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Abstract: Nowadays, there are different kinds of public knowledge bases for cyber security vul-
nerability and threat intelligence which can be used for IoT security threat analysis. However, the
heterogeneity of these knowledge bases and the complexity of the IoT environments make network
security situation awareness and threat assessment difficult. In this paper, we integrate vulnerabilities,
weaknesses, affected platforms, tactics, attack techniques, and attack patterns into a coherent set
of links. In addition, we propose an IoT security ontology model, namely, the IoT Security Threat
Ontology (IoTSTO), to describe the elements of IoT security threats and design inference rules for
threat analysis. This IoTSTO expands the current knowledge domain of cyber security ontology
modeling. In the IoTSTO model, the proposed multi-source knowledge reasoning method can per-
form the following tasks: assess the threats of the IoT environment, automatically infer mitigations,
and separate IoT nodes that are subject to specific threats. The method above provides support to
security managers in their deployment of security solutions. This paper completes the association of
current public knowledge bases for IoT security and solves the semantic heterogeneity of multi-source
knowledge. In this paper, we reveal the scope of public knowledge bases and their interrelationships
through the multi-source knowledge reasoning method for IoT security. In conclusion, the paper
provides a unified, extensible, and reusable method for IoT security analysis and decision making.

Keywords: IoT security; threat analysis; ontology; knowledge reasoning; inference rules

1. Introduction

With the development of the Internet of Things (IoT), the massive deployment of
IoT devices and the popularization of IoT technology have facilitated people’s lives [1].
As many organizations transform their devices to adopt IoT-connected technologies, it is
estimated that there will be more than 40 billion IoT devices by 2027, with the potential
value of the IoT going up to USD 11 trillion by 2025 [2]. However, the hidden security
issues of the IoT are gradually emerging. Recent years have witnessed some of the largest,
most sophisticated, and most severe cyber attacks, such as the SolarWinds attack [3] and the
NetSarang malicious code attack [4], which affected millions of consumers and thousands
of businesses. The in-depth integration of informatization and industrialization, such as the
industrial control network of the mining, electric, and chemical industries, or the internal
network of government, military, finance, etc., have all gradually developed from mutually
independent and closed networks to interconnected and open ones [5]. The traditional
boundary between the internal and the external networks is gradually being blurred, which
consequently introduces ubiquitous network security risks. The integration of industrial
control devices and network technology into the IoT environment eliminates the internal
and external security boundaries of the industrial environment. Industrial control network
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devices do not only have security risks such as those affecting the security of software and
hardware on the transmission link and the blurring of network protection boundaries, but
they are also exposed to new threats such as a stepping attack, data sniffing, blockage, and
eavesdropping within the IoT Cloud platform service. Hence, IoT security is challenging.
Attacks on IoT devices are becoming more intelligent and diversified. Meanwhile, with
massive numbers of IoT devices accessing the Internet, the interaction of heterogeneous
information and rapid changes in the network structure have further expanded the scope
of attacks and have led the IoT environment to continuously generate new weaknesses
and threats [6]. When new threats are encountered, traditional security intrusion detection
and response technologies cannot adapt to the attacks faced by IoT security. Security
Information and Event Management (SIEM) and Security Operation Center (SOC) [7] also
have limitations. Their mechanisms are often built on heuristic and static attack signatures
and cannot detect new variants of attacks [8]. However, IoT systems are vulnerable to
new families of attacks that could exploit the attack surfaces of devices and their network
protocols. The SIEM system has a lack of security considerations for protecting their
heterogeneous and complex devices and systems. IoT security requires an effective method
to intelligently respond to security intrusions.

A variety of intelligent reasoning technologies can be used to recognize threats to
the IoT. For example, the reasoning technology and semantic-web technology based on
ontology [9], and the text mining and malicious code detection technology based on Natural
Language Processing (NLP) [10,11]. However, due to the heterogeneity and complexity
of the IoT, it is very difficult to create procedures for global security status detection and
threat awareness in the IoT system. There are still challenges to security management and
threat analysis within the IoT system.

This paper proposes a multi-source knowledge reasoning method for IoT security. We
integrate knowledge to solve the semantic heterogeneity of multi-source knowledge by
analyzing the characteristics of the security knowledge base for the IoT. In addition, we
model an ontology to describe the elements of IoT security threats and design inference
rules for threat analysis. This method can perceive the security status within the IoT
environment and automatically infers mitigations to improve the threat response capability
of the system.

Our contributions in this paper are as follows:

• We extracted the relationship between the entries of the IoT security public knowledge
bases for knowledge integration, and the relationship mapping link graph model is
constructed to provide support for the assessment of threat elements that affect IoT
security;

• An IoT security threat ontology framework is proposed to describe the correlation of
threat objects. The framework expands the current knowledge domain of network
security ontology modeling and can provide a wider sense of security status;

• This paper proposes a reasoning method based on the multi-source knowledge of IoT
security, which can perceive highly vulnerable platforms in the IoT environment and
automatically respond to threats.

The remainder of the study is organized as follows: Section 2 discusses the literature
review. Section 3 presents in-depth information on the IoT security multi-source knowl-
edge base. Section 4 presents information on the methodology used in developing the
proposed framework. After this, we formalize the classes of the proposed ontology model.
Section 5 presents several scenarios to further illustrate the feasibility and effectiveness of
the proposed model. Finally, we conclude the whole paper in Section 6.

2. Related Work

At present, there has been a lot of basic research around vulnerabilities and latent
threats. Network security experts can formulate defense strategies, skills, and operations by
using public structured description language and public cyber security knowledge bases.
The literature analysis conducted suggests that there are several initiatives providing sup-
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port for IoT threat analysis, predominantly through the use of threat modeling [12–14],
knowledge graph [15], and graph theory [16] technologies. Syed et al. [12] integrated
heterogeneous data, knowledge models, and common network security standards for
information sharing and exchange from different network security systems. They built a
unified cyber security model called Unified Cybersecurity Ontology (UCO), which sup-
ports information integration and network situation awareness. Abbas et al. [13] applied
the STRIDE threat modeling method to the smart autonomous vehicular system and smart
home, which identifies and mitigates threats that may lead to phishing attacks. Huang
et al. [14] employed the anonymity of blockchain to protect identity information in threat
intelligence. This work used encrypted threat intelligence to construct a complete attack
chain and used a blockchain-based threat intelligence sharing framework for correlation
analysis. Kiesling et al. [15] designed an evolving cyber security knowledge graph by
integrating and linking critical information from multiple public knowledge bases such
as vulnerabilities, weaknesses, and attack patterns; they also provided use cases for vul-
nerability assessment and sample queries for intrusion detection. Tian et al. [16] used the
graph theory to model the network structure based on the complex characteristics of the
network structure on the Internet. They also calculated the security situation of network
nodes based on threat propagation, which can quantify the boundary link relationship of
security protection.

However, the current research has not formally described the relationship between
the core concepts of IoT security, which are unable to define inference rules because the
research on threat analysis has not yet been improved to the semantic level. In this paper,
we integrate the heterogeneous, multi-source knowledge bases for cyber security and
uniformly represent the data in a graph; this graph will provide support for the next
work on knowledge inference through the context of semantic information from different
knowledge bases.

Ontology is used to describe information objects and support the sharing and reusing
of domain knowledge. In Computer Science, an ontology is a formal description of concepts
and relationships for an application domain of the real entity. A central aspect is the sharing
of knowledge and information with the use of a common vocabulary, as supported by the
Resource Description Framework (RDF). Ontology modeling is a means to formally model
the structure of a system, which is useful for Cyber Threat Intelligence (CTI) analysis. At
present, researchers have developed the open ontology for the security of IoT ecosystem
elements [17–20], relating them with existing security concepts, primitives, weaknesses,
vulnerabilities, and practices [21–24]. Researchers have conducted in-depth research on
CTI analysis and ontology modeling in cyber security. Jia et al. [17] built a cyber security
ontology based on assets, vulnerabilities, and attacks; they proposed a practical method for
constructing a cyber security knowledge graph, and inferred new rules based on the five-
tuple model of the cyber security knowledge base. Rastogi et al. [18] designed a malware
ontology called MALOnt, which contained concepts such as malware characteristics, attack
behavior, and detailed information about the attacker. It supported the collection of
intelligence on malware threats from different online sources, and built a knowledge graph
framework based on MALOnt. Mozzaquatro et al. [23] proposed an IoT network security
framework for knowledge reasoning. It integrated knowledge on known network security
issues (e.g., vulnerabilities and known threats) and the corresponding preventive measures
into IoTSec [19] ontology. It enabled the security system to automatically detect threats
to the IoT and to dynamically propose or implement the appropriate protection services.
Choi et al. [20] proposed a security service framework that could be used in the power IoT-
Cloud environment by analyzing the security vulnerabilities of the power system in that
environment and by modeling the security context ontology. The framework used smart
meters as an example to create an attack scenario in the power IoT, and realized a security
mechanism that could operate effectively in this environment. Si et al. [21] proposed a
knowledge base model of network security situation elements. The model was based on
elements such as vulnerability attributes (e.g., severity of vulnerability, access request,
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result type, and distribution), vulnerability objects (e.g., configuration errors, protocol
vulnerabilities), and constructed the ontology of the network security vulnerability. Li
et al. [22] proposed a general network security parameter classification architecture, which
extended the vulnerability ontology in the host domain based on the type of inheritance
relationship.

Nevertheless, most of the current ontology modeling of cyber security are focused on
vulnerabilities, weaknesses, and attack patterns. The research that combines the attacker’s
Tactics, Techniques, and Procedures (TTP) with vulnerabilities and weaknesses is still in the
exploratory stage. Therefore, it is difficult to perform multi-step attack prediction, threat
analysis, and the follow-up work. The ontology model proposed in this paper expands the
current knowledge domain of cyber security ontology modeling. This model provides a
broader awareness of security status and improves threat response capabilities.

3. IoT Security Multi-Source Knowledge Base

Massive amounts of security information are fragmented and scattered on the Internet.
The public information security knowledge bases maintained by the security organizations
MITRE and NIST have gradually been developed into well-known public industry stan-
dards in cyber security. IoT security research results can be shown and shared through a
set of structured information security description standards and specifications. We data
mined a set of these information sources in order to expand upon their defensive utility in
threat analysis. Well-known public knowledge bases in cyber security that we used in our
work include:

• Common Vulnerabilities and Exposures (CVE) [25];
• National Vulnerability Database (NVD) [26];
• Common Weakness Enumeration (CWE) [27];
• Common Attack Pattern Enumeration and Classification (CAPEC) [28];
• Common Platform Enumeration (CPE) [29];
• Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) matrix [30].

3.1. Data Sources

CVE discloses the exposed vulnerabilities. A vulnerability is defined as a “weakness in
the computational logic (e.g., code) found in software and hardware components that, when
exploited, results in a negative impact on confidentiality, integrity, or availability” [26]. Each
vulnerability in the database has an identification number and a related description defined
by MITRE. NVD provides information about security-related software vulnerabilities,
product configurations, and impact indicators. NVD is built on the CVE list and is fully
synchronized with it as well. NVD provides enhanced information for entries in the
CVE list, such as structured information, severity score, and impact level given by the
Common Vulnerability Scoring System (CVSS) [31]. CVSS is an industry public standard
for evaluating the severity of vulnerabilities. Most vulnerability severity research and
commercial vulnerability management platforms are evaluated based on CVSS. CAPEC
provides a summary of the attack pattern classification and focuses on the attacker’s use of
cyberspace vulnerabilities. Security managers who understand attack patterns are essential
to threat analysis and defense. CPE entries are specifically of interest because cyber security
managers can scan them in order to be alerted to specific targets in their IoT systems.
“Weaknesses are flaws, faults, bugs, and other errors in software and hardware design,
architecture, code, or implementation that, if left unaddressed, could result in systems,
networks, and hardware being vulnerable to attack” [32]. Information on the weaknesses
is summarized by the CWE.

3.2. ATT&CK Matrix

The ATT&CK matrix was first proposed by MITRE in 2013. Through the summariza-
tion and analysis of real observational data and Advanced Persistent Threats (APT) [33],
ATT&CK has gradually developed into a general language for attackers’ behavior descrip-
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tion and a behavior analysis model for the entire life cycle of the attack chain. ATT&CK
abstractly describes a framework composed of sequential network attack tactics, each of
which covers abundant attack techniques. From the perspective of attack detection and
threat analysis, the context information associated with the attack can be further speculated
only when the attack tactics and techniques are clearly defined. ATT&CK persistently
constructs and enriches the attackers’ tactics and techniques in order to help researchers to
master the global attack technique needed to support the assessment and automatically
respond to security intrusions.

Researchers are currently focusing on the feasibility of applying the ATT&CK matrix to
threat analysis. In security intelligence research, vulnerability intelligence, which is mostly
from the perspectives of software, hardware, operating system, and protocol weaknesses,
developed earlier and is more mature [34]. However, threat intelligence mainly collects
external factors related to attackers or attack behaviors [35]. Security managers achieve
timely management and control of threats by integrating threat information and facilitating
the sharing threat information [36]. Apart from the inherent complexity of the IoT, the
heterogeneous information exchange between IoT devices and systems further aggravates
its structural complexity [37]. Researching on vulnerability intelligence has great limitations
in the complex environment of the IoT. Therefore, researchers hope to conduct analyses of
threats in the IoT environment by analyzing and understanding the attackers’ targets and
systemic risks. The ATT&CK matrix can connect threat events and observation data, and
can further open up the link to promote an understanding of the threats [38].

3.3. Knowledge Integration and Relationship Mapping

It is worth noting that Attack Patterns in CAPEC connect the ATT&CK matrix to the
CWE source, functioning as bridges that link a Technique within a Tactic to a CWE entry.
Meanwhile, a CWE entry has a relational link to a CVE entry. The relationship implies that
the Vulnerability is an example of the Weakness. In this paper, we use the Attack Patterns as
bridges that relate a means of attack, i.e., Tactic and Technique, to its targeted Weakness. A
Weakness in CWE can be linked to a Vulnerability in CVE, and it can be linked to a known
affected Platform in CPE. Security researchers can select a particular application, hardware,
or operating system in cyberspace to see which Tactics or Techniques will be affected by
this end-to-end linkage method. Figure 1 illustrates the relational linkage mapping based
on the selected knowledge bases.
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Based on the mapped relationship links, this paper combines the source data and
structural characteristics of each knowledge base, and uses a graph structure to uniformly
represent the data. Each layer represents a different source. The nodes of the graph
represent the entries of the knowledge bases. The internal and external links between the
knowledge bases are retained and represented by the edges of the graph. These edges
are not bi-directional in the source knowledge bases. However, when integrated into the
unified graph structure data, it can be traversed bi-directionally and it is easy to trace the
relationship between different knowledge sources from any node. In a nutshell, ATT&CK
provides the Tactics and Techniques used by attackers on vulnerable systems. CWE, CVE,
and CPE reveal the positions of Weaknesses and Vulnerabilities exploited by attackers in
the IoT. Moreover, CAPEC associates potential attacks with Weaknesses that may become
targets.

4. Ontology-Based Multi-Source Knowledge Reasoning Framework for IoT Security

Attacks on heterogeneous networks are the most prominent in the IoT environ-
ment [39]. The proposed method in the aforementioned section provides links to the
understanding of threats and an overall view of the IoT security status. However, aware-
ness of the network situation in multi-source heterogeneous IoT environments is a challenge.
Ontology plays an important role in solving the semantic heterogeneity of CTI through
the formal description of specific domain knowledge [40,41]. We use the Web Ontology
Language (OWL) [42] to build a unified formal description. Concepts are implemented as
classes, and relationships are implemented as properties. The expressive ability of OWL is
limited to description logic and cannot express uncertain knowledge such as the changes
of events in spatio-temporal and semantic relations. In order to enhance the reasoning
ability of this model, the second half of this paper uses the semantic web rule language
to design inference rules that complement the description ability of ontology. This paper
proposes an IoT security knowledge reasoning model based on semantic ontology and
rule logic. Our vision is to present a novel approach that improves IoT cybersecurity
awareness of situation and focuses on the fusion of multi-source heterogeneous knowledge
and the analysis of vulnerabilities, weaknesses, attack patterns, techniques, and tactics in a
unified knowledge base. This approach will also enable the subsequent security service
provisioning adjusted to the dynamic threat intelligence analysis, hence improving the
security response mechanisms around threat intrusion and IoT assets.

Figure 2 shows the multi-source knowledge reasoning framework for IoT security.
The framework consists of a data and ontology repository and a reasoning engine. The
heterogeneous data of multiple knowledge bases are preprocessed into unified graph data.
The ontology model is constructed based on the integrated knowledge base characteristics
and the external ontology model. In the inference layer, there are inference rules designed
according to a specific IoT environment and applied to threat response modules. The
workflow of the proposed framework is as follows:

1. The multi-source heterogeneous IoT security knowledge is obtained from crawlers
embedded in several knowledge sources. The amount of knowledge is huge and the
structure of the knowledge is different;

2. The crawled multi-source heterogeneous knowledge is integrated into a unified graph
database;

3. The integrated data are mapped into the proposed ontology model through instance
mapping, and the generated instances are integrated into the ontology repository;

4. The inference engine perceives and separates the abnormalities based on the instances
repository and the user-defined inference rules to achieve the goal of automatically
responding to threats.
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We analyzed the characteristics of multiple knowledge bases of IoT security, and we
proposed an IoT Security Threat Ontology (IoTSTO), which was inspired by UCO [12],
IoTSec [19], and VulKG [43]. Furthermore, some concepts were extracted from these works,
but with many details adjusted to make the ontology more suitable for knowledge bases.
For example, we designed classes of tactics and techniques based on the ATT&CK matrix.
The knowledge bases associated with these classes were not involved in the referenced
ontology.

4.1. Classes and Attributes Analysis of IoTSTO

An ontology is a major component of semantic technology used in the modeling of
data. In this paper, the ontology model is used as a bridge that generates services by
conducting the knowledge reasoning for multi-source heterogeneous IoT security data.
We apply an ontology-based reasoning, which is required for clear decision-making and
a quick response to threats occurring continuously in an IoT environment. As shown in
Figure 3, IoTSTO includes five top-level classes: Platform, Vulnerability, Weakness, Attack
Pattern, and Campaign. The classification of classes is based on the previously mentioned
knowledge base hierarchy, but it is different. Platform describes the scene information of
the IoT security event, including the software, hardware, and operating system that may
be affected by the vulnerability. Meanwhile, Platform also contains the product vendor and
version information. Status is a subclass of the Platform, which describes the vulnerability
of the affected platform. Campaign describes a set of malicious activities or attacks that
occur against a set of specific targets over a period of time. Campaign can be expressed
by the tactics, techniques, resources (tools, malware), groups that issued the malicious
activities, and the mitigations that defend the system against this campaign.
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Table 1 shows the level 2 and level 3 class definitions in the IoTSTO. The following
paragraphs are based on the top-level classes of the IoTSTO and introduce various ontology
descriptions of the sub-domains.

Table 1. Level 2 and level 3 ontology class definitions.

Level Class Level Class

2 Platform 3 Status, Platform_Type, Product, Supply_Chain, Vendor, Version
2 Vulnerability 3 CVSS, Impact, Severity

2 Weakness 3 CWE_ID, Modes_Of_Introduction, Weakness_Type, Applicable_Platform,
Weakness_Mitigation, Likelihood_Of_Exploit

2 Attack Pattern 3 CAPEC_ID, Attack_Likelihood, Attack_Mechanism, Attack_Pattern_Mitigation,
Consequence, Prerequisite, Resources_Required

2 Campaign 3 Malware, Mitigation, Tactic, Technique, Threat_Group, Tool, Sub-Technique

4.1.1. Ontology Description of the Platform

The Platform class includes the software, hardware, and operating systems affected
by threats in the IoT environment, and there are corresponding sub-classes and attributes
to describe them. In this paper, we use the ontology language based on description logic
(OWL DL) to represent the classes in the model. For example, using the description logic
to describe the affected Product:

Product ⊆ Platform ∩
∀hasPlatformType.PT (Application∪Hardware∪OperatingSystem)

∃hasSupplyChain. String ∩
∀hasVendor. String ∩
∀hasVersion. Version ∩
∀hasStatus. Status (Normal Vulnerable∪Serious Vulnerable ∪ Critical Vulnerable)

4.1.2. Ontology Description of the Vulnerability

In IoTSTO, the CVSS score describes the possible impact of the Vulnerability instance
and also evaluates the severity of the Vulnerability. Taking vulnerability CVE-2017-7921 as
an example—this vulnerability occurs when an application does not adequately or correctly
authenticate users. Attackers can use token impersonation or session hijacking to escalate
his or her privileges and gain access to sensitive information. CVE-2017-7921 is an instance
of the Vulnerability, which is described as follows:
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Vulnerability (CVE-2017-7921)∩
∀hasSeverity. Severity(Critical) ∩
∀hasAttackVector. AV (Network) ∩
∀hasAttackComplexity. AC (Low) ∩
∀hasPrivilegesRequired. PR (None) ∩
∀hasUserInteraction. UI (None) ∩
∀hasScope. S (Changed) ∩
∀hasConfidentiality. C (High) ∩
∀hasIntegrity. I (High) ∩
∀hasAvailability. A (High) ∩
∃exploitedBy. AttackPattern (Token Impersonation ∪ Session Hijacking)

4.1.3. Ontology Description of the Weakness

In this paper, we introduce the Modes_Of_Introduction to describe how and when to
import this weakness into the IoT environment. The subclass Phase identifies points that
may be imported into the product life cycle. The subclass Note provides typical scenarios
related to a specific import phase. CWE abstracts the weaknesses into 10 categories
according to the relationship between them. Weakness_Type in this paper adopts this kind
of classification method. Improper Authentication is an instance of the Weakness. When an
attacker claims to have a given identity, the software does not prove or insufficiently proves
that the claim is correct or authentic, which is described as follows:

Improper Authentication ⊆WeaknessType (Improper Access Control) ⊆Weakness ∩
∀hasCWE_ID. CWE_ID (CWE-287) ∩
∀hasApplicablePlatform. String ∩
∀hasWeaknessMitigation. String ∩
∀hasModesOfIntroduction. MOI (Phase ∩ Note) ∩
∀hasLikelihoodOfExploit. LOE (High)

4.1.4. Ontology Description of the Attack Pattern

CAPEC divides an attack pattern into nine categories according to the mechanism
used by the attacker when exploiting the vulnerability. In this paper, the Attack Mechanism
adopts this classification method, which includes nine subclasses that correspond to the
classification given by CAPEC. Session Hijacking is an instance of the Attack Pattern; this
type of attack involves an attacker that exploits the weaknesses in an application’s use of
sessions when performing authentication. The attacker is able to steal or manipulate an
active session and use it to gain unauthorized access to the application, which is described
as follows:

AttackMechanism (Session Hijacking) ⊆ AttackPattern ∩
∀hasCAPEC_ID. CAPEC_ID (CAPEC-593) ∩
∀hasAttackLikelihood. AL (High) ∩
∀hasAttackPatternMitigation. String ∩
∀hasConsequence. C (∃Scope ∩ ∃Impact) ∩
∀hasPrerequisite. String ∩
∀hasResourcesRequired. String

4.1.5. Ontology Description of the Campaign

Compared with an attack, a campaign is a set of malicious activities or attacks that
occur over a period of time against a specific set of targets. A Campaign class is a for-
mal description of the tactics and techniques used by the attack group. In the ATT&CK
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framework, each tactic contains multiple techniques, and each technique is composed
of multiple sub-techniques. The ontology modeling of this paper refers to its structure.
Man-In-The-Middle technique refers to the attackers positioning themselves between two
or more networked devices to support follow-on behaviors such as Network Sniffing or
Transmitted Data Manipulation. Man-In-The-Middle is an instance of the Technique, which is
described as follows:

Technique (Man-in-the-Middle) ⊆ Campaign ∩
∀belongToTactic. TA (Credential Access ∩ Collection) ∩
∀hasSubTechnique. SubT (LLMNR/NBT-NS Poisoning and SMB Relay ∩ ARP Cache

Poisoning) ∩
∀hasMitigation. String ∩
∃hasSoftware. (Tool ∩Malware) ∩
∀hasThreatGroup. Group

4.2. Rule of Inference Design

In this paper, we choose Semantic Web Rule Language (SWRL) [44] to deal with the
direct and indirect relationship of the ontology model to enhance the description ability
of OWL. SWRL and OWL are based on the same description logic. SWRL has stronger
expressive ability in solving the multi-level and complex interrelational reasoning and data
value reasoning in ontology [45]. SWRL can directly use the relationships and vocabulary
described in the ontology when writing rules of inference. Each SWRL rule is an OWL
axiom in the ontology, and these new rules can also interact with the existing axioms in the
ontology. The form of the SWRL is given as follows:

A1, . . . , Am → B1, . . . , Bn

The commas on both sides of the arrows indicate conjunctions, which can be written
as a conjunctive form and a disjunctive form when describing complex logical relationships.
A1, . . . , Am → B1, . . . , Bn can be expressed as C(x), P(x, y), or (x, y). Here, C is an OWL
description, P is an OWL property, and x and y can be datalog variables, OWL instances, or
OWL data values. The rule of inference can discover new implicit knowledge from explicit
knowledge. The following example shows the usage of the SWRL rule. Figure 4 reveals
the new relationship according to the inference rule.
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In the inference rule above, the object properties hasAffectedPlatform(?v, ?p) provides
the relationship linkage between the class Vulnerability(?v) and the class Platform(?p). The
object properties exploitedBy(?v, ?a) provides the relationship linkage between the class
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Vulnerability(?v) and the class AttackPattern(?a). This kind of relational linkage can infer
implicit facts from the object properties target(?a, ?p) and existing knowledge.

The SWRL cannot make the OWL query. Therefore, we use Semantic Query-Enhanced
Web Rule Language (SQWRL) to perform knowledge retrieval on the integrated ontology
model. SQWRL is an extension of SWRL, and it can be used in conjunction with SWRL to
transform existing rules into a pattern-matching mechanism. It allows for the query and
retrieval of implicit knowledge inferred from OWL classes, OWL object properties, OWL
data properties, and OWL individuals. The example in Section 4 shows the specific usage
of inference rule in the multi-source knowledge inference model of IoT security.

5. Examples and Evaluation

In this section, we demonstrate several scenarios to further illustrate the feasibility
and effectiveness of the proposed model. As for the coalescence and modeling of the
multi-source information security knowledge base, the first subsection provides a linkage
example to demonstrate the ability of the integrated graph data in order to provide context
semantic information. The second subsection focuses on the design of inference rules based
on the multi-source knowledge of IoT security. Various hardware and software in the
IoT correspond to instances in the ontology. The security status of the IoT environment
is reflected in the ontology. In this paper, instances in the IoT environment are mapped
in the ontology, and the ability of the model to construct threat assessments of the IoT
environment is demonstrated by its design of inference rules.

5.1. Linkage Example and Feasibility Analysis

This paper integrates multiple cyber security knowledge bases to provide a seamless
set of paths that connect them. In order to demonstrate the feasibility and advantages
of this method, this section uses a linkage query as an example, such as that of “video
surveillance devices” to “Privilege Escalation” and “Defense Evasion” tactics. The entries
in the linkage are as follows:

• Tactic (TA0004) Privilege Escalation: This adversary is trying to gain higher-level per-
missions. Privilege Escalation consists of techniques that adversaries use to gain
higher-level permissions in a system or network. Adversaries can often enter and
explore a network with unprivileged access but require elevated permissions to follow
through on their objectives. Obtaining an account that is necessary for attackers to
achieve their goals of gaining access to a specific system or performing a specific au-
thorized operation can also be considered a privilege escalation. Common approaches
are taking advantage of system weaknesses, misconfigurations, and vulnerabilities.

• Tactic (TA0005) Defense Evasion: This adversary is trying to avoid being detected. De-
fense Evasion consists of techniques that adversaries use to avoid detection throughout
their compromise. Adversaries also leverage and abuse trusted processes to hide and
masquerade their malware.

• Technique (T1134) Access Token Manipulation: Adversaries may modify access tokens
to operate under a different user or system security context to perform actions and
bypass access controls. The operation system, such as Windows, uses access tokens to
determine the ownership of a running process. A user can manipulate access tokens
to make a running process appear as though it is the child of a different process or
belongs to someone other than the user that started the process.

• Attack Pattern (CAPEC-633) Token Impersonation: An adversary exploits a weakness in
authentication to create an access token that impersonates a different entity, and then
associates a process to that that impersonated token. Attackers can use this operation
to use tokens to verify identity and take actions based on that identity.

• Weakness (CWE-287) Improper Authentication: When an actor claims to have a given
identity, the platform does not prove or insufficiently proves that the claim is correct.

• Vulnerability: CVE-2017-7921. The improper authentication vulnerability occurs when
an application does not adequately or correctly authenticate users. This may allow
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a malicious user to escalate his or her privileges on the system and gain access to
sensitive information.

• Affected platform and CPE: “cpe:2.3:o: hikvision:ds-2cd2032-i_firmware:-:*:*:*:*:*:*:*’,” Ac-
cording to the CPE entry, the affected platforms are Hikvision video surveillance
devices with firmware version DS-2CD2032-I.

The description of the linkage above is based on tactic from the perspective of attackers,
assuming that the attacker’s goal is to obtain higher-level permissions without being
detected. That is, by manipulating the access token to run as different users or in different
systems in order to perform operations and bypass access control. Attackers can exploit
the vulnerability of the Hikvision video surveillance devices, whose firmware version is
DS-2CD2032-I, to simulate the access tokens of different entities through the weaknesses in
authentication, and then escalate the privilege to obtain sensitive information and control
this video surveillance device.

On the other hand, the description of the linkage is based on the affected platform from
the perspective of defenders. If there are Hikvision video surveillance devices with the
firmware version DS-2CD2032-I in cyberspace, network administrators need to be vigilant
of attackers simulating access tokens through weaknesses in authentication, bypassing
access control, and achieving privilege escalation. Network administrators can restrict
permissions of users and user groups who cannot create tokens, or define token permissions
for specific users in order to manage and restrict token creation. At the same time, network
administrators can restrict users and accounts to the minimum privileges they need. They
can reduce the path where attackers can bypass access control and narrow the possible
attack surface to mitigate threats.

As shown in the example above, researchers who use this method to integrate multi-
source knowledge bases can query context information from different knowledge bases
with any entry in the link set given. In fact, this method can traverse the knowledge graph
to achieve more powerful query functions according to specific query requirements. The
preprocessed graph data is stored in Neo4j. We used the query language Cypher and
queried the Hikvision video surveillance device with the firmware version DS-2CD2032-I
and the vulnerability entry CVE-2017-7921. The Cypher query statement is shown in
Figure 5.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 19 
 

 

• Affected platform and CPE: “cpe:2.3:o: hikvision:ds-2cd2032-i_firmware:-:*:*:*:*:*:*:*’,” 
According to the CPE entry, the affected platforms are Hikvision video surveillance 
devices with firmware version DS-2CD2032-I. 
The description of the linkage above is based on tactic from the perspective of attack-

ers, assuming that the attacker’s goal is to obtain higher-level permissions without being 
detected. That is, by manipulating the access token to run as different users or in different 
systems in order to perform operations and bypass access control. Attackers can exploit 
the vulnerability of the Hikvision video surveillance devices, whose firmware version is 
DS-2CD2032-I, to simulate the access tokens of different entities through the weaknesses 
in authentication, and then escalate the privilege to obtain sensitive information and con-
trol this video surveillance device. 

On the other hand, the description of the linkage is based on the affected platform 
from the perspective of defenders. If there are Hikvision video surveillance devices with 
the firmware version DS-2CD2032-I in cyberspace, network administrators need to be vig-
ilant of attackers simulating access tokens through weaknesses in authentication, bypass-
ing access control, and achieving privilege escalation. Network administrators can restrict 
permissions of users and user groups who cannot create tokens, or define token permis-
sions for specific users in order to manage and restrict token creation. At the same time, 
network administrators can restrict users and accounts to the minimum privileges they 
need. They can reduce the path where attackers can bypass access control and narrow the 
possible attack surface to mitigate threats. 

As shown in the example above, researchers who use this method to integrate multi-
source knowledge bases can query context information from different knowledge bases 
with any entry in the link set given. In fact, this method can traverse the knowledge graph 
to achieve more powerful query functions according to specific query requirements. The 
preprocessed graph data is stored in Neo4j. We used the query language Cypher and que-
ried the Hikvision video surveillance device with the firmware version DS-2CD2032-I and 
the vulnerability entry CVE-2017-7921. The Cypher query statement is shown in Figure 5. 

match (a:Cpe{product:'ds-2cd2032-i_firmware'})-
-(b:Cve{name:'CVE-2017-7921'})--
(c:CweWeakness)--(d:CapecAttPattern)--
(e:AttCkAttackPattern)--(f:AttCkTactic) return *

 
Figure 5. Cypher query for CVE-2017-7921. 

Figure 6 shows the visualization of the query results. After the vulnerability CVE-
2017-7921 is associated with the weakness CWE-287 Improper Authentication, four link-
ages associated with CWE-287 are traversed in the graph database, with the sample link-
age query above also being among them. The context information contains several public 
security information resources that have been published and associated. The integration 
of multi-source knowledge existing in a specific IoT environment can improve the analy-
sis ability and comprehensibility of CTI. 

Figure 5. Cypher query for CVE-2017-7921.

Figure 6 shows the visualization of the query results. After the vulnerability CVE-2017-
7921 is associated with the weakness CWE-287 Improper Authentication, four linkages
associated with CWE-287 are traversed in the graph database, with the sample linkage
query above also being among them. The context information contains several public
security information resources that have been published and associated. The integration of
multi-source knowledge existing in a specific IoT environment can improve the analysis
ability and comprehensibility of CTI.
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5.2. Inference Rules Based on Multi-Source Knowledge of IoT Security

This paper constructs a sample scenario for IoT testing, as shown in Figure 7. All com-
ponents are instantiated in the IoTSTO. There is a video surveillance device collaboration
group in the IoT, and devices are all connected to the Internet. There are multiple Hikvision
video surveillance devices. The firmware versions are DS-2CD2032-I, DS-2CD2432-IW,
and DS-7204HGHI-F1. The manager of the video surveillance device collaboration group
uses the Ivms-4200 network video surveillance software. The existing vulnerabilities in the
environment and their CVSS scores and severity are shown in Table 2.
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These components are instantiated in the IoTSTO. For this paper, we designed the 
five inference rules to infer the security status in the IoT environment, as shown in Figure 
8. 
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Table 2. Vulnerability, CVSS score and severity.

IoT Platform Vulnerability CVSS V3 Severity

DS-2CD2032-I CVE-2017-7921 10.0 Critical
DS-2CD2032-I CVE-2017-7923 8.8 High

Ivms-4200 CVE-2017-13774 7.8 High
DS-2CD2432-IW CVE-2017-14953 6.5 Medium
DS-7204HGHI-F1 CVE-2020-7057 5.3 Medium

These components are instantiated in the IoTSTO. For this paper, we designed the five
inference rules to infer the security status in the IoT environment, as shown in Figure 8.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 19 
 

 

Rule-1:
Vulnerability(?v)∧hasSeverity(?v, ?se)∧Severity(?se, CriticalSeverity)∧exploitedBy(?v, ?a) 
∧AttackPattern(?a) → CriticalVulnerability(?v)
Rule-2:
Vulnerability(?v)∧hasSeverity(?v, ?se)∧Severity(?se, HighSeverity)∧exploitedBy(?v, ?a)∧ 
AttackPattern(?a) →SeriousVulnerability(?v)
Rule-3:
Vulnerability(?v)∧hasSeverity(?v, ?se)∧Severity(?se, MediumSeverity)∧exploitedBy(?v, ?a) 
∧AttackPattern(?a) →NormalVulnerability(?v)
Rule-4:
Vulnerability(?v)∧hasSeverity(?v, ?se)∧Severity(?se, LowSeverity)∧exploitedBy(?v, ?a)∧ 
AttackPattern(?a) → NormalVulnerability(?v)
Rule-5:
Platform(?p)∧hasVulnerability(?p, ?v)∧Vulnerability(?v)∧hasSeverity(?v, ?se)∧Severity(? 
se)∧Status(?st)∧affect(?se, ?st) → hasStatus(?p, ?st)  

Figure 8. Reasoning the security status of the IoT environment. 

Rule-6：
Platform(?p)∧hasStatus(?p, ?st)∧Status(?st)∧hasVulnerability(?p, ?v)∧Vulnerability(?v) 
∧AttackPattern(?a )∧target(?a, ?v)∧mapping(?a, ?t)∧Technique(?t)∧Mitigation(?m) → 
mitigated(?p, ?m)  

Figure 9. Reasoning mitigation. 

Through the interpretation function of Protégé, we showed the inference process of 
the security status of the IoT environment, and demonstrated the process of Rule-6 of au-
tomating inference mitigations inferred by the implicit facts. The details are shown in Fig-
ures 10b and 11. 

  
(a) (b) 

Figure 10. (a) Results from the application of inference rules; (b) The joint inference process. 
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Rule-1 to Rule-4 identify the Severity based on the known CVSS score of the Vulnerabil-
ity. The semantics of Rule-5 is that there are Platforms affected by the Vulnerability in the
IoT environment. When the Severity of the Vulnerability is “High” or “Critical”, the Platform
affected by the Vulnerability in the system is Critical Vulnerable to malicious activities. The
system infers the Critical Vulnerable areas of the Platform and provides support for security
analysts to assess the Severity of threats to the IoT environment. Based on the inference
rules above, we designed Rule-6 to realize automatically inferred Mitigations for Critical
Vulnerable Platforms, as shown in Figure 9.
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The semantics of this rule is that when the location of the Critical Vulnerable in the IoT
environment is known, the Attack Pattern that may be subject to the Vulnerability in the
Platform is mapped to the Technique. Then, network managers use the known threat events
in the knowledge base to analyze the malicious activities and tactics associated with the
specific Technique. Finally, the inference engine automatically infers the Mitigations that can
be adopted in the system.

After constructing the rules above, the Pellet reasoner is initiated for reasoning. Ac-
cording to the DS-2CD2032-I entity, new implicit facts are inferred. The Status of DS-
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2CD2032-I is classified as Critical Vulnerable and is associated with Mitigation through the
object property useMitigation. The reasoning result is shown in Figure 10a.

Through the interpretation function of Protégé, we showed the inference process of
the security status of the IoT environment, and demonstrated the process of Rule-6 of
automating inference mitigations inferred by the implicit facts. The details are shown in
Figures 10b and 11.
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The detailed inference processes are described as follows:

1. A video surveillance device with firmware DS-2CD2032-I is deployed in the IoT.
According to the explicit knowledge in the knowledge bases CVE and NVD, this
video surveillance device has a CVE-2017-7921 vulnerability, and the Severity is
CriticalSeverity;

2. System classifies the Status describing the vulnerability of the devices as CriticalVul-
nerable, which is based on the Severity of the Vulnerability associated with the video
surveillance device

3. According to the explicit knowledge in the knowledge base CAPEC and the ATT&CK
matrix, the Attack Pattern Token Impersonation is mapped to Technique T1134. System
analyzes related threat events, which can infer appropriate Mitigations to mitigate
threat activities that may be generated by adversaries.

The inference engine can separate the IoT nodes that are subjected to specific threats.
The weaknesses and threats in the IoT environment are random and large in number.
However, the targets of some threats are specific, and the characteristics of threat activities
are obvious [46]. After perceiving the distribution of vulnerability in the IoT environment,
the system combines the context information of threat intelligence to separate high-risk
nodes and prioritize the processing of specific threats, which will greatly reduce spatio-
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temporal consumption and increase the speed of the response to threats [47,48]. For
example, as shown in Figure 12, Rule-7 checks whether there are weaknesses of Improper
Authentication in the IoT environment. The inference engine separates high-risk nodes
that may be used by attackers in order to use the technique Access Token Manipulation to
complete Token Impersonation of the IoT environment. In addition, network managers only
need to add corresponding instances to the data layer in order to update the Platforms in
the IoT environment, while IoTSTO and rule of inference can easily infer the security status
in the IoT.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure 11. Inference process to infer the security status. 

The detailed inference processes are described as follows: 
1. A video surveillance device with firmware DS-2CD2032-I is deployed in the IoT. Ac-

cording to the explicit knowledge in the knowledge bases CVE and NVD, this video 
surveillance device has a CVE-2017-7921 vulnerability, and the Severity is CriticalSe-
verity; 

2. System classifies the Status describing the vulnerability of the devices as CriticalVul-
nerable, which is based on the Severity of the Vulnerability associated with the video 
surveillance device; 

3. According to the explicit knowledge in the knowledge base CAPEC and the 
ATT&CK matrix, the Attack Pattern Token Impersonation is mapped to Technique 
T1134. System analyzes related threat events, which can infer appropriate Mitigations 
to mitigate threat activities that may be generated by adversaries. 
The inference engine can separate the IoT nodes that are subjected to specific threats. 

The weaknesses and threats in the IoT environment are random and large in number. 
However, the targets of some threats are specific, and the characteristics of threat activities 
are obvious [46]. After perceiving the distribution of vulnerability in the IoT environment, 
the system combines the context information of threat intelligence to separate high-risk 
nodes and prioritize the processing of specific threats, which will greatly reduce spatio-
temporal consumption and increase the speed of the response to threats [47,48]. For ex-
ample, as shown in Figure 12, Rule-7 checks whether there are weaknesses of Improper 
Authentication in the IoT environment. The inference engine separates high-risk nodes that 
may be used by attackers in order to use the technique Access Token Manipulation to com-
plete Token Impersonation of the IoT environment. In addition, network managers only 
need to add corresponding instances to the data layer in order to update the Platforms in 
the IoT environment, while IoTSTO and rule of inference can easily infer the security status 
in the IoT. 

Rule-7：
Platform(?p)∧hasVulnerability(?p, ?v)∧Vulnerability(  ?v)∧hasStatus(?p, CriticalVulnerab 
le)∧hasWeakness( ?p, Improper Authentication)∧target(Token Impersona tion, ?p)∧Attack 
Pattern(?a)∧exploitedBy(?v, ?a)∧ma pping(?a, Access Token Manipulation) → sqwl:select 
(?p, ?v)  

Figure 12. Separate critical vulnerable platforms with specific patterns. 

The example verifies the ability of our method to discover and automatically defend 
against threats in a heterogeneous IoT environment. If the system has vulnerabilities that 
are exploited by certain attack patterns, tactics, or techniques, the IoTSTO will perceive 
the critical-risk locations of system security through preset inference rules. Security man-
agers can automatically infer the available mitigations and separate IoT nodes with spe-
cific threats from the constructed multi-source knowledge base. This method provides 
support for security managers to perceive the overall security situation and deploy the 
appropriate security solutions. The most important thing is to design the inference rules. 

Figure 12. Separate critical vulnerable platforms with specific patterns.

The example verifies the ability of our method to discover and automatically defend
against threats in a heterogeneous IoT environment. If the system has vulnerabilities that
are exploited by certain attack patterns, tactics, or techniques, the IoTSTO will perceive the
critical-risk locations of system security through preset inference rules. Security managers
can automatically infer the available mitigations and separate IoT nodes with specific
threats from the constructed multi-source knowledge base. This method provides support
for security managers to perceive the overall security situation and deploy the appropriate
security solutions. The most important thing is to design the inference rules. Inference
rules should be designed according to the actual IoT environment, and the characteristics
of the complex IoT environment need to be accumulated and analyzed.

The current cyber security ontology models focus on different scopes of information.
Some models focus on the integration of IoT assets, vulnerabilities, and weaknesses [19,43,49],
and some models focus on modeling attack in the IoT environment [12,18,20,39,50,51]. Our
proposed ontology model focuses on the information on IoT assets, vulnerabilities, weak-
nesses, attack patterns, techniques, and tactics, which gives a holistic view of the cyber
security situation and is more comprehensive than the other models. Table 3 compares
IoTSTO and other ontology models to show the scope of the knowledge domains involved
in each cyber security ontology.

Table 3. Knowledge domain scope of several related cybersecurity ontology models.

Platform Vulnerability Weakness Attack Pattern Technique Tactic

UCO [12]
√ √ √

MALOnt [18]
√ √ √

IoTSec [19]
√ √ √

PIoTCO [20]
√ √

NSSA [39]
√ √ √

VulKG [43]
√ √ √

VCO [49]
√ √ √ √

SVO [50]
√ √ √

SKO [51]
√ √

IoTSTO
√ √ √ √ √ √

In this paper, IoTSTO focused on the affected platform, vulnerability, weakness,
attack pattern, tactic, and technique used by attackers in the IoT, and provided a broader
perception of the security status of the IoT. The scalability of IoTSTO is sufficient to
accommodate the rapid transformation of the IoT architecture. Managers can define
relevant inference rules based on the characteristics of the observed IoT environment in
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order to meet the adaptability of the model to the actual IoT environment and enhance the
inference ability of the ontology.

6. Conclusions

In this paper, we integrated vulnerabilities, weaknesses, affected platforms and tactics,
attack techniques, and attack patterns into a coherent set of links. This method enriched the
context information of the network security knowledge base, which improve the analytical
ability and comprehensibility of the CTI. We resolved the semantic heterogeneity problem
by facilitating the formalization of knowledge in the IoT domain. In addition, we proposed
an IoT security threat ontology model to describe the elements of IoT security threats,
and we used a Pellet reasoner and an inference rule to perceive threats in a complex
heterogeneous environment.

However, our work is not enough to monitor the overall security of the IoT. Subse-
quently, we will add cyber supply chain information to the ontology model. For example,
we can add the supply chain information of intelligent manufacturing devices, such as third
party vendors, suppliers, inbound supply chain, outbound supply chain, and other status
information to the ontology model. In this way, it will not only detect the threat, but will
also be able to detect the novel supply chain attacks by fusing the supply chain information
of the intelligent manufacturing physical system with the cyber security information.
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