrids according to the type
of problem X

Taxonomies to categorize the hybrids of DA
according to the performance improvement

(effectiveness, efficiency)
X

Taxonomies of hybrids of DA according to
effectiveness improving method X

The remainder of the paper is structured as follows: in Section 2, a background on
the dragonfly algorithm is presented, in Section 3, an explanation on the hybrids of DA
is presented, followed by a discussion on the applications of both DA and its hybrids in
Section 4. In Section 5, a discussion on some challenges and future directions is given and
finally in Section 6, the conclusions and future works are presented.
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2. Dragonfly Algorithm

The inspiration for the dragonfly algorithm is derived from the static and dynamic
swarming behaviours of dragonflies in nature. The static and dynamic swarming behaviors
are representative of the two requisite phases of optimization: exploration and exploitation.
In a static swarm, as in Figure 1, dragonflies create sub-swarms and fly over different
regions. This is tantamount to exploration, and it helps the algorithm to locate good areas
of the search space. Conversely, in a dynamic swarm, as in Figure 2, dragonflies fly in a
bigger swarm and along the same direction. This type of swarming is equivalent to the
exploitation of an algorithm, which helps it to converge to the global optimum.

Figure 1. Static Swarm [2,5,6].

Figure 2. Dynamic Swarm [2,5,6].

Five factors are used for to direct the dragonflies in the exploration and exploitation
phases; namely, separation, alignment, cohesion, food factor and enemy factor. The
separation weight (s), alignment weight (a), cohesion weight (c), food factor (f), enemy
factor (e) and the inertia weight (w) are used for controlling the factors. The goal is to
ensure that the swarm survives by attracting it towards food sources and distracting it away
from enemies. The best solution found in an iteration is selected as the food source and the
worst solution found is selected as the enemy. The weights of the factors are adjusted so as
to have high alignment and low cohesion in the exploration phase and low alignment and
high cohesion in the exploitation phase. The weights are changed accordingly to allow the
transition of the algorithm from the exploration to the exploitation phase.

The separation factor is used to avoid the static collision of one dragonfly from other
dragonflies in the neighborhood, and it is calculated as follows:

Si = −
N

∑
j=1

Xi − Xj (1)

where Xi is the position of the current dragonfly, Xj is the position of the j-th neighbour
and N is the number of neighbouring dragonflies.

The alignment factor is used to match the velocity of one dragonfly to that of other
dragonflies in the neighborhood and it is calculated as follows:

Ai =
∑N

j=1 Vj

N
(2)

where Vj is the velocity of the j-th neighbour and N is the number of neighbouring dragonflies.
The cohesion factor is the tendency of one dragonfly towards the center of mass of the

neighborhood and is calculated as follows:
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Ci =
∑N

j=1 Xj

N
− Xi (3)

where Xj is the position of the j-th neighbour, and N is the number of neighbouring
dragonflies.

The food factor is the attraction of a dragonfly towards a food source and is calculated
as follows:

Fi = X+ − Xi (4)

where X+ is the position of the food source.
The enemy factor is the distraction of a dragonfly from an enemy, and it is calculated

as follows:

Ei = X− + Xi (5)

where X− is the position of the enemy.
Two vectors, a step vector (∆X) and a position vector (X), are used to simulate

movements and to update the position of the artificial dragonflies in a search space. The
step vector is defined as:

∆Xt+1
i = (sSi + aAi + cCi + f Fi + eEi) + w∆Xt

i (6)

where s is the separation weight, Si is the separation of the i-th dragonfly, a is the alignment
weight, Ai is the alignment of i-th dragonfly, c is the cohesion weight, Ci is the cohesion of
the i-th dragonfly, f is the weight of the food factor, Fi is the food factor of the i-th dragonfly,
e is the weight of the enemy factor, Ei is the enemy factor of the i-th dragonfly, w is the
inertia weight, and t is the iteration counter.

After calculating the step vector, the position of the dragonflies is updated using:

Xt+1
i = Xt

i + ∆Xt+1
i (7)

The neighbours of each artificial dragonfly are considered by assuming a radius
around each one of them. To transition from the exploration to the exploitation phase, the
radius of the neighbourhoods is incremented proportionally to the iteration counter so that
the static swarms are changed to dynamic swarms. During the last stage of optimization,
all the dragonflies will come together to form one dynamic swarm which will converge
towards the global optimum solution. The Lévy flight mechanism [7] is used for the
artificial dragonflies to navigate around the search space when they have no neighbours. It
is a random walk which is used to generate a random position for dragonflies which have
no neighbours. In this case, the position update formula used is:

Xt+1
i = Xt

i + Levy(d)× Xt
i (8)

where t is the current iteration number and d is the dimension of the position vectors.
The step vector and position vectors of each dragonfly are updated in every itera-

tion until the end criterion is met. The pseudocode of the dragonfly algorithm is given
in Algorithm 1.
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Algorithm 1: Dragonfly Algorithm

1 Initialize the population’s positions randomly;
2 Initialize the step vectors;
3 while end condition do
4 Calculate the objective values of all dragonflies;
5 Update the food source and enemy;
6 Update the weights;
7 Calculate the factors using (1)–(5);
8 Update radius of neighbourhoods;
9 if dragonfly has one or more neighbours then

10 Update step vector using (6);
11 Update position vector using (7);
12 else
13 Update position vector using (8);
14 end
15 Check and correct new positions based on upper and lower bounds;
16 end

3. Hybrids of DA

The original DA algorithm is apt to be used for continuous and single objective
optimization problems. A continuous problem means that a potential solution for the
problem can have any real value within a specified range and single-objective means
that the problem has only one objective; this is either to minimize or maximize a single
objective function. In [2], along with the original dragonfly algorithm, the binary dragonfly
called BDA and the multi-objective algorithm called MODA are also proposed. The BDA
algorithm can be applied to binary or discrete single-objective optimization problems
and the MODA algorithm can be applied to continuous and multi-objective optimization
problems. A binary or discrete problem means that there is a finite set of potential solutions
for the problem. A multi-objective problem means that the problem consists of more
than one objective, and hence, there is more than one objective functions to be minimized
or maximized.

We identified the variants and hybrids of DA which have been applied to continuous,
binary and multi-objective problems and categorized them in terms of those which have
been applied to continuous and single-objective problems, binary or discrete and single-
objective problems and continuous and multi-objective problems. The taxonomies in
Figures 3 and 4 show this categorization of the variants and hybrids of DA.

In Figure 3, the taxonomy shows the categorization of the hybrids of DA according to
the type of problems to which they have been applied. While most of the proposed hybrids
have been applied to only one type of problem, some of them have been applied to more
than one type of problem, and hence, they appear more than once in the taxonomy.

In the taxonomy in Figure 4, the intersection between ’Continuous and Single-Objective’
and ’Continuous and Multi-objective’ shows that there are two versions of the hybrid al-
gorithms, one which has been applied to a continuous and single-objective problem, and
one applied to a continuous and multi-objective problem. The intersection of the three
sets indicates that there are three versions of the hybrid algorithm, one which has been
applied to a continuous and single-objective problem, one applied to a continuous and
multi-objective problem, and one applied to a binary and single-objective problem. As for
the non-intersecting parts, it means that there is only one version of the hybrid algorithm
which has been applied to either a continuous and single-objective problem, a binary and
single-objective problem, or a continuous and multi-objective problem.
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Figure 3. Taxonomy categorizing hybrids of DA.

Figure 4. Taxonomy categorizing hybrids of DA.



Sensors 2021, 21, 7542 7 of 33

3.1. Hybrids of DA Which Handle Continuous and Single-Objective Problems

In this section, we discuss the hybrids of the dragonfly algorithm which have been
applied for solving continuous and single-objective problems, and hence there exists the
continuous version of the algorithm. Some of these algorithms have also been used for
binary or multi-objective problems, and therefore the binary and single-objective or the
continuous and multi-objective versions of these algorithms have also been proposed in
addition to the continuous and single-objective one.

In [8], the memory-based hybrid DA (MHDA) is proposed, which caters for continuous
and single-objective problems. It has been tested using the CEC 2014 benchmark functions,
which are continuous numerical optimization problems. They are also single-objective,
since there is only one objective function to be optimized. Hence, a continuous and single-
objective version of the algorithm is proposed. This algorithm also has a continuous and
multi-objective version.

In [9], a chaotic DA is proposed to be applied in feature selection. It is used to
minimize the size of the selected features, which will in turn maximize the classification
performance and decrease the classification computational cost. Since the problem has
only one objective; that is, to minimize the size of the selected features, and the size can
be any real value within a certain range, a continuous and single-objective version of the
algorithm is proposed.

In [10], a modified DA algorithm using Brownian motion is proposed. It has been
tested using single-objective and multi-objective benchmark functions. Hence, two ver-
sions of the algorithm are proposed; one which caters for continuous and single-objective
problems and one for continuous and multi-objective problems.

In [11], a hybrid DADE algorithm which is a hybrid of differential evolution and DA is
proposed. The algorithm has been tested using benchmark mathematical functions which
are single-objective and continuous. Hence, a continuous and single-objective version of the
algorithm is proposed. A multi-objective version of this hybrid algorithm is also proposed.

A coulomb force search strategy-based DA is proposed in [12]. A continuous and
single-objective version and a continuous and multi-objective version of the algorithm
have been proposed.

In [13], DA with opposition-based learning (OBL), called OBLDA is proposed. It is
used in multilevel thresholding colour image segmentation to find the optimal threshold
value for each colour component. Since the problem has a single-objective, which is to find
the optimal threshold value, and that value can be any real value within a specified range,
a continuous and single-objective version of the algorithm is proposed.

In [14], a biogeography-based and Mexican hat wavelet DA (BMDA) is proposed. The
algorithm is tested using benchmark functions from the CEC2017 library. These functions
are continuous numerical optimization problems which are single-objective, and hence a
continuous and single-objective version of the proposed algorithm is used.

A chaotic DA based on sine-cosine mechanism (SC-DA) is proposed in [15]. The
algorithm is examined using numerical benchmark functions which are continuous and
single-objective, and hence a continuous and single-objective version of the algorithm
is proposed.

A quantum-behaved and Gaussian mutational DA (QGDA) is proposed in [16]. It is
validated using CEC 2014 benchmark functions, and it is applied in feature selection to
obtain an optimal subset of features. Hence, a continuous and single-objective version of
the proposed algorithm is used. A continuous and multi-objective version of this algorithm
is also proposed.

A hybrid DA-DE algorithm with chaotic maps and elite opposition-based learning
(EOBL) is proposed in [17]. The algorithm is used in multilevel thresholding image
segmentation to obtain the optimal threshold values. This problem has a single-objective,
which is to find the optimal threshold value, and that value can be any real value within
a certain range. Therefore, a continuous and single-objective version of the algorithm
is proposed.
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A hybrid DA-modified conjugate gradient method is proposed in [18]. The algorithm
is tested using standard functions for single-objective numerical optimization, and hence a
continuous and single-objective version of the proposed algorithm is proposed.

In [19], an improved DA, called IDA is proposed. The IDA algorithm has been applied
to optimize the parameters of a Support Vector Machine (SVM). Since the problem is single-
objective, that is, to optimize the parameters of the SVM and the parameters can have
continuous values, a continuous and single-objective version of the algorithm is proposed.

A hybrid DA-DE is proposed in [20] to be applied to image segmentation, so as to
determine the optimal threshold values. This is a continuous problem, as the threshold
values can have any real value within a certain range and also single-objective problem, as
there is only one objective function. Hence, a continuous and single-objective version of
the algorithm is proposed.

In [21], an improved DA based on elite opposition learning and exponential function
steps, called EOEDA is proposed. The proposed algorithm is tested using numerical
optimization to find the optimal values for single-objective standard functions, and hence
a continuous and single-objective version of the algorithm is proposed.

In [22], a hybrid DA-Simulated Annealing algorithm is proposed. The algorithm is
applied to the flexible flow-shop scheduling to optimize the online scheduling sequence. A
continuous and single-objective version of the algorithm is proposed.

In [23], a hybrid DA-opposition-based learning algorithm is proposed. The algorithm
is tested on real parameter function optimization to obtain the optimal parameters for the
functions. It is a continuous problem, since the parameters can have any real value within a
specified range, and single-objective, since it consists of only one objective function. Hence,
a continuous and single-objective version of the algorithm is proposed.

In [24], a hybrid of DA and firefly algorithm called DA-FA is proposed. It is applied to
the wireless sensor networks localization problem to locate the position of nodes using the
position of an anchor node, and a continuous and single-objective version of the algorithm
is used.

In [25], a hybrid of DA and artificial bee colony (ABC) called DA-ABC is proposed. It
is used to optimize the weights of a multilayer perceptron (MLP) during its training process.
Since the problem is single-objective; that is, to optimize the weights of the MLP, and the
weights can be any real value within a certain range, a continuous and single-objective
version of the algorithm is proposed.

In [26], a hybrid DA and Nelder–Mead algorithm called INMDA is proposed, which
is used to train a multilayer perceptron to determine the most optimal weights and biases
for the MLP. Hence, a continuous and single-objective version of the algorithm is proposed.

3.2. Hybrids of DA Which Handle Binary and Single-Objective Problems

Other hybrids of the dragonfly algorithm have been applied to binary or discrete
optimization problems. These problems are usually single-objective problems. The algo-
rithms discussed in this section, specifically the ones which have been proposed in [27,28],
have only been applied to binary and single-objective problems and hence only the binary
version of these algorithms have been proposed.

In [27], a hyper learning binary dragonfly algorithm (HLBDA) is proposed to be
applied to feature selection to determine the optimal subset of features for a classification
problem. This is a single-objective problem which is to find an optimal subset of features,
and it is also a discrete problem, since each potential solution is a subset of features, and
there are a limited number of subsets which can be considered. Hence, a binary and
single-objective version of the HLBDA algorithm is proposed and applied to the problem.

In [28], a hybrid improved DA is proposed to be applied to feature selection to
determine the optimal subset of features. Since this is a discrete problem with a single-
objective, a binary and single-objective version of the algorithm is proposed.

The quantum-behaved and Gaussian mutational DA (QGDA) [16], which has been
discussed in the previous section, has also been applied to a binary problem, and hence a
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binary and single-objective version of the algorithm has also been proposed. The binary
and single-objective version of the algorithm is applied to feature selection to determine
the optimal subset of features.

3.3. Hybrids of DA Which Handle Continuous and Multi-Objective Problems

In this section, the hybrids of DA which have been applied to continuous and multi-
objective problems are discussed. Some of these algorithms, specifically the ones proposed
in [29–32], have only been applied to continuous and multi-objective problems, and hence
only the multi-objective version of the algorithms has been proposed.

In [29], a hybrid DA-PSO algorithm is proposed to solve the multiobjective optimal
power flow (MO-OPF) problem to minimize the fuel cost, emissions, and transmission
losses, while satisfying some equality and inequality constraints. This problem has more
than one objective, and these are: to minimize the fuel cost, emissions, and transmission
losses, and at the same time, to satisfy some equality and inequality constraints. It is also a
continuous problem, since the parameters can have any real value within a certain range.
Hence, a continuous and multi-objective version of the algorithm is proposed and applied
to the problem.

In [30], a hybrid modified DA and whale optimization is proposed to optimally
schedule microgrid with islanding constraints to achieve the best quality. Since this is a
multi-objective problem where the parameters can have any real value within a specified
range, the continuous and multi-objective version of the algorithm is proposed and used.

In [31], a hybrid DA-DE, called IEDA, is proposed for the optimal design of a hybrid
power active filter. Since this is a multi-objective problem where the parameters can have
any real value within a specified range, the continuous and multi-objective version of the
algorithm is proposed and used.

In [32], a hybrid of DA and genetic algorithm (GA), called DA-GA, is proposed
to solve the optimal power flow problem. This is also a continuous and multi-objective
problem, and hence the continuous and multi-objective version of the algorithm is proposed
and applied.

The MHDA algorithm [8], modified DA using Brownian motion [10], hybrid DADE [11],
Coulomb force search strategy-based DA [12], SC-DA [15] and QGDA [16], which have been
discussed in the earlier sections, have also been applied to multi-objective problems, and
continuous and multi-objective versions of these algorithms have also been proposed. The
continuous and multi-objective version of the MHDA algorithm [8], modified DA using
Brownian motion [10], hybrid DADE [11] and QGDA [16] have been used for the optimal
design of a welded beam. The Coulomb force search strategy-based DA [12] has been
applied for the optimal design of a bucket wheel reclaimer (BWR), and the SC-DA [15] has
been applied for the optimal design of a cantilever beam.

3.4. Performance Analysis

While most of the algorithms increase the performance of the original DA in terms
of effectiveness, that is enhancing the quality of solutions, some algorithms also improve
its performance in terms of efficiency; that is, increasing the convergence rate. In order
to achieve these objectives, different methods are employed. We identified four main
techniques by which the effectiveness of the original dragonfly algorithm is enhanced: by
improving the exploitation of DA, that is the local search, by improving the exploration
which is the global search of DA, by improving both exploitation and exploration or
by improving the initialization; that is, finding better initial positions for the artificial
dragonflies.

The taxonomy in Figure 5 shows the existing hybrids of DA categorized into whether
they improve only the effectiveness of the original DA or both the effectiveness and
efficiency.

The taxonomy in Figure 6 categorizes the hybrids of DA in terms of the technique
employed to improve its effectiveness.
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Figure 5. Taxonomy categorizing hybrids of DA in terms of improved effectiveness and efficiency.

Figure 6. Taxonomy categorizing hybrids of DA in terms of effectiveness improving method.
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3.4.1. Hybrids of DA Which Improve Its Effectiveness by Improving Exploitation

Table 2 shows the hybrids of DA which have improved the effectiveness of the original
DA by means of improving its exploitation phase in terms of the algorithm used to improve
DA, the way of improvement, the application that they have been used for, how much
the effectiveness of DA is improved, and whether the efficiency is also improved or not.
In the ’Improved effectiveness (%)’ column, the problem for which this improvement is
achieved is shown within parenthesis. In the ’way of improvement’ column, the phase and
the equations or steps which are improved are shown.

The hybrid algorithms MHDA [8], Coulomb force search strategy-based DA [12],
DA-FA [24] and INMDA [26] improve the effectiveness of DA by improving its exploitation
phase, and these hybrids are also able to improve the efficiency of DA; that is, increasing
its convergence rate. Some detailed explanations about these algorithms which are not
presented in Table 2 are given next.

The memory-based hybrid DA (MHDA) [8] improves the effectiveness of DA by
overcoming the low exploitation problem, which causes the algorithm to prematurely
converge to local optima. This is done by hybridizing the DA with PSO and by adding a
memory element in DA. The memory element is used to keep track of the best solution
found by each dragonfly of DA and the best solution found in each neighborhood of
dragonflies. The dragonfly algorithm with internal memory first converges the search
space to good regions. The PSO algorithm is then initialized using the matrix of the best
solutions obtained by DA for further exploitation. Hence, the algorithm employs the
exploration capability of DA and exploitation of PSO. The exploitation of DA is improved;
since once a dragonfly updates its position, PSO is initialized with its personal best solution
and global best solution of the neighbourhood so as to further exploit the search area
and to find a better position. Two equations of PSO, namely, a modified velocity update
and the position update equations, are added to the DA algorithm, as shown in Table 2.
The parameters C1 and C2 are the cognitive and social parameters, r1 and r2 are random
numbers between 0 and 1. DA− pbestt

i and DA− gbestt
i are the personal and global best

particles of PSO, respectively.
In [12], a Coulomb force search strategy-based DA is proposed to improve the ef-

fectiveness of DA by enhancing its exploitation capability, thereby avoiding premature
convergence to local optima. This is done by adjusting the search step of every iteration by
using the Coulomb force search strategy (CFCSS). The step vector of DA is modified so
as to include the CFCSS as the step length instead of the linear step length. The position
update formula then makes use of the modified step vector to update the position of the
dragonflies. The velocity update equation of DA is replaced by a new equation, as shown
in Table 2, where ai(t) represents the acceleration of all the dragonflies in the population.

In [24], a hybrid of DA and firefly algorithm called DA-FA is proposed. It improves
the effectiveness of DA by enhancing its exploitation so as to prevent being trapped in
local optima. It has an iterative level hybridization where DA is used as a global search
and FA as a local search. Notably, the position update equation of the firefly algorithm is
used for enhancing the exploitation.The position update equation of the firefly algorithm
is employed, instead of updating the position of the dragonflies using the Levy flight
mechanism when they have no neighbours. The new position update equation is shown in

Table 2 where βoe−γ.r2
ij(Xt

j − Xt
i ) represent the attraction of a firefly to a brighter firefly and

∝ (Nrand − 0.5) is a random walk.
The hybrid DA and Nelder–Mead algorithm, called INMDA [26], increases the ef-

fectiveness of DA by improving its exploitation capability, so as to prevent convergence
to local optima and to increase the solution accuracy. An iterative level hybridization is
used where DA is first employed, followed by the improved Nelder–Mead algorithm,
which further exploits the search region. A memory matrix is added to DA to record the
best candidate solutions, and this matrix is then employed as an initial input vector of the
improved Nelder–Mead algorithm. The improved Nelder–Mead algorithm is employed to
further update the positions of the dragonflies after they have been updated by DA.
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Some of the hybrids proposed successfully increase the effectiveness of DA by im-
proving its exploitation, however, since increasing its efficiency is not their objective, the
efficiency remains unchanged. Such hybrids of DA include OBLDA [13], hybrid DA-
DE [20] and hybrid modified DA and whale optimization [30]. A detailed explanation of
these algorithms is given next by considering information, which is not given in Table 2.

DA with opposition-based learning (OBL), called OBLDA, is proposed in [13]. It im-
proves the performance of DA in terms of effectiveness by enhancing its exploitation phase,
so as to better balance the exploration and exploitation phases of DA. After updating the
position of dragonflies, OBL is applied to half of the population and it checks whether
the position is better than its corresponding opposite and the fitter one is chosen as the
position of the dragonfly. OBL is also used to improve the initialization of the population
so as to obtain initial solutions with better fitness which helps in converging to the global
optimum accurately. When the positions of a dragonfly is initialized in DA, the opposite
of the position is found using OBL, and the fitter one is chosen as an individual of the
initial population.

In [20], a hybrid DA-DE is proposed to increase the effectiveness of DA by improving
its exploitation capability. DA is used as a global search since it has a good exploration
capability, and differential evolution (DE) is incorporated as a local search to improve
the exploitation and thus increase the accuracy of solutions. The average fitness of the
population is first calculated in each iteration. Then, for each search agent, if the fitness is
less than the average fitness, its position is updated using the step and position vectors
of DA; otherwise, its position is updated using the mutation, crossover and selection
operations of DE.

The hybrid modified DA and whale optimization [30] improves the effectiveness
of the dragonfly algorithm by preventing the problem of being trapped in local optima.
The algorithm has an iterative level hybridization where DA is first applied, and then the
best solution obtained by DA is further updated using the whale optimization algorithm.
There are two equations of the whale optimization algorithm which are added to DA as
shown in Table 2, where

−→
D rand represent random whales and

−→
F ,
−→
E and

−→
C represent

coefficient vectors.
The hybrid DA-PSO algorithm [29] and IEDA [31] aim at increasing the effectiveness

of DA by means of improving its exploitation, and they are successful in achieving their
objective. However, the efficiency of the hybrid algorithms is lower than that of the original
DA. We present an explanation on these algorithms by considering information which is
omitted in Table 2.

The hybrid DA-PSO algorithm [29] solves the low exploitation problem of DA, so
as to avoid getting trapped in local optima, thereby improving the effectiveness of the
dragonfly algorithm. The algorithm has an iterative level hybridization where DA is first
employed followed by PSO, so as to make use of the exploration of DA and exploitation of
PSO. The best position obtained by DA is used as the global best position of PSO, which
then further exploits the search space to obtain a better position. Hence, the velocity and
position update equations of PSO are added to DA as shown in Table 2. The parameters C1
and C2 are acceleration coefficients, rand1 and rand2 are random values in range [0,1], w is
the inertia weight, and Xt+1

DA is the best position obtained by DA.
The hybrid DA-DE, called IEDA [31], improves the effectiveness of DA by enhancing

its exploitation capability so as to surmount the problem of low accuracy of solutions.
A division of labor strategy is employed so as to divide the population into two halves.
One half is used for exploration, and the other one for exploitation. The global search
capability of DA is used for exploration. The information exchange strategy of DE, to-
gether with an exemplar pool storing high quality individuals, are added and used for the
exploitation population.

There is a hybrid algorithm on which we are working, and it also improves the
effectiveness of DA by improving its exploitation phase. The algorithm [33] makes use of
hill climbing algorithm as a local search. In each iteration, the position obtained by DA is
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further updated by hill climbing in order to obtain better positions. We did not include this
algorithm in the tables and taxonomies in this paper because it is an ongoing work.

3.4.2. Hybrids of DA Which Improve Its Effectiveness by Improving Exploration

Table 3 shows the hybrids of DA which have improved the effectiveness of the original
DA by means of improving its exploration phase in terms of the algorithm used to improve
DA, the way of improvement, the application that they have been used for, how much
the effectiveness of DA is improved, and whether the efficiency is also improved or not.
In the ’Improved effectiveness (%)’ column, the problem for which this improvement is
achieved is shown within parentheses. In the ’way of improvement’ column, the phase
and the equations or steps which are improved are shown.

Apart from increasing the effectiveness of DA by improving its exploitation phase,
the effectiveness can also be increased by improving its exploration phase. The hybrid
algorithms hybrid DADE [11], DA-ABC [25] and HLBDA [27] increase the effectiveness
of DA by means of improving its exploration phase, and these algorithms also improve
the efficiency of DA. Next, we present a detailed explanation on these algorithms by
considering information which is not given in Table 3.

In [11], a hybrid DADE algorithm which is a hybrid of differential evolution and DA
is proposed. The aim is to increase the effectiveness of DA by increasing the population
diversity, and preventing the problem of getting trapped in local optima. A memory
element is first incorporated in DA to store the best solutions obtained, namely the local
best solution obtained by each dragonfly, and the global best solution obtained by the
swarm. The mutation technique of differential evolution is then applied using the stored
local and global best positions. The position update of DA is improved, since once the
position has been updated by DA, the position is used as the target vector of differential
evolution. Differential evolution then employs its mutation technique on the target vector
by making use of the local and global best solutions to obtain a better position.

The hybrid of DA and artificial bee colony (ABC), called DA-ABC [25], improves the
effectiveness of DA by enhancing its exploration capability. This is achieved by using
DA as a global search, and in addition to that, the modified scout bee phase of ABC is
also employed as a global search. The exploration is improved, since by employing two
exploration phases, the search space and the diversity of the population are increased. The
onlooker bee phase of ABC is then employed as a local search.

The hyper learning binary dragonfly algorithm (HLBDA) proposed in [27] improves
the effectiveness of the binary dragonfly algorithm. A hyper learning strategy is employed
to improve the exploration of BDA by taking into consideration the personal best and per-
sonal worst positions of each dragonfly and also the global best position of the population.
Using the personal best and personal worst positions, the behaviors of finding food and
fleeing enemies of the dragonflies are improved during the position update process. The
equations to calculate the attraction to food and distraction from enemy are updated to
include consideration of the personal best and personal worst positions as shown in Table 3.
The parameters Xpbi and Xpwi are used to represent the personal best and personal worst
positions, respectively. Furthermore, the personal and global best solutions improve the
learning strategy. The position update formula is updated to consider the personal best
and global best positions as shown in Table 3 where r1 is a random number in the interval
0 and 1.
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Table 2. Hybrids of DA which improve its effectiveness by improving exploitation.

Algorithm Algorithm Used Way of Improvement
Application Improved Effectiveness (%) Efficiency

for Hybridisation Phase Equation/Step

Memory-based Hybrid DA
(MHDA) [8] PSO Exploitation

Equations to be improved: (6), (7)
Added equations:

∆Xt+1
i = w∆Xt

i + C1r1(DA− pbestt
i − Xt

i ) +

C2r2(DA− gbestt
i − Xt

i ) Xt+1
i = Xt

i + ∆Xt+1
i

CEC 2014 benchmark
functions, Welded beam

design problem

12.7% (welded beam design
problem) Improved

Coulomb force search
strategy-based DA [12]

Coulomb force search
strategy (CFCSS) Exploitation

Equation to be improved: (6)
Modified equation:

∆Xt+1
i =

(sSi + aAi + cCi + f Fi + eEi) + w∆Xt
i + ai(t)

25 and a 72-bar space truss
structure problem &

Optimal design of the
Bucket wheel reclaimer

(BWR)

1.7% (72-bar space truss
structure problem) Improved

Hybrid DA and firefly
(DA-FA) [24] Firefly Algorithm (FA) Exploitation

Equation to be improved: (8)
Modified equation:

Xt+1
i = Xt

i + βoe−γ.r2
ij (Xt

j − Xt
i )+ ∝

(Nrand − 0.5)

CEC 2019 benchmark
functions, Wireless sensor

networks localization
problem

9.7% (CEC 10) Improved

Hybrid DA and
Nelder–Mead Algorithm

(INMDA) [26]

Improved Nelder–Mead
Algorithm Exploitation

Steps to be improved:
Lines 11 and 13 from Algorithm 1

Step added (After line 15 in Algorithm 1):
Invoke INMDA

Training of multilayer
perceptron 67.1% (function F19) Improved

DA with opposition-based
learning (OBLDA) [13]

Opposition-based learning
(OBL) Exploitation

Steps to be improved:
Lines 11 and 13 from Algorithm 1

Step added (After lines 11 and 13 in
Algorithm 1):

Select half of dragonflies from the
population and apply OBL

Multilevel thresholding
colour image segmentation 0.93% No change

Hybrid DA-DE [20] Differential evolution Exploitation

Steps to be improved:
Lines 11 and 13 from Algorithm 1

Steps added (After lines 11 and 13 in
Algorithm 1):

Evaluate fitness of dragonfly
Compute average fitness of population

If fitness of dragonfly is greater than average,
apply mutation, crossover and selection

operations of DE

Image segmentation
0.042% (penguin image

using Otsu method, level
10)

No change
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Table 2. Cont.

Algorithm Algorithm Used Way of Improvement
Application Improved Effectiveness (%) Efficiency

for Hybridisation Phase Equation/Step

Hybrid modified DA and
whale optimization [30]

Whale optimization
algorithm Exploitation

Equations to be improved: (6), (7)
Added equations:

F = |−→E .
−→
D rand −

−→
D |

D(t + 1) =
−→
D rand −

−→
C .
−→
F

Optimal scheduling of
microgrid with islanding

constraints
50.9% (test scenario 1) No change

Hybrid DA-PSO [29] PSO Exploitation

Equations to be improved: (6), (7)
Added equations:

∆Xt+1
i = w∆Xt

i + C1.rand1(pbestt
i − Xt

i ) +

C2.rand2(Xt+1
DA − Xt

i )

Xt+1
i = Xt

i + ∆Xt+1
i

Multiobjective Optimal
Power Flow (MO-OPF)

problem

7.2E-4% (IEEE 30-bus
system when considering

only the fuel cost)

Lower
efficiency

Hybrid DA-DE (IEDA) [31] Differential Evolution Exploitation

Steps to be improved:
Lines 11 and 13 from Algorithm 1

Steps added (After line 7 in Algorithm 1):
Select half of the population and apply
information exchange strategy of DE

Optimal design of hybrid
power active filter 36.6% (experiment case 1) Lower

efficiency

Table 3. Hybrids of DA which improve its effectiveness by improving exploration.

Algorithm Algorithm Used Way of Improvement
Application Improved Effectiveness (%) Efficiency

for Hybridisation Phase Equation/Step

hybrid DADE [11] Differential Evolution Exploration

Steps to be improved:
Lines 11 and 13 from Algorithm 1

Steps added:
After line 4 in Algorithm 1 -

Update personal and global best positions
After lines 11 and 13 in Algorithm 1 -

Apply mutation and crossover technique
of DE

Benchmark mathematical
functions & Welded beam

design problem

2.1% (welded beam design
problem) Improved

Hybrid DA and ABC
(DA-ABC) [25] Artificial Bee Colony (ABC) Exploration

Steps to be improved:
Lines 11 and 13 from Algorithm 1

Steps added (After line 14 in Algorithm 1):
Apply onlooker bee phase and modified

scout bee phase of ABC

Training of multilayer
perceptron 5.2% (’iris’ dataset) Improved
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Table 3. Cont.

Algorithm Algorithm Used Way of Improvement
Application Improved Effectiveness (%) Efficiency

for Hybridisation Phase Equation/Step

Hyper Learning Binary
Dragonfly Algorithm

(HLBDA) [27]
Hyper Learning Strategy Exploration

Equations to be improved: (4), (5), (7)
Modified equations:

Fi = ((Xpbi − Xi) + (X+ − Xi))/2
Ei = ((Xpwi + Xi) + (X− + Xi))/2

Xt+1
i =

{ Xi 0 ≤ r1 ≤ pl
Xpbt

i pl ≤ r1 ≤ gl
X f t gl ≤ r1 ≤ 1

Feature selection 1.5% (’primary tumour’
dataset) Improved

Hybrid
DA-Opposition-based

learning [23]

Opposition-based Learning
(OBL) Exploration

Steps to be improved:
Lines 11 and 13 from Algorithm 1

Step added (After line 14 in Algorithm 1):
Apply OBL to new position and select the

best position

Real parameter function
optimization 93.4% (function f1) No change

Hybrid DA-Simulated
Annealing [22]

Simulated Annealing
Algorithm Exploration

Steps to be improved:
Lines 11 and 13 from Algorithm 1

Steps added (After line 14 in Algorithm 1):
Calculate retention probability using idea of

simulated annealing
If new position is better than original
position, retain new position directly.

Otherwise, retain new position based on
retention probability

Flexible flow-shop
scheduling 0.29% (’J10c10c3’ test data) Lower

efficiency

modified DA algorithm
using Brownian motion [10] Brownian motion Exploration

Equation to be improved: (8)
Modified equation:

Xt+1 = Xt + h ∗ rand() ∗ Pg

Benchmark functions &
Welded beam design

problem

20% (welded beam design
problem) Not considered

BBO and Mexican hat
wavelet DA (BMDA) [14]

BBO with Mexican hat
wavelet Exploration

Equation to be improved: (7)
Added equation:

Xi = Xi+ ∝ (Xj − Xi)

CEC2017 benchmark
functions 65.0% (function fi) Not considered

Improved DA (IDA) [19] Differential Evolution (DE) Exploration

Equations to be improved: (7), (8)
Modified equations:
Xt+1

i = ct
i X

t
i + ∆Xt+1

i
Xt+1

i = ct
i X

t
i + Levy(d)× Xt

i
Steps to be improved:

Lines 11 and 13 from Algorithm 1
Steps added (After line 14 in Algorithm 1):
Use strategy of differential evolution on new

position obtained by DA

Optimise the parameters of
SVM

26.4%, 25.27%, 23.44% (3
types of prediction errors) Not considered
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The hybrid DA-opposition-based learning [23] and hybrid DA-simulated annealing
algorithms [22] successfully increase the effectiveness of DA by means of improving its
exploration. However, they are not able to increase the efficiency of DA. The hybrid DA-
opposition-based learning [23] has the same efficiency as the original DA, while hybrid
DA-simulated annealing algorithm [22] has lower efficiency. An explanation of these
algorithms which is not given in Table 3 is presented next.

The hybrid DA-opposition-based learning algorithm [23] improves the effectiveness
of DA by increasing the exploration of the search region. Opposition-based learning is first
used during initialization to generate better initial positions for the artificial dragonflies.
After the positions of the dragonflies are initialized, the opposite positions are found, and
the fitter set of positions is selected as the initial positions for the population. In each
iteration after the positions of the dragonflies have been updated by DA, the opposition-
based learning technique is again employed on the new set of dragonflies generated to
determine whether their opposite dragonflies have better positions. The ones with the
better positions are then retained in the population.

The hybrid DA-simulated annealing algorithm in [22] enhances the effectiveness of
DA by improving its ability to escape the local optimum. It makes use of the selection
probability of simulated annealing to retain new individuals. If the latter is better than the
one in the current iteration, it is retained directly; otherwise, it is retained with a certain
probability. This is carried out after the position of a dragonfly has been updated by DA
and unlike in DA, if the new position obtained is not better than the previous one, it is only
retained with a certain probability.

The modified DA algorithm using Brownian motion [10], BMDA [14], and IDA [19]
successfully achieve their objective of increasing the effectiveness of DA by improving
its exploration phase. However, the efficiency of these algorithms is not considered or
compared with the original DA, as their objective is only to improve the effectiveness of
DA. Next, an explanation on these algorithms is given, by considering information which
is not given in Table 3.

The modified DA algorithm using Brownian motion is proposed in [10] to increase
the effectiveness of DA. Brownian motion is used instead of the Levy flight mechanism
to update the position of dragonflies which have no neighborhood. This is in order to
ameliorate the randomization stage of DA by preventing the Levy flight mechanism from
overflowing the search area and interrupting random flights which are caused by its large
searching steps, thereby improving the effectiveness of DA. The equation used to update
the position of dragonflies instead of the Levy flight mechanism is shown in Table 3, where
h and Pg are calculated based on the motion time period of a dragonfly and its number of
sudden motions in a specific time period.

The biogeography-based and Mexican hat wavelet DA (BMDA) proposed in [14]
improves the effectiveness of DA by improving its exploration capability so as to prevent
premature convergence to local optima. A new operator is first obtained by combining
the migration process of the biogeography-based optimization (BBO) with Mexican hat
wavelet in the mutation phase. It is then used to further update the solution obtained
by DA after updating the position in each iteration. The operator makes use of the the
migration of BBO to improve the quality of the solution and the mutation of BBO combined
with Mexican hat wavelet to make the algorithm more stochastic. Hence, its exploration
is increased, and it is able to prevent local optima. The new added equation is shown in
Table 3, where the parameter Xj represents the source of migration and ∝ is a random
number in the interval [0,1].

In [19], an improved DA called IDA is proposed to enhance the effectiveness of DA.
It prevents the low convergence accuracy caused by the random walk strategy when
the dragonflies do not have a neighbourhood by using an adaptive learning factor. The
adaptive learning factor is introduced in the position vectors of DA; the one used when
dragonflies have neighbours and the one used when they have no neighbours as shown
in Table 3, where the parameter Ct

i represents the adaptive learning factor. Moreover, the
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strategy of differential evolution is used to diversify the population, thereby preventing
the problem of being stuck in local optima. This strategy is employed in each iteration after
the position is updated by the modified position vector of DA.

3.4.3. Hybrids of DA Which Improve Its Effectiveness by Improving Both Exploitation
and Exploration

Table 4 shows the hybrids of DA which have improved the effectiveness of the original
DA by means of improving both its exploitation and its exploration phases in terms of the
algorithm used to improve DA, the way of improvement, the application that they have
been used for, how much the effectiveness of DA is improved, and whether the efficiency
is also improved or not. In the ’Improved effectiveness (%)’ column, the problem for which
this improvement is achieved is shown within parentheses. In the ’way of improvement’
column, the phase and the equations or steps which are improved are shown.

Some of the hybrids of DA which have been proposed increase the effectiveness of
DA by improving both its exploitation and exploration phases. Such hybrids include the
QGDA [16] and EOEDA [21], and these two hybrids of DA also increase its efficiency. An
explanation of these algorithms which is not presented in Table 4 is given next.

The quantum-behaved and Gaussian mutational DA (QGDA) proposed in [16] aims
at improving the effectiveness of DA. It better balances the exploration and exploitation
of DA by expanding the state space and increasing the diversity. The Gaussian mutation
mechanism is used to augment the population diversity and quantum rotation gate is
employed to increase the search space. After the position of a dragonfly is updated by DA,
the guassian mutation and quantum rotation gate are employed to obtain a better position.

The improved DA based on elite opposition learning and exponential function steps,
EOEDA [21], improves the effectiveness and efficiency of DA. It enhances both the ex-
ploration and exploitation of DA so as to prevent the problem of local optimum and to
increase the accuracy and convergence rate. The elite opposition-based learning is incor-
porated to diversify the population by expanding the search scope. In each iteration, the
elite opposition based solution of each dragonfly is found and then the best solutions are
chosen as the population. Moreover, an exponential function step is used to replace the
step length in the step vector, which enhances both the local and global search capability
and accelerates the convergence rate. The position of the dragonflies is then updated using
the modified step vector, which makes use of the exponential function step.

The EOBL [17] algorithm, hybrid improved DA [28] and DA-GA [32], improve both the
exploitation and exploration phases of DA, thereby increasing its effectiveness. However,
the efficiency of these algorithms is lower than that of the original DA. Next, we present an
explanation of these algorithms which is not given in Table 4.

The hybrid DA-DE algorithm with chaotic maps and elite opposition-based learning
(EOBL) [17] improves the effectiveness of DA by better balancing the exploration and
exploitation phases, and by enhancing the initialization of the population. Chaotic maps
and EOBL are first used to provide fitter initial positions for the dragonflies by increasing
the randomness of the population. In the updating phase, differential evolution is employed
as a local search technique to increase the exploitation of DA, thereby improving the
accuracy of solutions. The average fitness of the population is first calculated in each
iteration. Then, for each search agent, if the fitness is less than the average fitness, its
position is updated using the step and position vectors of DA; otherwise, its position is
updated using the mutation, crossover and selection operations of DE.

The hybrid improved DA [28] improves the effectiveness of DA. It aims at balancing
the local and global search capabilities and at enhancing the exploitation of DA. This is
achieved by using dynamic weights; namely, the separation, alignment, cohesion and
enemy weights, which decrease with iterations so as to strengthen the exploration in the
earlier iterations and exploitation during later iterations, thereby balancing the exploration
and exploitation capabilities. Moreover, the exploitation is further enhanced by applying
the approach of quantum optimal solution on the current and optimal solutions. The
improved velocity update formula is given in Table 4, where C1 and C2 are the cognitive
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and social parameters, r1 is a random number in the interval [0,1], Pt
i is the best fitness of

the dragonfly and PG is the best fitness of the population.
The hybrid of DA and genetic algorithm (GA), called DA-GA [32] is proposed to

improve the effectiveness of DA. It balances the global and local searching capabilities of
DA, so as to prevent the local optima problem. The population is divided into two halves.
In the first half of the population, the dragonflies update their positions using DA, and in
the other half, the position of the dragonflies is updated using GA. The new population
then consists of all the dragonflies of which the positions have been updated using DA and
those of which the positions have been updated using GA.

3.4.4. Hybrids of DA Which Improve Its Effectiveness by Improving Initialization

Table 5 shows the hybrids of DA which have improved the effectiveness of the original
DA by means of improving the initialization phase in terms of the algorithm used to
improve DA, the way of improvement, the application that they have been used for, how
much the effectiveness of DA is improved, and whether the efficiency is also improved or
not. In the ’Improved effectiveness (%)’ column, the problem for which this improvement
is achieved is shown within parentheses. In the ’way of improvement’ column, the phase
and the equations or steps which are improved are shown.

Another way by which the effectiveness of the original DA is improved is by improv-
ing its initialization stage. The chaotic DA [9] has employed this method to increase the
effectiveness of DA, and it successfully increases its efficiency as well. Next, we present an
explanation on these algorithms by considering information which is not given in Table 5.

The chaotic DA is proposed in [9] to increase the effectiveness and efficiency of DA by
accelerating the convergence rate and avoiding local optima. Chaotic maps are utilized to
generate the weights for the position update parameters instead of using random initial
values. The weights for the factors used in the step vector, namely separation, alignment,
cohesion, food factor and enemy factor, are then based on chaotic values. This allows the
algorithm to better update the step vector. Hence, the chaotic maps are used for better
adjustment of the dragonflies’ movement through the search space. The modified step
vector is given in Table 5, where B(i) is the value of a chaotic map at the i-th iteration.

The SC-DA algorithm [15] and the hybrid DA-modified conjugate gradient method [18]
improve the effectiveness of the original DA by improving its initialization stage. However,
since improving the effectiveness is their only objective, their efficiency is not considered
or compared to the efficiency of the original DA. An explanation of these algorithms which
is not given in Table 5 is presented next.

The chaotic DA based on sine-cosine mechanism (SC-DA) [15] is proposed to improve
the effectiveness of DA by improving its accuracy. The singer chaos theory is first used
for better initializing the position of the population, and then the sine-cosine mechanism
is used to update the position of the artificial dragonflies in every iteration. The position
update formula is given in Table 5, where d2 is a random number between 0 and 2π, d3
and d4 are random numbers in the interval [0,1], d is based on the number of iterations, d is
the threshold which is set at 0.5, and Wt

i is the position of the best solution.
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Table 4. Hybrids of DA which improves its effectiveness by improving both exploitation and exploration.

Algorithm Algorithm Used Way of Improvement
Application Improved Effectiveness (%) Efficiency

for Hybridisation Phase Equation/Step

Quantum behaved and
Gaussian mutational DA

(QGDA) [16]

Gaussian Mutation
Mechanism and Quantum

Rotation Gate

Exploration and
Exploitation

Steps to be improved:
Lines 11 and 13 from Algorithm 1

Steps added (After line 14 in Algorithm 1):
Update position of dragonfly using Gaussian

mutation
Perform quantum gate operation

CEC 2014 benchmark
functions 99.9% (function f1) Improved

Improved DA based on elite
opposition learning and

exponential function steps
(EOEDA) [21]

Elite Opposition Learning
and Exponential Function

Steps

Exploration and
Exploitation

Equation to be improved: (7)
Modified equation:

Xt+1
i = Xt

i + (rand− 0.5).2rand.∆Xt+1
i

Step to be improved:
Line 11 from Algorithm 1

Step added (After line 14 in Algorithm 1):
Generate elite opposition solution of new

solution
Compare new solution and elite opposition

solution and select the best one

Numerical optimization of
standard functions 100% (function f1) Improved

Hybrid DA-DE algorithm
with chaotic maps and elite

opposition-based
learning [17]

DE, Chaotic Maps and
Elite-Opposition based

Learning

Exploration and
Exploitation

Steps to be modified:
Line 11 and 13 from Algorithm 1

Steps added (After lines 11 and 13 in
Algorithm 1):

Evaluate fitness of dragonfly
Compute average fitness of population

If fitness of dragonfly is greater than average,
apply mutation, crossover and selection

operations of DE

Multilevel thresholding
image segmentation

0.037% (’bridge’ image
using Otsu’s method)

Lower
efficiency

Hybrid improved DA [28]
Approach of Quantum

optimal solution and Use of
Dynamic weights

Exploration and
Exploitation

Step to be improved:
Line 6 from Algorithm 1

Modified step:
Update weights using

ft = Init(1− 1
1+e−0.1(t−50) )

Equation to be improved: (6)
Modified equation:

∆Xt+1
i = (sSi + aAi + cCi + f Fi + eEi)+

w∆Xt
i + C1r1(MPt

i ) ∗ ln(1/u)
+C2(1− r1)(PG − Xt

i )

Feature selection 2.5% (’Arrhythmia’ dataset) Lower
efficiency
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Table 4. Cont.

Algorithm Algorithm Used Way of Improvement
Application Improved Effectiveness (%) Efficiency

for Hybridisation Phase Equation/Step

Hybrid DA and GA
(DA-GA) [32] Genetic Algorithm (GA) Exploration and

Exploitation

Step to be improved:
Line 11 and 13 from Algorithm 1

Added and modified steps (After line 4 in
Algorithm 1):

Divide population in half
Update position of first half using DA

Update position of second half using GA
Form new population by taking both halves

Optimal power flow
problem

0.084% (line outage between
buses 6 and 26 in the 38 bus

RDS)

Lower
efficiency

Table 5. Hybrids of DA which improve its effectiveness by improving initialization.

Algorithm Algorithm Used Way of Improvement
Application Improved Effectiveness (%) Efficiency

for Hybridisation Phase Equation/Step

Chaotic DA [9] Chaos theory Initialization

Step to be improved:
Line 6 in Algorithm 1

Step added (before line 6 in Algorithm 1):
Calculate the value of chaotic map

Equation to be improved: (6)
Modified equation:

∆Xt+1
i = (B(i)Si + B(i)Ai + B(i)Ci+

B(i)Fi + B(i)Ei) + B(i)∆Xt
i

Feature selection 18.1% (’Irritant effect’
dataset) Improved

DA with opposition-based
learning (OBL) [13]

Opposition-based learning
(OBL) Initialization

Step to be improved:
Line 1 in Algorithm 1

Step added (After line 1 in Algorithm 1):
Compute the opposite of each solution using

OBL
Select the fitter solution to form the initial

population

Multilevel thresholding
colour image segmentation 0.93% No change

Hybrid
DA-Opposition-based

learning [23]

Opposition-based learning
(OBL) Initialization

Step to be improved:
Line 1 in Algorithm 1

Step added (After line 1 in Algorithm 1):
Compute the opposite of each solution using

OBL
Select the fitter solution to form the initial

population

Real parameter function
optimization 93.4% (function f1) No change
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Table 5. Cont.

Algorithm Algorithm Used Way of Improvement
Application Improved Effectiveness (%) Efficiency

for Hybridisation Phase Equation/Step

Hybrid DA-DE algorithm
with chaotic maps and elite

opposition-based
learning [17]

DE, Chaotic Maps and
Elite-Opposition based

Learning
Initialization

Step to be improved:
Line 1 in Algorithm 1

Modified step:
Generate initial population using chaotic

maps
Generate elite opposition population
Select the best positions as the initial

population

Multilevel thresholding
image segmentation

0.037% (’bridge’ image
using Otsu’s method)

Lower
efficiency

Chaotic DA based on
sine-cosine mechanism

(SC-DA) [15]

Chaos theory and
Sine-Cosine Mechanism Initialization

Step to be improved:
Line 1 in Algorithm 1

Modified step:
Generate initial population using singer

chaos
Equation to be improved: (7)

Modified equation:
Xt+1

i ={
Xt

i + d1sin(d2)|d3Wt
i − Xt

i |, d4 < d
Xt

i + d1cos(d2)|d3Wt
i − Xt

i |, d4 ≥ d

Numerical benchmark
functions 83.3% (’Sphere’ function) Not considered

Hybrid DA-Modified
Conjugate Gradient [18]

Modified Conjugate
Gradient Method Initialization

Step to be improved:
Line 1 in Algorithm 1

Modified step:
Generate initial population using Modified

Conjugate Gradient

Standard numerical
functions 29.2% (function F5) Not considered
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The hybrid DA-modified conjugate gradient method [18] improves the effectiveness
of DA by generating a better initial population. The modified conjugate gradient method
is employed to generate the initial positions for the population of artificial dragonflies, and
then the dragonfly algorithm is applied for updating their positions.

The DA with opposition-based learning (OBLDA) [13], hybrid DA-DE algorithm with
chaotic maps and elite opposition-based learning [17] and hybrid DA-opposition-based
learning [23], which have been discussed earlier, also improve the effectiveness of the
original DA by means of improving its initialization stage. However, these hybrids of DA
do not increase its efficiency. The efficiency of OBLDA [13] and hybrid DA-DE algorithm
with chaotic maps and elite opposition-based learning [17] are the same as the original DA,
while that of the hybrid DA-opposition-based learning [23] is lower than the original DA.

4. Applications of DA and Hybrids

Both the original DA, BDA and MODA and their hybrids have been applied to
numerous applications in a variety of areas. These applications are presented in this section
based on their respective domains.

Table 6 shows the applications of DA and its hybrids in different domains.
Based on Table 6, it can be seen that the dragonfly algorithm is useful in various

domains. It has been applied predominantly in the field of machine learning, electrical
engineering, optimal design, numerical optimization, and digital image processing. It also
has numerous applications in networking, resource allocation, and mechanical engineering.

Table 6. Applications of DA and its hybrids in different domains.

Domain Applications

Optimal Design [8,10–12,15,16,31,34–36]
Electrical Engineering [29,32,37–50]

Networking [24,51–55]
Mechanical Engineering [56]

Machine Learning [57–62],[9,16,19,25–28,63–68]
Resource Allocation [22,30,69–71]

Digital Image Processing [72–76],[13,17,20]
Numerical Optimization [8,10,11,14–16,18,21,23]

Other Applications [77–79]

4.1. Optimal Design

The Dragonfly Algorithm and its hybrids have been used for optimal designs, by
either optimizing an objective function or optimizing certain parameters. In [34], DA is
used to determine the optimal set of array parameters for the concentric circular antenna
array (CCAA), so as to minimize the maximum sidelobe level (MSL) of the radiation
pattern. In [35] , DA is used in the optimal design of infinite impulse response (IIR) to
get the optimal set of filter coefficients by minimizing the cost of an objective function
and in [36], it is used in the orthotropic infinite plates optimization for optimization of the
parameters of the stress analysis of perforated orthotropic plates.

The hybrids of DA have also been used for optimal designs. The MHDA algorithm [8],
the modified DA using Brownian motion [10] and hybrid DADE [11] have been used for
the welded beam design problem, which consists of minimizing the fabrication cost by
obtaining an optimal set of structural parameters of the beam. Moreover, the Coulomb
force search strategy-based DA [12] has been applied to the bucket wheel reclaimer (BWR)
optimization to determine the optimal parameters to optimize the structure of a BWR and
to a 25 and a 72-bar space truss structure problem, Chaotic DA based on sine-cosine mecha-
nism (SC-DA) [15] has been used for the cantilever beam design problem to optimize the
parameters of the beam, such that its weight is minimized and Hybrid DA-DE (IEDA) [31]
has been used for the optimal design of a hybrid power active filter. The quantum-behaved
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and Gaussian mutational DA (QGDA) [16] has been used for the the welded beam design
problem, the multiple disk clutch brake design problem and I-beam design problem.

4.2. Electrical Engineering

In the field of electrical engineering, DA and its hybrids have been used for various
problems, most of which are related to power systems. In [37], DA has been applied to the
economic load dispatch problem in power systems, which consists of minimizing the gener-
ation cost while satisfying constraints such as ramp rate, demand and generator operating
limit; in [38], it has been applied to the static economic dispatch problem incorporating
solar energy; in [39], it has been applied to the combined economic emission dispatch prob-
lem, and in [40], it has been applied to the dynamic economic dispatch problem. In [41,42],
DA has been applied to the automatic generation control problem to optimize the gains
of the controller. Furthermore, DA has been used in power transmission systems [43] for
optimizing the size and cost of static var compensator, in PV panel [44] to maximize the
tracking of solar power, in photovoltaic system [45] to track the global maximum power
point (GMPP) and in Photovoltaic-biomass system [46] to find the optimal size and cost
of grid-integrated renewable energy resources. DA has also been applied to the optimal
reactive power dispatch problem for minimization of the power loss in transmission lines
in [47] and to the load frequency control of electric power generating system to tune the
gains and fractional order parameters of the controller in [48].

The multi-objective version of DA, MODA has been applied to wind-solar-hydro
power scheduling in [49] to provide an optimal scheduling model and to multi-objective
optimal power flow problem in [50] for minimizing total fuel cost, real power loss, total
emission, and voltage deviation.

The hybrid DA-PSO [29] has been used for the multiobjective optimal power flow
problem to optimize selected objective functions, while satisfying a set of equality and
inequality constraints and the hybrid DA-GA [32] has been applied to optimal power flow
problem to compute the locational marginal prices (LMP) for improved reliability.

Figure 7 shows how the dragonfly algorithm is used for solving the automatic genera-
tion control problem in [41] by optimizing the parameters of the fuzzy PID controller.

Figure 7. Optimization of fuzzy PID controller using DA [41].

4.3. Networking

In the field of networking, DA has been employed to choose the most optimal cluster
heads in a radio frequency identification (RFID) network in [51,52]. In [53], it has been
used for the range-based wireless node localization to obtain the location of nodes in a
network which are randomly deployed over a designated area. DA has also been applied
in the internet of vehicles to optimize the cluster-based packet route in [54].

The binary version of DA, BDA, has been applied to an optimal network power
expansion planning to minimize the costs involved in the development of the network
in [55].

The hybrid DA-FA algorithm [24] has been used for the wireless sensor networks
localisation problem to locate unknown nodes using known position of anchor node.
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Figure 8 depicts how the dragonfly algorithm is applied in RFID networks for the
optimal cluster head selection and formation by using the separation, alignment, and
cohesion techniques of DA.

Figure 8. Cluster head selection in RFID network using DA [52].

4.4. Mechanical Engineering

In the field of mechanical engineering, the multi-objective version of DA, MODA, has
been applied in the grinding process to maximize the final surface quality and minimize
the cost and total process time in [56].

4.5. Machine Learning

DA and its hybrids have been used for various machine learning applications. DA
has been used for the training of a multi-layer perceptron (MLP) in [57,58], which are then
used for analysing the bearing capacity of a two-layered soil and for the classification of
sonar target with high accuracy, respectively. It has also been applied for optimization
of the parameters of support vector machines (SVM) in [59–62], which are then used for
classification, regression, prediction and prediction, respectively. Moreover, DA has been
used for the training of artificial neural networks (ANN). In [63], it is used to speed up the
training process of an ANN used for MRI brain image classification. In [64], DA is used
for minimizing the mean square error (MSE) during the training of an ANN, and in [65],
it is used to determine the optimal parameters of a long and short-term memory neural
network. It has also been applied to an extreme learning machine (ELM) prediction to
optimize the weights and biases, and to minimize the number of nodes in the hidden layer
in [66].

The binary version of DA, BDA, has been used in feature selection to obtain an optimal
subset of features in [67,68].

In [9], the chaotic DA has been used in feature selection for minimizing the size of the
selected features, so as to maximize classification performance. Hyper learning BDA [27],
quantum-behaved and Gaussian mutational DA (QGDA) [16] and the hybrid improved
DA [28] have also been used in feature selection to obtain an optimal subset of features.
The hybrid DA-ABC [25] and hybrid Nelder–Mead algorithm and DA [26] have been
used for the training of a multilayer perceptron to obtain the most optimal weights and
biases for the MLP. Furthermore, improved DA (IDA) [19] has been applied to optimise the
parameters for a support vector machine which was used for prediction.

Figure 9 shows how the dragonfly algorithm is used for the training of an MLP in [58],
which is then used for the classification of solar targets. DA optimizes the weights and
biases of the MLP by using the mean square error (MSE) as the objective function.

Figure 9. Training of MLP using DA [58].
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4.6. Resource Allocation

DA and its hybrids have also been applied for optimal resource allocation. In [69], DA
is used for the optimal resource allocation in cloud computing by optimizing parameters
like load balance, execution time and response time for optimal allocation of resources to
tasks and to establish load balance. In [70], it has been used to optimally allocate generators
and capacitors in a distribution system, and in [71], it has been used for the distributed
generation (DG) placement in distributed networks to obtain the optimal DG units size
and placement.

The hybrid modified DA and whale optimization [30] were applied to the optimal
scheduling of microgrid with islanding constraints. In [22], the hybrid DA-simulated
annealing is applied to the flexible flow-shop scheduling to optimize the online sequence
for better scheduling.

4.7. Digital Image Processing

DA and its hybrids have also been useful in the domain of digital image process-
ing. DA has been applied to medical image watermarking [72] and to medical image
registration [73] to determine the most effective pixel that follows an objective function,
and to determine the optimal transformation parameters respectively. It has also been
used in 3D magnetic resonance imaging as a search method in the level set technique
in [74]. In [75], DA is applied to multi-level thresholding for image segmentation to find
the optimal thresholds.

The binary version of DA, BDA, has been applied to color visual cryptography in [76]
to find the optimal color levels for the encryption process.

The hybrids of DA, namely DA with opposition-based learning [13], hybrid DA-DE
with chaotic maps and elite opposition-based [17] and hybrid DA-DE [20] have been used
for multilevel thresholding image segmentation to determine the optimal threshold values.

4.8. Numerical Optimization

Some of the hybrids of DA have only been used for numerical optimization, usu-
ally by using some benchmark functions such as the CEC 2017 benchmark functions to
determine the optimal values for the functions. These hybrid algorithms include BMDA
(biogeography-based and Mexican hat wavelet DA) [14], Hybrid DA-modified conjugate
gradient method [18], improved DA based on elite opposition learning and exponential
function steps [21], and hybrid DA-opposition-based learning [23].

The MHDA algorithm [8], modified DA algorithm using Brownian motion [10], hy-
brid DADE [11], chaotic DA based on sine-cosine mechanism (SC-DA) [15] and quantum-
behaved and Gaussian mutational DA (QGDA) [16] have been used for numerical opti-
mization, in addition to other applications.

4.9. Other Applications

Apart from the applications mentioned in the previous sections, DA has been applied
to the vehicle routing problem with time window constraints (VRPTW) in [77] to find an
optimized route and to the open loop nonlinear dynamic systems control in [78] to find the
optimal parameters.

BDA has been applied to solve the 0–1 knapsack problem in [79].

5. Discussion, Challenges and Future Directions

The dragonfly algorithm and its hybrids are useful in various domains, and they have
a multitude of applications. In several applications, it has been noted that DA and its
hybrids have a higher performance in comparison to other swarm intelligence algorithms.
However, they also have some limitations.

In Section 5.1, we discuss the performance of DA in terms of effectiveness, as compared
to other swarm intelligence algorithms in multiple applications. In Section 5.2, we discuss
its performance in terms of efficiency as compared to other swarm intelligence algorithms
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in various applications. In Sections 5.3 and 5.4, the limitations of the dragonfly algorithm
and some possible solutions to improve its performance in terms of effectiveness and
efficiency respectively are provided. In Section 5.6, some of the limitations of the hybrids
of DA that have been proposed to enhance the performance of DA are presented. In
Section 5.7, the prospect for having different versions for the hybrids of DA is discussed.

5.1. Effectiveness of DA

The dragonfly algorithm has a higher effectiveness; that is, it provides better solutions
than numerous swarm intelligence algorithms for several applications that it has been used
for. For example, in [34], DA provides better solutions than symbiotic organisms search
(SOS), evolutionary programming (EP), biogeography-based optimization (BBO), uniform
array, sequential quadratic programming (SQP), firefly algorithm (FA), opposition-based
gravitational search algorithm (OGSA), and cat swarm optimization (CSO), and in [38], it
provides better solutions than genetic algorithm (GA), biogeography-based optimization
(BBO), particle swarm optimization (PSO), and differential evolution (DE). In [68], the
binary version of DA, that is, BDA, provides better results than GA, binary bat algorithm
(BBA), binary PSO, binary gray wolf optimizer (BGWO) and binary gravitational search
algorithm (BGSA), and in [79], it provides better results than harmony search, cohort
intelligence algorithm, binary cuckoo search, quantum-inspired cuckoo search, and PSO.
In [56], the multi-objective version of DA, that is MODA, provides better solutions than
the non-dominated sorting genetic algorithm (NSGA-II), and in [49], it provides better
solutions than NSGA-III.

To provide a comparison between the effectiveness of DA and some other swarm
intelligence algorithms, the results provided by DA, PSO, grey wolf optimizer (GWO) and
whale optimization algorithm (WOA) in solving some test functions are given in Table 7.
The benchmark test functions, TF1 to TF13, are taken from [2]. The results provided by DA
and PSO in solving the test functions are also taken from [2]. However, the results obtained
by GWO and WOA are based on our own experiments. Table 7 shows the average cost
of the objective function obtained by DA, PSO, GWO and WOA for test functions TF1 to
TF13. The maximum number of iterations for all algorithms is kept at 500, and the number
of search agents is kept at 30.

Table 7. Results provided by the algorithms for test functions.

Test Function Average Cost of Objective Function
DA PSO GWO WOA

TF1 2.85E-18 4.2E-18 6.1914E-57 3.9083E-75

TF2 1.49E-05 0.003154 3.126E-33 1.6851E-52

TF3 1.29E-06 0.001891 1.0428E-23 243.9508

TF4 0.000988 0.001748 1.2987E-18 3.5743

TF5 7.600558 63.45331 6.8427 17.2376

TF6 4.17E-16 4.36E-17 0.031252 0.0012727

TF7 0.010293 0.005973 0.00060573 0.0036346

TF8 −2857.58 -7.1E+11 −2645.1694 −3232.574

TF9 16.01883 10.44724 0.8731 2.0739

TF10 0.23103 0.280137 8.2305E-15 4.9146E-15

TF11 0.193354 0.083463 0.023527 0.034195

TF12 0.031101 8.57E-11 0.0032059 0.37982

TF13 0.002197 0.002197 0.010053 0.031895
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From Table 7, it can be seen that, for some of the test functions, DA provides better
results than PSO, GWO, and WOA. For example, for test functions, TF1, TF2, TF3, TF4,
TF5, and TF10, DA provides better results than PSO, for test functions TF6, TF8, and TF13,
DA provides better results than GWO, and for test functions TF3, TF4, TF5, TF6, TF12 and
TF13, DA provides better results than WOA. However, for some test functions, PSO, GWO,
or WOA provide better results than DA.

5.2. Efficiency of DA

In terms of efficiency, DA has a higher efficiency; that is, it has a higher convergence
rate in some applications as compared to other swarm intelligence algorithms. However,
this is not the case for all the applications. For example, in [37], DA has a higher convergence
rate in comparison to crow search algorithm, particle swarm optimization, biogeography-
based optimization, ant lion optimizer, genetic algorithm and oppositional real-coded
chemical reaction optimization. In [55], BDA has a lower execution time than GA and Tabu
Search. In [49], MODA has a higher convergence rate than NSGA-III. However, in [35],
DA has a lower convergence rate than particle swarm optimization (PSO), cat swarm
optimization (CSO) and bat algorithm (BA), and in [73], it requires more computing time
than artificial bee colony (ABC) and PSO.

5.3. Limitations of DA—Effectiveness
5.3.1. Low Exploitation

DA has a high exploration which is beneficial for exploring the search space and
finding promising regions. However, it has a low exploitation, which can lead to low
accuracy of solutions. This limitation can be circumvented by increasing the exploitation of
DA. Local search algorithms including direct search methods can be integrated as a local
search in DA to increase its exploitation. Other swarm intelligence algorithms with a high
exploitation can also be used as a local search to improve the exploitation of DA.

5.3.2. Local Optima

Although DA has a good global search which is beneficial for avoiding local optima,
it can still encounter the problem of falling in local optima, and hence the global optimum
solution cannot be found. This possibility can be avoided by integrating techniques in the
dragonfly algorithm, which will enable it to identify when the population is stuck in a local
optimum and to allow the artificial dragonflies to get out of the local optimum.

5.3.3. Low Accuracy of Solutions

DA can sometimes provide solutions with low accuracy. Although this can be avoided
by overcoming the low exploitation of DA, other techniques can also be employed to
increase its accuracy. For example, methods to generate better initial positions for the
artificial dragonflies in the search space can be used. This will allow the population to have
a better search, and consequently find solutions with a high accuracy.

5.4. Limitations of DA-Efficiency

In some applications such as in [35,73], it is found that DA has a lower efficiency as
compared to other swarm intelligence algorithms; that is, it requires more time to converge
to the global optimum solution.

The convergence rate of DA can be increased so as to increase the efficiency of the
algorithm. Techniques to increase its convergence rate include methods to better update
the velocity and position of the dragonflies in the search space and to accelerate the global
and local search.

5.5. Way of Improvement of the Hybrids of DA

Most of the hybrids focus on improving the exploitation phase of DA, such as the
MHDA [8], Coulomb force search strategy-based DA [12], DA-FA [24], hybrid DA and
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Nelder–Mead algorithm (INMDA) [26], and other hybrids, as shown in Figure 6 and
Table 2. This is because DA has a quite good exploration phase, but its exploitation is
limited. Hence, these hybrids make use of the exploration of DA and they enhance its
exploitation. This is usually done by adding equations after the position has been updated
by DA to further improve the position.

Some of the hybrids which have been proposed, such as hybrid DADE [11], DA-
ABC [25], HLBDA [27] and others, as shown in Figure 6 and Table 3, improve the explo-
ration phase of DA. This is to allow the algorithm to search through more different regions
of the search space, thereby increasing the chance of finding the region of the global optimal
solution. This is usually done by modifying the equations or adding some equations or
steps while updating the position of the search agents.

Another way in which some the hybrids improve the performance of DA is by improv-
ing its initialization stage such as the chaotic DA [9], DA with opposition-based learning
(OBL) [13], hybrid DA-opposition-based learning [23] and other algorithms shown in
Figure 6 and Table 5. This is done so as to use some methods to generate the initial posi-
tions of the search agents instead of using random initial positions. By generating better
initial positions, the positions of the search agents will be updated in a better way in the
subsequent iterations.

5.6. Limitations of the Hybrids of DA

The hybrids of the dragonfly algorithm are all more effective than the original DA;
that is, they provide better solutions than the original DA and some of the hybrids are
more efficient than the original DA; that is, they have a higher convergence rate. However,
some of the hybrids still have certain limitations.

The hybrid DA-DE with chaotic maps and elite opposition-based learning [17], the
hybrid DA-simulated annealing [22], the hybrid DA-PSO [29], hybrid DA-DE [31] and
hybrid DA-GA [32] all have a lower convergence rate than DA.

The hybrid improved DA [28] has a high computational complexity and lower conver-
gence rate than BDA. The MHDA [8] has a high computational complexity.

Moreover, the chaotic DA [9] has a low stability, since a lot of parameters are used
in the position update, along with their corresponding weights. The modified DA using
Brownian motion [10] still has the possibility of getting stuck in local optima, and the
communication between the dragonflies might be reduced, which will restrict discovery.

5.7. Nature of Problem

The dragonfly algorithm has three versions: one for continuous and single-objective
problems, one for binary and single-objective problems, and one for continuous and multi-
objective problems. However, we found that most of the hybrids that have been proposed
cater for only one type of problem. Hence, the other versions of these hybrid algorithms
can be proposed so as to allow them to be used for solving different types of problems,
including continuous problems, binary or discrete problems, and multi-objective problems.

6. Conclusions and Future Work

The dragonfly algorithm, a recently proposed swarm intelligence algorithm, has
been applied in numerous applications, and it is shown to have a higher performance as
compared to other swarm intelligence algorithms.

There exists only a few surveys about DA, its applications and its hybrids and they
are limited in certain aspects. For example, there is no analysis of the limitations of the
proposed hybrids of DA and no categorization of the hybrids according to the type of
problem that they have been applied to, their objective, or the method that they employ to
achieve their objective.

In this paper, we present a survey on the dragonfly algorithm, particularly focusing on
its applications and hybrids. A background on DA is first presented, followed by a review
of its hybrids categorized by the type of problem that they have been applied to. The
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performance of the hybrids is then analyzed in terms of effectiveness and efficiency and the
method that has been utilized. The applications of both the original DA and the hybrids
are then presented and a discussion on their performance is given. Some challenges of the
dragonfly algorithm and future directions are also given.

From the review of the dragonfly algorithm, it can be deduced that DA is useful in
numerous applications, and it has a higher performance in comparison to other swarm
intelligence algorithms. Nonetheless, it has some limitations which can be improved, and
the existing hybrids also have certain limitations. Hence, new methods can be proposed to
enhance both the effectiveness and the efficiency of the dragonfly algorithm.

For future work, the performance of the hybrids of DA can be compared to that of
the hybrids of other swarm intelligence algorithms in general. Moreover, hybrids of other
swarm intelligence algorithms, which have employed similar techniques as the hybrids of
DA to improve the original algorithms, can be compared. Hybrids of the binary DA can
be compared to the hybrids of other binary or discrete algorithms. Similarly, hybrids of
the multi-objective version of DA can be compared to the hybrids of the multi-objective
version of other algorithms. Furthermore, all the hybrids can be applied on a common
benchmark problem, so that their performance in solving the same benchmark problem
can be compared.
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