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Abstract: Although numerous road segmentation studies have utilized vision data, obtaining robust
classification is still challenging due to vision sensor noise and target object deformation. Long-
distance images are still problematic because of blur and low resolution, and these features make
distinguishing roads from objects difficult. This study utilizes light detection and ranging (LiDAR),
which generates information that camera images lack, such as distance, height, and intensity, as a
reliable supplement to address this problem. In contrast to conventional approaches, additional
domain transformation to a bird’s eye view space is executed to obtain long-range data with resolu-
tions comparable to those of short-range data. This study proposes a convolutional neural network
architecture that processes data transformed to a bird’s eye view plane. The network’s pathways
are split into two parts to resolve calibration errors in the transformed image and point cloud. The
network, which has modules that operate sequentially at various scaled dilated convolution rates, is
designed to quickly and accurately handle a wide range of data. Comprehensive empirical studies
using the Karlsruhe Institute of Technology and Toyota Technological Institute’s (KITTI’s) road
detection benchmarks demonstrate that this study’s approach takes advantage of camera and LiDAR
information, achieving robust road detection with short runtimes. Our result ranks 22nd in the
KITTI’s leaderboard and shows real-time performance.

Keywords: autonomous vehicle; bird’s eye view transformation; convolutional neural network;
heterogeneous sensor fusion; road detection; semantic segmentation

1. Introduction

Autonomous vehicles and advanced driver assistance systems (ADAS) are currently
being improved. As computational capability progresses and markets grow, the au-
tonomous vehicle is no longer an imaginary concept: it is slowly becoming a possibility.
Free space detection, which classifies whether pixels are navigable by analyzing frontal
environmental information with RGB color data and depth information, is essential in in-
telligent driving. Accurate detection is needed to guarantee safe driving and fast algorithm
execution times and includes accurate sensor calibration and network outputs, especially
when driving at high speeds.

Due to rapid developments in deep learning technology, efficient and novel feature
extractors based on networks that solve semantic segmentation problems have been ex-
amined, and these can be applied to road segmentation [1,2]. Studies conducted by Chen
et al. [2] and Yu and Koltun [3] overcame limited computer resources, extracted features at
various scales, and made accurate semantic detections using large receptive fields. Along
with accurate modules, various methods increased computation speeds by modifying the
modules’ breadth or depth [1,4]. Moreover, several modules that enhance the expressive-
ness of their kernel’s robust features have been announced. These modules have revised
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convolutional and feature-extraction capabilities, both of which are used to create rich
data [5–7]. Most methods that solve the free space detection problem use an image-based
encoder–decoder structure [8,9]. Thanks to advances in semantic segmentation, numerous
methods that distinguish obstacles from roads have been developed. However, single
image data processing networks are strongly affected by illumination changes. They are
not robust enough to filter out visual noise, such as blurry images and overexposure,
producing incorrect results and lowering confidence in obtaining accurate detection results.
Unlike cameras, which are passive sensors, LiDARs, which are active sensors, are more
robust to changes in the surrounding environment and provide physical data, such as
distance, height, and intensity, to complement visual data shortcomings. The stereo camera
has physical data [10] that are similar to those that a LiDAR sensor has by computing a
disparity map. Fan et al. [11] and Liu et al. [12] proposed stereo vision-based free space de-
tection. Fan et al. [11] generated additional driving scene images and conducted semantic
segmentation DCNN. Liu et al. [12] calculated a disparity map to obtain a vanishing line
via a road surface model and detected road boundaries. However, the stereo vision method
suffered from poor long-distance data that were more sensitive and unreliable than LiDAR.

RGB pixel data are combined with light detection and ranging (LiDAR) information
that does not exist in a visual image to compensate for visual data shortcomings. LiDAR
coordinates, as point cloud data, are projected onto the image plane during heterogeneous
sensor calibration, which demands considerable operational time. Han et al. [13] and
Caltagirone et al. [14] used camera pixel color data and LiDAR distances as inputs to a
convolutional neural network (CNN) to segment free space. Additionally, Zhuang et al. [15]
projected point cloud on image plane for 3D LiDAR semantic segmentation.

Aside from examining frontal data, transformed a data format has also been used.
Caltagirone et al. [16] transformed unstructured point clouds into a bird’s eye view that
was suitable for detecting roads with a CNN. Lu et al. [17], Roddick and Cipolla [18],
and Wang et al. [19] utilized transformed bird’s eye view data. Roddick and Cipolla [18]
predicted bird’s eye view maps directly from monocular images by incorporating a
multiscale transformer pyramid to wrap image-based features to the bird’s eye view, and
Wang et al. [19] transformed and fused features from different views of the LIDAR point
cloud and images from cameras to detect 3D objects. This transformation method is able
to effortlessly use geometric information from cameras to produce the best performance
detector. Lee and Park [20] transformed a point cloud and an image into spherical
coordinates to facilitate faster data transfer. Yang et al. [21] stitched images together to
make an omnidirectional view and conducted panoramic semantic perception.

The main proposes of our study are listed below. We reduced the entire runtime and
obtained a similar performance by changing the fusion method and convolution module
and by adding some data preprocess:

• We employ a data-fusion method that quickly transforms a point cloud to a bird’s eye
view rather than projecting it to an image plane, which requires more computational
power. Here, the calibration time is reduced by projecting the data onto a plane instead
of using a perspective transformation that multiplies several matrices such as sensor
coordinate transformation, image plane projection, and undistortion.

• The data are RGB colors obtained from the transformed image and the z-axis measure-
ments, point stack, and intensity [22]. The altitude difference [23] from the transformed
point cloud is used as the network input by fusing camera and LiDAR data in the
bird’s eye view plane.

• In addition to selecting an uncommon domain, improved modules are utilized to
create a lightweight network with a large receptive field that can extract features
efficiently [1,5].

In conclusion, the proposed system performs at a near real-time operating speed of
over 37 FPS by applying quick calibration, obtains a MaxF of 94.89%, and ranks 22nd on
the KITTI road benchmarks leaderboard.
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2. Related Works

Free space detection presents an informative perception of the environment to
autonomous vehicles. For several decades, research based on image processing has
been expanding to address road segmentation problems. Ying et al. [1], Falola et al. [2],
and Gao et al. [3] propose boundary detection-based approaches for identifying road
regions. Approaches using region-based features have also been employed in free
space detection. Various region-based road detection algorithms such as texture-based
approaches [4,5] that identify textural differences between road and road-off regions
and color-based approaches [6,7] that examine the characteristics of roads in color
images have been developed.

Along with algorithms based on low-level features, many studies attempting to
solve segmentation problems with deep CNNs have been carried out [8], and studies
that considered free space problems to be semantic segmentation tasks have been
conducted [8–10]. Similar to Fuse-Net [14], which combines geometric information
from a LiDAR output with color data to tackle the segmentation problem, many studies
using LiDAR for free space detection have been published. Nakagomi et al. [16],
Gu et al. [17] and Caltagirone et al. [16] configured data from a single LiDAR to find
navigable areas, and Han et al. [10] and Caltagirone et al. [14] fused images and point
clouds to detect free space.

Algorithms for transformation from conventional frontal domains to other domains
have been developed. For instance, Kühnl et al. [20] applied a bird’s eye view transform
to streamline the complex scenarios of urban traffic, transformed point cloud [16] and
image [17] data to a bird’s eye view as an input to a deep CNN, and developed a coordinate
transformation from a Cartesian to a spherical model for the fast calibration of LiDARs and
cameras [20].

Multisensor fusion algorithms can be divided into model-based white box and deep
neural network (DNN)-based black box algorithms. The model-based method [1] processes
sensor fusion by accumulating information about one object from multiple sensors. A
Gaussian mixture finds the best measurement association and matches a single association
from each sensor to make the fusion procedure more efficient. After the data association
step, an unscented Kalman filter predicts object positions. The DNN-based method [2]
takes advantage of DNN to sensor fusion. It selects intermediate fusion among early, late,
and intermediate fusion candidates to achieve a more general, fast, and accurate prediction.
A fusion block that exploits sensor information at each level and feeds the next block is
proposed to fuse features from different sensors hierarchically.

In this paper, we propose a deep CNN-based system that obtains point clouds and
images as inputs to detect free space, similar to other state-of-the-art (SOTA) methods.
Furthermore, it transforms data into a bird’s eye view to reduce the calibration time and
run time. Our transformation uses a rotation matrix based on homogeneous coordinates
and a look-up table (LUT) to fuse the images and point clouds in the bird’s eye view.
Further-more, minor calibration errors are resolved in a network layer. Figure 1 shows lists
of the overall contributions of this paper in terms of computing complexity and accuracy.
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Figure 1. Lists of the proposed contribution of study.

3. Data Transformations

This section discusses a transformation method that projects a LiDAR point cloud onto
a compatible set of 2D images, a format commonly used in CNNs for road detection. The
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proposed transformation method identifies the bird’s eye view coordinates that correspond
to the 3D point cloud coordinates. Figure 2c is an example of a point cloud projected onto
an image plane.
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Figure 2. Examples of visual data. (a) The 3D point cloud raw data with 64-channel light detection
and LiDAR data, (b) the 2D image with 1242 × 375 pixels, and (c) LiDAR data projected onto the
image plane.

3.1. Perspective Transformation

Perspective transformation converts a point cloud in the LiDAR coordinates to pixel
data coordinates in an image plane using intrinsic and extrinsic parameters [14]. Doing
so fuses the camera data and the LiDAR data. In other words, a transformation matrix is
applied to a 3D point pl = (x, y, z, 1)T and is matched with a 2D pixel pi = (u, v, 1)T . In
Equation (1), the transformation matrix rotation and the translation are T, the rectification
matrix is R, and the camera-intrinsic matrix is K. Here, the pi coincident with the projected
pl is expressed as:

λ pi = K R T pl (1)

where λ is a scaling factor. T rotates and translates the LiDAR coordinates to camera
coordinates and can be expressed as:

T =


r00 r01 r02 tx
r10 r11 r12 ty
r20 r21 r22 tz
0 0 0 1

, (2)

where rij and tk are rotation parameters (roll, pitch, and yaw) and translation parameters,
respectively. R transforms coordinates to normalized coordinates, and K projects them to
pixel coordinates. These variables are expressed as:

R =

 1 0 0 0
0 1 0 0
0 0 1 0

,K =

 fx 0 cx
0 fy cy
0 0 1

, (3)

where f and c represent the lens focal length and principal pixel point, respectively. The
matrices in (1) project vast amounts of points, nearly 100 k per frame, from LiDAR into a
uniform image container. The LiDAR geometric data are then in the image’s format, and
the camera’s color information along with the LiDAR range data are input to a CNN to
detect free space.
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3.2. Bird’s Eye View Transformation

Bird’s eye view transformation is a method that changes an image’s orientation
to where it is parallel to the ground. Because the data need to be rotated and trans-
lated, the image coordinates are transformed into normalized coordinates. Equation (4)
shows the transformation matrix that changes pi = (u, v, 1)T in the image coordinates to
pn = (Xn, Yn, 1)T in the normalized coordinates, where K is the camera-intrinsic matrix
from Equation (3).

pn = K−1 pi, (4)

After the coordinate system changes, the T matrix, similar to Equation (2), reconfigures
pn to pu = (Xu, Yu, 1)T in the normalized bird’s eye view coordinates to adjust the axis to
those coordinates. Finally, pu is projected onto the bird’s eye view plane, pb = (x, y, 1)T ,
by adjusting the scale. Equation (5) is the projection formula:

λ pb =

 Sx 0 ctx
0 Sy cty
0 0 1

pu, (5)

where λ is the scaling factor, S(x, y) is the image height ratio, and c(tx, ty) is the principal
point in the bird’s eye view plane.

However, the transformation comes with an aliasing issue caused by insufficient
discrete data, so an inverse transformation is used to convert the coordinates for anti-
aliasing to address this issue. Figure 3 shows an example of the transformation issue and
the anti-aliasing transformation.
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Figure 3. Different transformation methods. (a) Data transformed from image coordinates to bird’s
eye view coordinates and (b) data transformed from bird’s eye view coordinates to image coordinates.

As opposed to the previous procedure, the inverse transformation finds a point
pi = (u, v, 1)T that is homologous with pb = (x, y, 1)T from the image and bird’s eye
view coordinates, respectively. The pixel pi can be found from pb by multiplying it with
the inverse of the matrix that projects the data to the bird’s eye view plane. The matrix R
rotates and translates the coordinates’ axes, and the intrinsic matrix K projects the image
coordinates from the normalized coordinates. Since both pre- and post-transformed
data were filled into a structured data container (the image), transforming pb to pi
is a function. Here, the bird’s eye view image is the domain, and the original image
is the codomain. Therefore, instead of performing a time-consuming set of matrix
multiplications, a lookup table (LUT) can be used to obtain transformations faster. The
table stores precalculated transformations from pi to pb , so it does not perform matrix
multiplications for every transformation but projects color data by simply building a
coordinate correspondence map.
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The transformed point cloud geometric information combined with a transformed
image is used as an input to the CNN. Two steps are needed to transform the unstructured
3D data point cloud into structured 2D data suitable for CNN input. First, a cell with
measurements corresponding to one pixel is constructed to project the point cloud’s x–y
plane onto the 2D image plane. The cell size is set to 0.1× 0.1 m and is projected from a
20 m wide y ∈ [−10, 10] m by s 40 m long x ∈ [6, 46] m cell into 200× 400 pixels. Next, four
sets of channel data, including the maximum height, the number of points, maximum cell
intensity, and altitude difference from surrounding cells, are inserted in the image format.
The transformed data are shown in Figure 4.
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Figure 4. Examples of data transformed to the bird’s eye view. (a) Image and (b) point cloud, ignoring 4th channels. The
bottom row shows examples of each channel’s point cloud data in grayscale, (c) max height value in a cell, (d) max intensity
value in a cell, (e) number of points in a cell, and (f) altitude difference from surrounding cells.

4. Bird’s Eye View Free Space Detection

Figure 5 shows the overall system architecture including data transformation and
road prediction. The first box, labelled as Top-view Transformation, takes visual data
and preprocess them, as noted in Section 3. Additionally, the second box, labelled CNN,
predicts free space using the proposed network and will be discussed in this section. For a
given transformed RGB image (tI) and projected point cloud (tL) generated by projecting
both the image and the LiDAR points to a bird’s eye view plane with extrinsic parameters,
the proposed system targets free space (F).

The additional tL data help the system divide curbstones or objects from the road
to segment it using information such as the height or intensity. This section discusses
a system that has been designed to detect free space. Section 4.1 describes an efficient
receptive field pyramid (ERFP) module, which makes the model lightweight and accurate.
Section 4.2 describes an encoder–decoder-based multipath network composed of ERFP
modules. Section 4.3 depicts the data augmentation methods employed for their robustness
when handling distortions.
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Figure 5. Overall system architecture. RGB stands for the image’s color information. H, I, P, and A represent the maximum
height, maximum intensity, number of points, and altitude difference, respectively. The left-hand images in the first block
show their original format, and the right-hand images show their transformed format.

4.1. Efficient Receptive Field Pyramid Module

An example of an ERFP module is depicted in Figure 6. ERFP is a method that
organizes a spatial pyramid of varied scales that have been extracted from a single
feature map [2,5,6]. The ERFP module that populates the network is a factorized form of
a spatial pyramid with a pointwise convolution layer that modulates several channels
for quick operation.
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Figure 6. Schematic flow chart for the proposed module’s efficient receptive field pyramid (ERFP). After a feature
map’s depth is fed as input and the depth is reduced to D/P divided by the number of pyramids P using pointwise
convolution, standard convolutions are applied with various kernel sizes. Dilated convolutions with dilation rates
proportional to the kernel size are used to extract differing scales. Using the pyramid made by collecting P latent
feature maps, whose depth D/P * with expansion rate E is applied with hierarchical feature fusion (HFF), the output
feature map with depth D * E is formed.

Pointwise convolution is a (1× 1) convolution that reduces the computational pa-
rameters to increase a network’s speed. A conventional spatial pyramid takes the input
feature map Fin ∈ R(Cin×H×W) and outputs Fout ∈ R(Cout×H×W) using P dilated convolu-
tions with (k × k)-sized kernels and dilation rates given by 2p−1, (p = 1, 2, 3, · · · , P).
Here, H and W are the feature map’s height and width, and Cin and Cout are the feature
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map’s channels. Hence, the original pyramid has learnable k2·Cin · Cout ·P parameters
to produce an output feature map. The ERFP module exploits the parameter P, the
stacked dilated convolution number, to reduce the number of parameters. After ap-
plying a pointwise convolution that reduces the input feature’s depth by 1/P, there

are k2 ·Cin ·Cout+Cin
2

P parameters when stacking the P pyramid with dilation convolution

using the Cin
2

P parameters of the input’s reducing channel and the output’s k2 ·Cin ·Cout
P

parameters from the downsized input feature map. Pointwise convolution reduces the

parameters by a factor of k2 ·P2 ·Cin ·Cout
k2 ·Cin ·Cout+Cin

2 . For one of the hyperparameters employed in
the network, P = 8, k = 3, Cin = 32, and Cout = 64, so this study’s system has 60.6 times
fewer parameters than a conventional spatial pyramid does.

The next layers include standard convolutions with multi-sized kernels that assem-
ble differing feature scales and dilated convolutions with dilation rates in proportion to
their size, which allows a large receptive field and shortened computation. Thanks to
the channel modulation layer reducing the entire computational cost, a pair of dilated
convolutions from each standard convolution is additionally supplemented to create richer
representations. By combining these layers, including the depth modulating convolution,
standard convolution, and dilated convolution, ERFP can cover a wide region with varied
scales using small operating quantities.

The pyramid of various scale features is the layer that extracts more varied scale
features than extractions from a single scale input. The input, which shrinks to 1/P
of its channel, was sampled into the varied scaled information using a different sized
receptive field of standard convolutions. P/2 standard convolutions with the kernel
size (k × k), where k = 2q−1,

(
q = 1, 2, 3, · · · , P

2

)
, splits the reduced input into P/2

branches with differing extent information. After this, dilated convolution with a
dilation rate proportional to the receptive field is applied to obtain information at dif-
ferent scales from the same sized input and is composed of features at varied distances.
Two dilation rates in each branch’s dilated convolutions are used to create a P feature
pyramid from the P/2 branches.

This study utilizes a method that combines hierarchical feature fusion (HFF) and
concatenation to merge feature pyramids. HFF is a merging method that adds feature maps
with larger receptive fields more frequently than maps with smaller receptive fields. This
technique resolves the checkerboard problem and takes advantage of a large receptive field
without losing the starting pixel’s characteristics due to a weighted value that decreases
as the distance increases. The latent feature maps, whose depth is treated as Cout/P, are
sequenced for the output feature pyramid. Its sequential output is connected to the input
feature map to take advantage of the skip layer’s strengths.

4.2. Structure of the Network

Figure 7 shows the proposed network with its encoder–decoder-based structure.
Its feature-extracting encoder contains encoding path L, which explores the point cloud
features, and encoding path I, which investigates the image’s salient features. There are
three reasons to go through two independent encoder paths instead of concatenating the
input point cloud and image during the first step. First, the encoder paths are split to
align location errors caused by inaccurately calibrating the image and point cloud while
transforming their data into a bird’s eye view in the feature map’s latent layer.

Through the feature compression encoding process and answer extraction decoding
process, convolution kernels learn parameters to calculate properly weighted sums that
not only detect roads but also handle calibration errors, and two symmetric branches
are used to enhance adjustment, such as CalibNet [24]. Second, this approach avoids
nullifying point cloud features with sparse density. Third, the robust characteristics of the
image and point cloud are different, allowing the differentiated paths to encode dissimilar
features. After encoding, the decoding process detects free space by upscaling the reduced
feature map to its original size. Pixel-Shuffle is used to upscale the feature map during
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the decoding process [25]. It uses depth information to provide width information, which
separates the object’s outline more clearly. It utilizes the encoder’s same-level features
to provide a shortcut to obtain longer gradient paths as the feature map becomes more
upsampled while allowing the network to learn from various gradients. Features from I
and L are added and concatenated with same-sized decoder features as an input for the
next decoding layer. This skip layer is applied at every level where the feature map size is
the same for the encoder and decoder.
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In addition, the ERFPt module, which has a relatively small receptive field, is used
at the levels with feature maps smaller than a quarter of their original size for both the
encoder and the decoder. The ERFPt module utilizes fewer standard convolutions with
different sizes to lessen the number of pyramids that is generated while creating two
feature maps per branch. It lessens memory usage and computations by conducting the
convolution operation less frequently.

4.3. Data Augmentation and Learning Details

This subsection explores data augmentation, which yields diverse training datasets
through distortion, and the learning details used for obtaining optimal network parameters.
Because the transformed data that are being utilized as the network’s input has similar
distributions of close and distant pixels, it is vulnerable to the distortion that caused by tall
objects and slopes. Most notably, it takes advantage of geometric augmentation, which is
resistant to noise generated from inclinations.

Figure 8 shows examples of failed and successful cases. Augmentations such as scale
augmentation (adjusts the bird’s eye view transformation’s height), incline augmentation
(controls the road angle by adjusting the rotation matrix’s pitch), and 3D augmentation
(modifies various axes) support the ability to distinguish transformed objects.

The training was conducted on 2000 epochs using the Adam optimization algorithm
with a learning rate of 0.0001 [26]. After reaching 1000 epochs, the learning rate was set to
decrease to 1/10 over 1000 iterations exponentially, and the weight decay was set to 0.0001.
A mish function was used as an activation function in the network, which was defined
as x·tanh(so f tplus(x)), where so f tplus(x) = ln(1 + ex) [27]. Through many properties
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such as the unbounded positive domain, bounded negative domain, non-monotonic shape,
and smooth derivative, mish reduced our training time and provided performance in this
experiment. This function computed and saved the Jacobian matrices of all of the layers
in order to propagate learning. These matrix multiplications are an inefficient compu-
tational process from a memory usage perspective, as they increase the network’s GPU
memory share. Therefore, to increase the GPU’s memory efficiency, the mish function’s
derivative, f ′(x) = tanh(so f tplus(x)) + x·sigmoid(x)·sech(so f tplus(x))2, where f (x) is
the mish function, was calculated in advance and was implemented by diving the forward
and backward sections for network learning. The Algorithm 1 that shows the function’s
efficient application is provided in this study.
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Figure 8. Examples of results with and without data augmentation. (a) Input image; (b) a result of
training without augmentation; (c) a result of training with augmentation.

Algorithm 1: Implementation of the memory efficient mish

ctx: stashed information for backward computation;
input: data to be applied to the mish;
grad_output: gradient to the precious layer.

Class mish is Function forward(ctx, input) is
ctx← input
return input * tanh(softplus(input))

Function backward(ctx, grad_output) is
x← ctx
sigmoidX = sigmoid(x)
softplusX = softplus(x)
tanhX = tanh(softplusX)
sechX = 1/cosh(softplusX)
return grad_output * (tanhX + x * sigmoidX * sechX2)

5. Experiments

The Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI)
dataset was used to test the system through experiments [28]. The KITTI dataset consists
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of point cloud data in a perspective coordinate system from a 64-channel LiDAR, Velodyne
HDL-64E. The road detection sector provides 1242 × 375-pixel RGB images that have been
synchronized with the point cloud. In addition to the visual data, camera-based intrinsic
and extrinsic parameters are included for calibration. Performance comparisons of sensor
configurations and comparisons between the bird’s eye view transformations and image
plane projection times demonstrated the system’s efficiency. The KITTI road benchmark
test compared the proposed method to SOTA methods. The computer specifications were
as follows: an NVIDIA RTX 3090 GPU, Intel core i9-10900X CPU, and Ubuntu 18.04 OS.
We used Python and PyTorch to build the proposed network, which consumed 195 MB
GPU memory for the inference, and the proposed network had 7.5 MB parameters. Some
examples of the road detection results projected onto the image are presented in Figure 9.
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Figure 9. Examples of the road detection result projected onto a bird’s eye view image plane. The
green pixels indicate true positives, red pixels indicate false negatives, and blue pixels indicate
false positives.

Figure 9 shows some successful cases and corner cases of proposed method. This
figure shows some inappropriate results from when the height value of the point cloud
was changing slowly, as in the case of a curved road or when the vehicle shadows are long.
However, in most cases, it can be seen that our method is robust enough for severely bad
environment such as traffic jam, small objects such as people or cyclists, and rail roads.

5.1. Performance Comparison by Sensor Configuration

Table 1 depicts the ablation experiment results and shows the advantages of using
additional point cloud geometric information with the RGB images. The KITTI training
dataset is composed of 95 urban marked (UM) images, 96 urban multiple marked (UMM)
images, and 98 urban unmarked (UU) images. One piece of data per ten images from the
training dataset was added to the test scenario validation dataset. The first environment
described the performance of the network that only used tI. The next scenario conducted a
performance test using only tL. Afterward, the proposed method using both tI and tL was
evaluated. Because the encoding paths of the first and second cases were cut in half, the
encoder’s depth was doubled to compensate for the diminished encoder. F1 measurements,
average precision, precision, and recall were compared to show performance differences
based on sensor configurations, and all measures were assessed using ground truth data in
the transformed format. The table indicates that configurations using LiDAR have higher
scores in recall but lower scores in precision than the camera-only configuration. This
is because the network frequently predicts the area outside of the road, such as a corner
curb or uphill road, as free space when geometric information is missing. This tendency
increases precision by making excessively large guesses regarding the road boundary.
However, considering the overall measurement, the results indicate that a heterogeneous
sensor configuration is better than single-sensor configurations.
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Table 1. Performance evaluations according to the sensor configuration. Best scores are highlighted
in bold.

MaxF
(%)

AP
(%)

PRE
(%)

REC
(%)

Runtime
(s/Frame)

Camera 94.31 92.16 98.31 90.63 0.024
LiDAR 94.36 92.17 96.68 92.15 0.024

Camera + LiDAR 94.91 92.88 96.39 93.48 0.025

5.2. Comparison of the Transformation Time

An LUT was utilized to transfer an image to a bird’s eye view plane, and the system
eliminated its z-axis to project a point cloud that calculated the cells’ maximum height,
maximum intensity, stashed points, and altitude difference. Since the image was already
contained in the image plane, image transformation occurred instantaneously. Point cloud
transformation occurred by multiplying three different matrices to project a 3D = {x, y, z}
point to a 2D = {u, v} pixel in the image plane. Table 2 shows the domain transformation
times. During testing, the total time to project a bird’s eye view image was 10.94 ms,
approximately 13 times faster than the time needed to transform point clouds into an image
plane (146.48 ms).

Table 2. Results of calculating the transformation time to each plane.

Data Format
Transformation Time (ms/Frame)

Bird’s Eye View Plane Image Plane

Image 0.46 0
Point cloud 10.48 146.48

5.3. KITTI Road Benchmark

Table 3 compares the proposed algorithm’s benchmark with other existing methods.
An urban scenario, including all of the categories, was assigned as the test dataset. In
addition to the evaluation measures in Table 1 (MaxF, AP, PRE, and REC), the runtime was
utilized to analyze the method’s speed–performance ratio. Some SOTA algorithms were
compared to the study’s proposed method.

Table 3. KITTI road benchmarks compared to other methods.

MaxF
(%)

AP
(%)

PRE
(%)

REC
(%)

Runtime
(ms/Frame)

Operating
Complexity

PLARD [23] 97.03 94.03 97.19 96.88 160
Heavier
network

than ours

RBANet [29] 96.30 89.72 95.14 97.50 160
LidCamNet [14] 96.03 93.93 96.23 95.83 150

NIM-RTFNet [30] 96.02 94.01 96.43 95.62 50

Study method
(BJN) 94.89 90.63 96.14 93.67 27

HA-DeepLab [10] 94.83 93.24 94.77 94.89 60
Lighter
network

than ours

LoDNN [16] 94.07 920.3 92.81 95.37 18
ChipNet [31] 94.05 88.59 93.57 94.53 12
OFANet [32] 93.74 85.37 90.36 97.38 40

Some SOTA algorithms were compared to the study’s proposed method. Here,
RBANet [29], OFANet [32], and HA-DeepLab [10] used a single sensor and camera. Like-
wise, ChipNet [31] and LoDNN [16] only used LiDAR in their proposed system. ChipNet
preprocessed point cloud data by organizing them in a spherical view, as a LiDAR naturally
scans, and LoDNN transforms the point cloud into the bird’s eye view plane. On the other
hand, PLARD [23], NIM-RTFNet [30], and LidCamNet [14] take advantage of multisensor
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data. They transform a 3D point cloud into the image plane by projecting its LiDAR
coordinates. Runtimes for all of the methods only included the prediction time without
the data transformation time. However, the proposed method’s runtime was treated as
the sum of its prediction time and transformation time. When comparing the proposed
method with other SOTA algorithms using the evaluation measures, the proposed method
was approximately 1.46% less accurate than heavier networks such as PLARD and RBANet,
which are placed above our proposed method in Table 3. However, it was almost 4.8 times
faster even though the domain transfer time was added to the network prediction time.
Furthermore, compared to the lighter methods that are ranked below our proposed method
in Table 3, such as HA-DeepLab, the study’s system showed a 0.72% improvement while
running 1.2 times faster. The bird’s eye view plane transformation to fuse data ensures
that the calibration time is extremely fast, and the channel modulation layer streamlines
the convolution module so that it improves the computing cost and execution time of the
network. After reducing the computational complexity, the HFF method that combines
feature maps with higher weights that are closer to the origin and that improved the struc-
ture that populates the plural dilated the convolution layers from a standard convolution
to diversify the gradient path. This enabled the robustness and accuracy of the system to
improve while maintaining the runtime. As a result, the proposed algorithm segmented
roads at almost real-time speeds, faster than other light methods and slightly less accurately
than other heavy methods that have demonstrated SOTA performance.

6. Conclusions

In this study, a camera–LiDAR fusion-based CNN architecture was developed to
perform bird’s eye view road detection. Common methods demand massive computa-
tional costs because they conduct several matrix multiplication computations to transform
amorphous point clouds. In the proposed method, applying a small LUT computation
to transfer standardized images to the bird’s eye view plane and eliminating the point
cloud’s z-axis created data configurations that were 10 times faster than other methods.
The transformed image and point cloud were used as independent encoder inputs to align
and extract dissimilar features and were up-sampled to the original size using the decoder.
In this process, an ERFP with a large receptive field and strong kernel expressiveness was
used. Some of the limitations of our proposed method, such as inaccurate results at a
long distance and low-resolution data as a result of data transformation, still remain and
degrade the performance. We think that these issues can be solved by considering the
dynamic kernel size of the convolution according to the distance and deep-learning data
processing. The designed road detection system is powerful, ranking 22nd in the KITTI
benchmark, and is very efficient, taking only 27 ms to perform all of the tasks.
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