
sensors

Article

Free Space Detection Using Camera-LiDAR Fusion in a Bird’s
Eye View Plane

Byeongjun Yu 1, Dongkyu Lee 1 , Jae-Seol Lee 2 and Seok-Cheol Kee 3,*

����������
�������

Citation: Yu, B.; Lee, D.; Lee, J.-S.;

Kee, S.-C. Free Space Detection Using

Camera-LiDAR Fusion in a Bird’s Eye

View Plane. Sensors 2021, 21, 7623.

https://doi.org/10.3390/s21227623

Academic Editor: Christophoros

Nikou

Received: 7 October 2021

Accepted: 11 November 2021

Published: 17 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Smart Car Engineering, Chungbuk National University, Cheongju 28644, Korea;
june9606@chungbuk.ac.kr (B.Y.); dlehdrb3909@chungbuk.ac.kr (D.L.)

2 Department of Control and Robot Engineering, Chungbuk National University, Cheongju 28644, Korea;
js87@chungbuk.ac.kr

3 Department of Intelligent Systems & Robotics, Chungbuk National University, Cheongju 28644, Korea
* Correspondence: sckee@chungbuk.ac.kr

Abstract: Although numerous road segmentation studies have utilized vision data, obtaining robust
classification is still challenging due to vision sensor noise and target object deformation. Long-
distance images are still problematic because of blur and low resolution, and these features make
distinguishing roads from objects difficult. This study utilizes light detection and ranging (LiDAR),
which generates information that camera images lack, such as distance, height, and intensity, as a
reliable supplement to address this problem. In contrast to conventional approaches, additional
domain transformation to a bird’s eye view space is executed to obtain long-range data with resolu-
tions comparable to those of short-range data. This study proposes a convolutional neural network
architecture that processes data transformed to a bird’s eye view plane. The network’s pathways
are split into two parts to resolve calibration errors in the transformed image and point cloud. The
network, which has modules that operate sequentially at various scaled dilated convolution rates, is
designed to quickly and accurately handle a wide range of data. Comprehensive empirical studies
using the Karlsruhe Institute of Technology and Toyota Technological Institute’s (KITTI’s) road
detection benchmarks demonstrate that this study’s approach takes advantage of camera and LiDAR
information, achieving robust road detection with short runtimes. Our result ranks 22nd in the
KITTI’s leaderboard and shows real-time performance.

Keywords: autonomous vehicle; bird’s eye view transformation; convolutional neural network;
heterogeneous sensor fusion; road detection; semantic segmentation

1. Introduction

Autonomous vehicles and advanced driver assistance systems (ADAS) are currently
being improved. As computational capability progresses and markets grow, the au-
tonomous vehicle is no longer an imaginary concept: it is slowly becoming a possibility.
Free space detection, which classifies whether pixels are navigable by analyzing frontal
environmental information with RGB color data and depth information, is essential in in-
telligent driving. Accurate detection is needed to guarantee safe driving and fast algorithm
execution times and includes accurate sensor calibration and network outputs, especially
when driving at high speeds.

Due to rapid developments in deep learning technology, efficient and novel feature
extractors based on networks that solve semantic segmentation problems have been ex-
amined, and these can be applied to road segmentation [1,2]. Studies conducted by Chen
et al. [2] and Yu and Koltun [3] overcame limited computer resources, extracted features at
various scales, and made accurate semantic detections using large receptive fields. Along
with accurate modules, various methods increased computation speeds by modifying the
modules’ breadth or depth [1,4]. Moreover, several modules that enhance the expressive-
ness of their kernel’s robust features have been announced. These modules have revised

Sensors 2021, 21, 7623. https://doi.org/10.3390/s21227623 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9418-3973
https://doi.org/10.3390/s21227623
https://doi.org/10.3390/s21227623
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21227623
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21227623?type=check_update&version=1

Sensors 2021, 21, 7623 2 of 15

convolutional and feature-extraction capabilities, both of which are used to create rich
data [5–7]. Most methods that solve the free space detection problem use an image-based
encoder–decoder structure [8,9]. Thanks to advances in semantic segmentation, numerous
methods that distinguish obstacles from roads have been developed. However, single
image data processing networks are strongly affected by illumination changes. They are
not robust enough to filter out visual noise, such as blurry images and overexposure,
producing incorrect results and lowering confidence in obtaining accurate detection results.
Unlike cameras, which are passive sensors, LiDARs, which are active sensors, are more
robust to changes in the surrounding environment and provide physical data, such as
distance, height, and intensity, to complement visual data shortcomings. The stereo camera
has physical data [10] that are similar to those that a LiDAR sensor has by computing a
disparity map. Fan et al. [11] and Liu et al. [12] proposed stereo vision-based free space de-
tection. Fan et al. [11] generated additional driving scene images and conducted semantic
segmentation DCNN. Liu et al. [12] calculated a disparity map to obtain a vanishing line
via a road surface model and detected road boundaries. However, the stereo vision method
suffered from poor long-distance data that were more sensitive and unreliable than LiDAR.

RGB pixel data are combined with light detection and ranging (LiDAR) information
that does not exist in a visual image to compensate for visual data shortcomings. LiDAR
coordinates, as point cloud data, are projected onto the image plane during heterogeneous
sensor calibration, which demands considerable operational time. Han et al. [13] and
Caltagirone et al. [14] used camera pixel color data and LiDAR distances as inputs to a
convolutional neural network (CNN) to segment free space. Additionally, Zhuang et al. [15]
projected point cloud on image plane for 3D LiDAR semantic segmentation.

Aside from examining frontal data, transformed a data format has also been used.
Caltagirone et al. [16] transformed unstructured point clouds into a bird’s eye view that
was suitable for detecting roads with a CNN. Lu et al. [17], Roddick and Cipolla [18],
and Wang et al. [19] utilized transformed bird’s eye view data. Roddick and Cipolla [18]
predicted bird’s eye view maps directly from monocular images by incorporating a
multiscale transformer pyramid to wrap image-based features to the bird’s eye view, and
Wang et al. [19] transformed and fused features from different views of the LIDAR point
cloud and images from cameras to detect 3D objects. This transformation method is able
to effortlessly use geometric information from cameras to produce the best performance
detector. Lee and Park [20] transformed a point cloud and an image into spherical
coordinates to facilitate faster data transfer. Yang et al. [21] stitched images together to
make an omnidirectional view and conducted panoramic semantic perception.

The main proposes of our study are listed below. We reduced the entire runtime and
obtained a similar performance by changing the fusion method and convolution module
and by adding some data preprocess:

• We employ a data-fusion method that quickly transforms a point cloud to a bird’s eye
view rather than projecting it to an image plane, which requires more computational
power. Here, the calibration time is reduced by projecting the data onto a plane instead
of using a perspective transformation that multiplies several matrices such as sensor
coordinate transformation, image plane projection, and undistortion.

• The data are RGB colors obtained from the transformed image and the z-axis measure-
ments, point stack, and intensity [22]. The altitude difference [23] from the transformed
point cloud is used as the network input by fusing camera and LiDAR data in the
bird’s eye view plane.

• In addition to selecting an uncommon domain, improved modules are utilized to
create a lightweight network with a large receptive field that can extract features
efficiently [1,5].

In conclusion, the proposed system performs at a near real-time operating speed of
over 37 FPS by applying quick calibration, obtains a MaxF of 94.89%, and ranks 22nd on
the KITTI road benchmarks leaderboard.

Sensors 2021, 21, 7623 3 of 15

2. Related Works

Free space detection presents an informative perception of the environment to
autonomous vehicles. For several decades, research based on image processing has
been expanding to address road segmentation problems. Ying et al. [1], Falola et al. [2],
and Gao et al. [3] propose boundary detection-based approaches for identifying road
regions. Approaches using region-based features have also been employed in free
space detection. Various region-based road detection algorithms such as texture-based
approaches [4,5] that identify textural differences between road and road-off regions
and color-based approaches [6,7] that examine the characteristics of roads in color
images have been developed.

Along with algorithms based on low-level features, many studies attempting to
solve segmentation problems with deep CNNs have been carried out [8], and studies
that considered free space problems to be semantic segmentation tasks have been
conducted [8–10]. Similar to Fuse-Net [14], which combines geometric information
from a LiDAR output with color data to tackle the segmentation problem, many studies
using LiDAR for free space detection have been published. Nakagomi et al. [16],
Gu et al. [17] and Caltagirone et al. [16] configured data from a single LiDAR to find
navigable areas, and Han et al. [10] and Caltagirone et al. [14] fused images and point
clouds to detect free space.

Algorithms for transformation from conventional frontal domains to other domains
have been developed. For instance, Kühnl et al. [20] applied a bird’s eye view transform
to streamline the complex scenarios of urban traffic, transformed point cloud [16] and
image [17] data to a bird’s eye view as an input to a deep CNN, and developed a coordinate
transformation from a Cartesian to a spherical model for the fast calibration of LiDARs and
cameras [20].

Multisensor fusion algorithms can be divided into model-based white box and deep
neural network (DNN)-based black box algorithms. The model-based method [1] processes
sensor fusion by accumulating information about one object from multiple sensors. A
Gaussian mixture finds the best measurement association and matches a single association
from each sensor to make the fusion procedure more efficient. After the data association
step, an unscented Kalman filter predicts object positions. The DNN-based method [2]
takes advantage of DNN to sensor fusion. It selects intermediate fusion among early, late,
and intermediate fusion candidates to achieve a more general, fast, and accurate prediction.
A fusion block that exploits sensor information at each level and feeds the next block is
proposed to fuse features from different sensors hierarchically.

In this paper, we propose a deep CNN-based system that obtains point clouds and
images as inputs to detect free space, similar to other state-of-the-art (SOTA) methods.
Furthermore, it transforms data into a bird’s eye view to reduce the calibration time and
run time. Our transformation uses a rotation matrix based on homogeneous coordinates
and a look-up table (LUT) to fuse the images and point clouds in the bird’s eye view.
Further-more, minor calibration errors are resolved in a network layer. Figure 1 shows lists
of the overall contributions of this paper in terms of computing complexity and accuracy.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 15

In conclusion, the proposed system performs at a near real-time operating speed of

over 37 FPS by applying quick calibration, obtains a MaxF of 94.89%, and ranks 22nd on

the KITTI road benchmarks leaderboard.

2. Related Works

Free space detection presents an informative perception of the environment to au-

tonomous vehicles. For several decades, research based on image processing has been ex-

panding to address road segmentation problems. Ying et al. [1], Falola et al. [2], and Gao

et al. [3] propose boundary detection-based approaches for identifying road regions. Ap-

proaches using region-based features have also been employed in free space detection.

Various region-based road detection algorithms such as texture-based approaches [4,5]

that identify textural differences between road and road-off regions and color-based ap-

proaches [6,7] that examine the characteristics of roads in color images have been devel-

oped.

Along with algorithms based on low-level features, many studies attempting to solve

segmentation problems with deep CNNs have been carried out [8], and studies that con-

sidered free space problems to be semantic segmentation tasks have been conducted [8–

10]. Similar to Fuse-Net [14], which combines geometric information from a LiDAR output

with color data to tackle the segmentation problem, many studies using LiDAR for free

space detection have been published. Nakagomi et al. [16], Gu et al. [17] and Caltagirone

et al. [16] configured data from a single LiDAR to find navigable areas, and Han et al. [10]

and Caltagirone et al. [14] fused images and point clouds to detect free space.

Algorithms for transformation from conventional frontal domains to other domains

have been developed. For instance, Kühnl et al. [20] applied a bird’s eye view transform

to streamline the complex scenarios of urban traffic, transformed point cloud [16] and im-

age [17] data to a bird’s eye view as an input to a deep CNN, and developed a coordinate

transformation from a Cartesian to a spherical model for the fast calibration of LiDARs

and cameras [20].

Multisensor fusion algorithms can be divided into model-based white box and deep

neural network (DNN)-based black box algorithms. The model-based method [1] pro-

cesses sensor fusion by accumulating information about one object from multiple sensors.

A Gaussian mixture finds the best measurement association and matches a single associ-

ation from each sensor to make the fusion procedure more efficient. After the data associ-

ation step, an unscented Kalman filter predicts object positions. The DNN-based method

[2] takes advantage of DNN to sensor fusion. It selects intermediate fusion among early,

late, and intermediate fusion candidates to achieve a more general, fast, and accurate pre-

diction. A fusion block that exploits sensor information at each level and feeds the next

block is proposed to fuse features from different sensors hierarchically.

In this paper, we propose a deep CNN-based system that obtains point clouds and

images as inputs to detect free space, similar to other state-of-the-art (SOTA) methods.

Furthermore, it transforms data into a bird’s eye view to reduce the calibration time and

run time. Our transformation uses a rotation matrix based on homogeneous coordinates

and a look-up table (LUT) to fuse the images and point clouds in the bird’s eye view.

Further-more, minor calibration errors are resolved in a network layer. Figure 1 shows

lists of the overall contributions of this paper in terms of computing complexity and accu-

racy.

Figure 1. Lists of the proposed contribution of study.

3. Data Transformations

This section discusses a transformation method that projects a LiDAR point cloud onto
a compatible set of 2D images, a format commonly used in CNNs for road detection. The

Sensors 2021, 21, 7623 4 of 15

proposed transformation method identifies the bird’s eye view coordinates that correspond
to the 3D point cloud coordinates. Figure 2c is an example of a point cloud projected onto
an image plane.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 15

Figure 1. Lists of the proposed contribution of study.

3. Data Transformations

This section discusses a transformation method that projects a LiDAR point cloud

onto a compatible set of 2D images, a format commonly used in CNNs for road detection.

The proposed transformation method identifies the bird’s eye view coordinates that cor-

respond to the 3D point cloud coordinates. Figure 2c is an example of a point cloud pro-

jected onto an image plane.

(a)

(b)

(c)

Figure 2. Examples of visual data. (a) The 3D point cloud raw data with 64-channel light detection

and LiDAR data, (b) the 2D image with 1242 × 375 pixels, and (c) LiDAR data projected onto the

image plane.

3.1. Perspective Transformation

Perspective transformation converts a point cloud in the LiDAR coordinates to pixel

data coordinates in an image plane using intrinsic and extrinsic parameters [14]. Doing so

fuses the camera data and the LiDAR data. In other words, a transformation matrix is

applied to a 3D point 𝑝𝑙 = (𝑥, 𝑦, 𝑧, 1)𝑇 and is matched with a 2D pixel 𝑝𝑖 = (𝑢, 𝑣, 1)𝑇. In

Equation (1), the transformation matrix rotation and the translation are T, the rectification

matrix is R, and the camera-intrinsic matrix is K. Here, the 𝑝𝑖 coincident with the projected

𝑝𝑙 is expressed as:

𝜆 𝑝𝑖 = K R T 𝑝𝑙 (1)

where 𝜆 is a scaling factor. T rotates and translates the LiDAR coordinates to camera co-

ordinates and can be expressed as:

T = [

𝑟00 𝑟01 𝑟02 𝑡𝑥

𝑟10 𝑟11 𝑟12 𝑡𝑦

𝑟20 𝑟21 𝑟22 𝑡𝑧

0 0 0 1

], (2)

where 𝑟𝑖𝑗 and 𝑡𝑘 are rotation parameters (roll, pitch, and yaw) and translation parameters,

respectively. R transforms coordinates to normalized coordinates, and K projects them to

pixel coordinates. These variables are expressed as:

R = [
1 0 0 0
0 1 0 0
0 0 1 0

],

K = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

],

(3)

Figure 2. Examples of visual data. (a) The 3D point cloud raw data with 64-channel light detection
and LiDAR data, (b) the 2D image with 1242 × 375 pixels, and (c) LiDAR data projected onto the
image plane.

3.1. Perspective Transformation

Perspective transformation converts a point cloud in the LiDAR coordinates to pixel
data coordinates in an image plane using intrinsic and extrinsic parameters [14]. Doing
so fuses the camera data and the LiDAR data. In other words, a transformation matrix is
applied to a 3D point pl = (x, y, z, 1)T and is matched with a 2D pixel pi = (u, v, 1)T . In
Equation (1), the transformation matrix rotation and the translation are T, the rectification
matrix is R, and the camera-intrinsic matrix is K. Here, the pi coincident with the projected
pl is expressed as:

λ pi = K R T pl (1)

where λ is a scaling factor. T rotates and translates the LiDAR coordinates to camera
coordinates and can be expressed as:

T =

r00 r01 r02 tx
r10 r11 r12 ty
r20 r21 r22 tz
0 0 0 1

, (2)

where rij and tk are rotation parameters (roll, pitch, and yaw) and translation parameters,
respectively. R transforms coordinates to normalized coordinates, and K projects them to
pixel coordinates. These variables are expressed as:

R =

 1 0 0 0
0 1 0 0
0 0 1 0

,K =

 fx 0 cx
0 fy cy
0 0 1

, (3)

where f and c represent the lens focal length and principal pixel point, respectively. The
matrices in (1) project vast amounts of points, nearly 100 k per frame, from LiDAR into a
uniform image container. The LiDAR geometric data are then in the image’s format, and
the camera’s color information along with the LiDAR range data are input to a CNN to
detect free space.

Sensors 2021, 21, 7623 5 of 15

3.2. Bird’s Eye View Transformation

Bird’s eye view transformation is a method that changes an image’s orientation
to where it is parallel to the ground. Because the data need to be rotated and trans-
lated, the image coordinates are transformed into normalized coordinates. Equation (4)
shows the transformation matrix that changes pi = (u, v, 1)T in the image coordinates to
pn = (Xn, Yn, 1)T in the normalized coordinates, where K is the camera-intrinsic matrix
from Equation (3).

pn = K−1 pi, (4)

After the coordinate system changes, the T matrix, similar to Equation (2), reconfigures
pn to pu = (Xu, Yu, 1)T in the normalized bird’s eye view coordinates to adjust the axis to
those coordinates. Finally, pu is projected onto the bird’s eye view plane, pb = (x, y, 1)T ,
by adjusting the scale. Equation (5) is the projection formula:

λ pb =

 Sx 0 ctx
0 Sy cty
0 0 1

pu, (5)

where λ is the scaling factor, S(x, y) is the image height ratio, and c(tx, ty) is the principal
point in the bird’s eye view plane.

However, the transformation comes with an aliasing issue caused by insufficient
discrete data, so an inverse transformation is used to convert the coordinates for anti-
aliasing to address this issue. Figure 3 shows an example of the transformation issue and
the anti-aliasing transformation.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 15

where f and c represent the lens focal length and principal pixel point, respectively. The

matrices in (1) project vast amounts of points, nearly 100 k per frame, from LiDAR into a

uniform image container. The LiDAR geometric data are then in the image’s format, and

the camera’s color information along with the LiDAR range data are input to a CNN to

detect free space.

3.2. Bird’s Eye View Transformation

Bird’s eye view transformation is a method that changes an image’s orientation to

where it is parallel to the ground. Because the data need to be rotated and translated, the

image coordinates are transformed into normalized coordinates. Equation (4) shows the

transformation matrix that changes 𝑝𝑖 = (𝑢, 𝑣, 1)𝑇 in the image coordinates to 𝑝𝑛 =

(𝑋𝑛, 𝑌𝑛, 1)𝑇 in the normalized coordinates, where K is the camera-intrinsic matrix from

Equation (3).

𝑝𝑛 = K−1𝑝𝑖, (4)

After the coordinate system changes, the T matrix, similar to equation (2), reconfig-

ures 𝑝𝑛 to 𝑝𝑢 = (𝑋𝑢, 𝑌𝑢, 1)𝑇 in the normalized bird’s eye view coordinates to adjust the axis

to those coordinates. Finally, 𝑝𝑢 is projected onto the bird’s eye view plane, 𝑝𝑏 = (𝑥, 𝑦, 1)𝑇,

by adjusting the scale. Equation (5) is the projection formula:

𝜆 𝑝𝑏 = [
𝑆𝑥 0 𝑐𝑡𝑥

0 𝑆𝑦 𝑐𝑡𝑦

0 0 1

] 𝑝𝑢, (5)

where λ is the scaling factor, 𝑆(𝑥,𝑦) is the image height ratio, and 𝑐(𝑡𝑥,𝑡𝑦) is the principal

point in the bird’s eye view plane.

However, the transformation comes with an aliasing issue caused by insufficient dis-

crete data, so an inverse transformation is used to convert the coordinates for anti-aliasing

to address this issue. Figure 3 shows an example of the transformation issue and the anti-

aliasing transformation.

(a) (b)

Figure 3. Different transformation methods. (a) Data transformed from image coordinates to bird’s

eye view coordinates and (b) data transformed from bird’s eye view coordinates to image coordi-

nates.

As opposed to the previous procedure, the inverse transformation finds a point 𝑝𝑖 =

(𝑢, 𝑣, 1)𝑇 that is homologous with 𝑝𝑏 = (𝑥, 𝑦, 1)𝑇 from the image and bird’s eye view coor-

dinates, respectively. The pixel 𝑝𝑖 can be found from 𝑝𝑏 by multiplying it with the inverse

of the matrix that projects the data to the bird’s eye view plane. The matrix R rotates and

translates the coordinates’ axes, and the intrinsic matrix K projects the image coordinates

from the normalized coordinates. Since both pre- and post-transformed data were filled

into a structured data container (the image), transforming 𝑝𝑏 to 𝑝𝑖 is a function. Here, the

bird’s eye view image is the domain, and the original image is the codomain. Therefore,

Figure 3. Different transformation methods. (a) Data transformed from image coordinates to bird’s
eye view coordinates and (b) data transformed from bird’s eye view coordinates to image coordinates.

As opposed to the previous procedure, the inverse transformation finds a point
pi = (u, v, 1)T that is homologous with pb = (x, y, 1)T from the image and bird’s eye
view coordinates, respectively. The pixel pi can be found from pb by multiplying it with
the inverse of the matrix that projects the data to the bird’s eye view plane. The matrix R
rotates and translates the coordinates’ axes, and the intrinsic matrix K projects the image
coordinates from the normalized coordinates. Since both pre- and post-transformed
data were filled into a structured data container (the image), transforming pb to pi
is a function. Here, the bird’s eye view image is the domain, and the original image
is the codomain. Therefore, instead of performing a time-consuming set of matrix
multiplications, a lookup table (LUT) can be used to obtain transformations faster. The
table stores precalculated transformations from pi to pb , so it does not perform matrix
multiplications for every transformation but projects color data by simply building a
coordinate correspondence map.

Sensors 2021, 21, 7623 6 of 15

The transformed point cloud geometric information combined with a transformed
image is used as an input to the CNN. Two steps are needed to transform the unstructured
3D data point cloud into structured 2D data suitable for CNN input. First, a cell with
measurements corresponding to one pixel is constructed to project the point cloud’s x–y
plane onto the 2D image plane. The cell size is set to 0.1× 0.1 m and is projected from a
20 m wide y ∈ [−10, 10] m by s 40 m long x ∈ [6, 46] m cell into 200× 400 pixels. Next, four
sets of channel data, including the maximum height, the number of points, maximum cell
intensity, and altitude difference from surrounding cells, are inserted in the image format.
The transformed data are shown in Figure 4.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 15

instead of performing a time-consuming set of matrix multiplications, a lookup table

(LUT) can be used to obtain transformations faster. The table stores precalculated trans-

formations from 𝑝𝑖 to 𝑝𝑏, so it does not perform matrix multiplications for every transfor-

mation but projects color data by simply building a coordinate correspondence map.

The transformed point cloud geometric information combined with a transformed

image is used as an input to the CNN. Two steps are needed to transform the unstructured

3D data point cloud into structured 2D data suitable for CNN input. First, a cell with

measurements corresponding to one pixel is constructed to project the point cloud’s x–y

plane onto the 2D image plane. The cell size is set to 0.1 × 0.1 m and is projected from a

20 m wide 𝑦 ∈ [−10,10] m by s 40 m long 𝑥 ∈ [6,46] m cell into 200 × 400 pixels. Next,

four sets of channel data, including the maximum height, the number of points, maximum

cell intensity, and altitude difference from surrounding cells, are inserted in the image

format. The transformed data are shown in Figure 4.

 (a) (b)

(c) (d) (e) (f)

Figure 4. Examples of data transformed to the bird’s eye view. (a) Image and (b) point cloud,

ignoring 4th channels. The bottom row shows examples of each channel’s point cloud data in gray-

scale, (c) max height value in a cell, (d) max intensity value in a cell, (e) number of points in a cell,

and (f) altitude difference from surrounding cells.

4. Bird’s Eye View Free Space Detection

Figure 5 shows the overall system architecture including data transformation and

road prediction. The first box, labelled as Top-view Transformation, takes visual data and

preprocess them, as noted in Section 3. Additionally, the second box, labelled CNN, pre-

dicts free space using the proposed network and will be discussed in this section. For a

given transformed RGB image (tI) and projected point cloud (tL) generated by projecting

both the image and the LiDAR points to a bird’s eye view plane with extrinsic parameters,

the proposed system targets free space (F)

Figure 4. Examples of data transformed to the bird’s eye view. (a) Image and (b) point cloud, ignoring 4th channels. The
bottom row shows examples of each channel’s point cloud data in grayscale, (c) max height value in a cell, (d) max intensity
value in a cell, (e) number of points in a cell, and (f) altitude difference from surrounding cells.

4. Bird’s Eye View Free Space Detection

Figure 5 shows the overall system architecture including data transformation and
road prediction. The first box, labelled as Top-view Transformation, takes visual data
and preprocess them, as noted in Section 3. Additionally, the second box, labelled CNN,
predicts free space using the proposed network and will be discussed in this section. For a
given transformed RGB image (tI) and projected point cloud (tL) generated by projecting
both the image and the LiDAR points to a bird’s eye view plane with extrinsic parameters,
the proposed system targets free space (F).

The additional tL data help the system divide curbstones or objects from the road
to segment it using information such as the height or intensity. This section discusses
a system that has been designed to detect free space. Section 4.1 describes an efficient
receptive field pyramid (ERFP) module, which makes the model lightweight and accurate.
Section 4.2 describes an encoder–decoder-based multipath network composed of ERFP
modules. Section 4.3 depicts the data augmentation methods employed for their robustness
when handling distortions.

Sensors 2021, 21, 7623 7 of 15Sensors 2021, 21, x FOR PEER REVIEW 7 of 15

Figure 5. Overall system architecture. RGB stands for the image’s color information. H, I, P, and A

represent the maximum height, maximum intensity, number of points, and altitude difference, re-

spectively. The left-hand images in the first block show their original format, and the right-hand

images show their transformed format.

The additional tL data help the system divide curbstones or objects from the road to

segment it using information such as the height or intensity. This section discusses a sys-

tem that has been designed to detect free space. Section 4.1 describes an efficient receptive

field pyramid (ERFP) module, which makes the model lightweight and accurate. Section

4.2 describes an encoder–decoder-based multipath network composed of ERFP modules.

Section 4.3 depicts the data augmentation methods employed for their robustness when

handling distortions.

4.1. Efficient Receptive Field Pyramid Module

An example of an ERFP module is depicted in Figure 6. ERFP is a method that organ-

izes a spatial pyramid of varied scales that have been extracted from a single feature map

[2,5,6]. The ERFP module that populates the network is a factorized form of a spatial pyr-

amid with a pointwise convolution layer that modulates several channels for quick oper-

ation.

Figure 6. Schematic flow chart for the proposed module’s efficient receptive field pyramid (ERFP). After a feature map’s

depth is fed as input and the depth is reduced to D/P divided by the number of pyramids P using pointwise convolution,

standard convolutions are applied with various kernel sizes. Dilated convolutions with dilation rates proportional to the

Figure 5. Overall system architecture. RGB stands for the image’s color information. H, I, P, and A represent the maximum
height, maximum intensity, number of points, and altitude difference, respectively. The left-hand images in the first block
show their original format, and the right-hand images show their transformed format.

4.1. Efficient Receptive Field Pyramid Module

An example of an ERFP module is depicted in Figure 6. ERFP is a method that
organizes a spatial pyramid of varied scales that have been extracted from a single
feature map [2,5,6]. The ERFP module that populates the network is a factorized form of
a spatial pyramid with a pointwise convolution layer that modulates several channels
for quick operation.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 15

Figure 5. Overall system architecture. RGB stands for the image’s color information. H, I, P, and A

represent the maximum height, maximum intensity, number of points, and altitude difference, re-

spectively. The left-hand images in the first block show their original format, and the right-hand

images show their transformed format.

The additional tL data help the system divide curbstones or objects from the road to

segment it using information such as the height or intensity. This section discusses a sys-

tem that has been designed to detect free space. Section 4.1 describes an efficient receptive

field pyramid (ERFP) module, which makes the model lightweight and accurate. Section

4.2 describes an encoder–decoder-based multipath network composed of ERFP modules.

Section 4.3 depicts the data augmentation methods employed for their robustness when

handling distortions.

4.1. Efficient Receptive Field Pyramid Module

An example of an ERFP module is depicted in Figure 6. ERFP is a method that organ-

izes a spatial pyramid of varied scales that have been extracted from a single feature map

[2,5,6]. The ERFP module that populates the network is a factorized form of a spatial pyr-

amid with a pointwise convolution layer that modulates several channels for quick oper-

ation.

Figure 6. Schematic flow chart for the proposed module’s efficient receptive field pyramid (ERFP). After a feature map’s

depth is fed as input and the depth is reduced to D/P divided by the number of pyramids P using pointwise convolution,

standard convolutions are applied with various kernel sizes. Dilated convolutions with dilation rates proportional to the

Figure 6. Schematic flow chart for the proposed module’s efficient receptive field pyramid (ERFP). After a feature
map’s depth is fed as input and the depth is reduced to D/P divided by the number of pyramids P using pointwise
convolution, standard convolutions are applied with various kernel sizes. Dilated convolutions with dilation rates
proportional to the kernel size are used to extract differing scales. Using the pyramid made by collecting P latent
feature maps, whose depth D/P * with expansion rate E is applied with hierarchical feature fusion (HFF), the output
feature map with depth D * E is formed.

Pointwise convolution is a (1× 1) convolution that reduces the computational pa-
rameters to increase a network’s speed. A conventional spatial pyramid takes the input
feature map Fin ∈ R(Cin×H×W) and outputs Fout ∈ R(Cout×H×W) using P dilated convolu-
tions with (k × k)-sized kernels and dilation rates given by 2p−1, (p = 1, 2, 3, · · · , P).
Here, H and W are the feature map’s height and width, and Cin and Cout are the feature

Sensors 2021, 21, 7623 8 of 15

map’s channels. Hence, the original pyramid has learnable k2·Cin · Cout ·P parameters
to produce an output feature map. The ERFP module exploits the parameter P, the
stacked dilated convolution number, to reduce the number of parameters. After ap-
plying a pointwise convolution that reduces the input feature’s depth by 1/P, there

are k2 ·Cin ·Cout+Cin
2

P parameters when stacking the P pyramid with dilation convolution

using the Cin
2

P parameters of the input’s reducing channel and the output’s k2 ·Cin ·Cout
P

parameters from the downsized input feature map. Pointwise convolution reduces the

parameters by a factor of k2 ·P2 ·Cin ·Cout
k2 ·Cin ·Cout+Cin

2 . For one of the hyperparameters employed in
the network, P = 8, k = 3, Cin = 32, and Cout = 64, so this study’s system has 60.6 times
fewer parameters than a conventional spatial pyramid does.

The next layers include standard convolutions with multi-sized kernels that assem-
ble differing feature scales and dilated convolutions with dilation rates in proportion to
their size, which allows a large receptive field and shortened computation. Thanks to
the channel modulation layer reducing the entire computational cost, a pair of dilated
convolutions from each standard convolution is additionally supplemented to create richer
representations. By combining these layers, including the depth modulating convolution,
standard convolution, and dilated convolution, ERFP can cover a wide region with varied
scales using small operating quantities.

The pyramid of various scale features is the layer that extracts more varied scale
features than extractions from a single scale input. The input, which shrinks to 1/P
of its channel, was sampled into the varied scaled information using a different sized
receptive field of standard convolutions. P/2 standard convolutions with the kernel
size (k × k), where k = 2q−1,

(
q = 1, 2, 3, · · · , P

2

)
, splits the reduced input into P/2

branches with differing extent information. After this, dilated convolution with a
dilation rate proportional to the receptive field is applied to obtain information at dif-
ferent scales from the same sized input and is composed of features at varied distances.
Two dilation rates in each branch’s dilated convolutions are used to create a P feature
pyramid from the P/2 branches.

This study utilizes a method that combines hierarchical feature fusion (HFF) and
concatenation to merge feature pyramids. HFF is a merging method that adds feature maps
with larger receptive fields more frequently than maps with smaller receptive fields. This
technique resolves the checkerboard problem and takes advantage of a large receptive field
without losing the starting pixel’s characteristics due to a weighted value that decreases
as the distance increases. The latent feature maps, whose depth is treated as Cout/P, are
sequenced for the output feature pyramid. Its sequential output is connected to the input
feature map to take advantage of the skip layer’s strengths.

4.2. Structure of the Network

Figure 7 shows the proposed network with its encoder–decoder-based structure.
Its feature-extracting encoder contains encoding path L, which explores the point cloud
features, and encoding path I, which investigates the image’s salient features. There are
three reasons to go through two independent encoder paths instead of concatenating the
input point cloud and image during the first step. First, the encoder paths are split to
align location errors caused by inaccurately calibrating the image and point cloud while
transforming their data into a bird’s eye view in the feature map’s latent layer.

Through the feature compression encoding process and answer extraction decoding
process, convolution kernels learn parameters to calculate properly weighted sums that
not only detect roads but also handle calibration errors, and two symmetric branches
are used to enhance adjustment, such as CalibNet [24]. Second, this approach avoids
nullifying point cloud features with sparse density. Third, the robust characteristics of the
image and point cloud are different, allowing the differentiated paths to encode dissimilar
features. After encoding, the decoding process detects free space by upscaling the reduced
feature map to its original size. Pixel-Shuffle is used to upscale the feature map during

Sensors 2021, 21, 7623 9 of 15

the decoding process [25]. It uses depth information to provide width information, which
separates the object’s outline more clearly. It utilizes the encoder’s same-level features
to provide a shortcut to obtain longer gradient paths as the feature map becomes more
upsampled while allowing the network to learn from various gradients. Features from I
and L are added and concatenated with same-sized decoder features as an input for the
next decoding layer. This skip layer is applied at every level where the feature map size is
the same for the encoder and decoder.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 15

location errors caused by inaccurately calibrating the image and point cloud while trans-

forming their data into a bird’s eye view in the feature map’s latent layer

Figure 7. Structure of the network. The proposed network is based on an encoder–decoder formation that has split encod-

ing paths. The image and point cloud are encoded individually and are processed in a flattened decoder to detect free

roads. The encoded image and a point cloud at the same encoder level are combined and linked to the decoding path to

compose the skip layer.

Through the feature compression encoding process and answer extraction decoding

process, convolution kernels learn parameters to calculate properly weighted sums that

not only detect roads but also handle calibration errors, and two symmetric branches are

used to enhance adjustment, such as CalibNet [24]. Second, this approach avoids nullify-

ing point cloud features with sparse density. Third, the robust characteristics of the image

and point cloud are different, allowing the differentiated paths to encode dissimilar fea-

tures. After encoding, the decoding process detects free space by upscaling the reduced

feature map to its original size. Pixel-Shuffle is used to upscale the feature map during the

decoding process [25]. It uses depth information to provide width information, which sep-

arates the object’s outline more clearly. It utilizes the encoder’s same-level features to pro-

vide a shortcut to obtain longer gradient paths as the feature map becomes more upsam-

pled while allowing the network to learn from various gradients. Features from I and L

are added and concatenated with same-sized decoder features as an input for the next

decoding layer. This skip layer is applied at every level where the feature map size is the

same for the encoder and decoder.

In addition, the ERFPt module, which has a relatively small receptive field, is used at

the levels with feature maps smaller than a quarter of their original size for both the en-

coder and the decoder. The ERFPt module utilizes fewer standard convolutions with dif-

ferent sizes to lessen the number of pyramids that is generated while creating two feature

maps per branch. It lessens memory usage and computations by conducting the convolu-

tion operation less frequently.

4.3. Data Augmentation and Learning Details

This subsection explores data augmentation, which yields diverse training datasets

through distortion, and the learning details used for obtaining optimal network parame-

ters. Because the transformed data that are being utilized as the network’s input has sim-

ilar distributions of close and distant pixels, it is vulnerable to the distortion that caused

Figure 7. Structure of the network. The proposed network is based on an encoder–decoder formation that has split encoding
paths. The image and point cloud are encoded individually and are processed in a flattened decoder to detect free roads.
The encoded image and a point cloud at the same encoder level are combined and linked to the decoding path to compose
the skip layer.

In addition, the ERFPt module, which has a relatively small receptive field, is used
at the levels with feature maps smaller than a quarter of their original size for both the
encoder and the decoder. The ERFPt module utilizes fewer standard convolutions with
different sizes to lessen the number of pyramids that is generated while creating two
feature maps per branch. It lessens memory usage and computations by conducting the
convolution operation less frequently.

4.3. Data Augmentation and Learning Details

This subsection explores data augmentation, which yields diverse training datasets
through distortion, and the learning details used for obtaining optimal network parameters.
Because the transformed data that are being utilized as the network’s input has similar
distributions of close and distant pixels, it is vulnerable to the distortion that caused by tall
objects and slopes. Most notably, it takes advantage of geometric augmentation, which is
resistant to noise generated from inclinations.

Figure 8 shows examples of failed and successful cases. Augmentations such as scale
augmentation (adjusts the bird’s eye view transformation’s height), incline augmentation
(controls the road angle by adjusting the rotation matrix’s pitch), and 3D augmentation
(modifies various axes) support the ability to distinguish transformed objects.

The training was conducted on 2000 epochs using the Adam optimization algorithm
with a learning rate of 0.0001 [26]. After reaching 1000 epochs, the learning rate was set to
decrease to 1/10 over 1000 iterations exponentially, and the weight decay was set to 0.0001.
A mish function was used as an activation function in the network, which was defined
as x·tanh(so f tplus(x)), where so f tplus(x) = ln(1 + ex) [27]. Through many properties

Sensors 2021, 21, 7623 10 of 15

such as the unbounded positive domain, bounded negative domain, non-monotonic shape,
and smooth derivative, mish reduced our training time and provided performance in this
experiment. This function computed and saved the Jacobian matrices of all of the layers
in order to propagate learning. These matrix multiplications are an inefficient compu-
tational process from a memory usage perspective, as they increase the network’s GPU
memory share. Therefore, to increase the GPU’s memory efficiency, the mish function’s
derivative, f ′(x) = tanh(so f tplus(x)) + x·sigmoid(x)·sech(so f tplus(x))2, where f (x) is
the mish function, was calculated in advance and was implemented by diving the forward
and backward sections for network learning. The Algorithm 1 that shows the function’s
efficient application is provided in this study.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 15

by tall objects and slopes. Most notably, it takes advantage of geometric augmentation,

which is resistant to noise generated from inclinations.

Figure 8 shows examples of failed and successful cases. Augmentations such as scale

augmentation (adjusts the bird’s eye view transformation’s height), incline augmentation

(controls the road angle by adjusting the rotation matrix’s pitch), and 3D augmentation

(modifies various axes) support the ability to distinguish transformed objects.

Figure 8. Examples of results with and without data augmentation. (a) Input image; (b) a result of

training without augmentation; (c) a result of training with augmentation.

The training was conducted on 2000 epochs using the Adam optimization algorithm

with a learning rate of 0.0001 [26]. After reaching 1000 epochs, the learning rate was set to

decrease to 1/10 over 1000 iterations exponentially, and the weight decay was set to 0.0001.

A mish function was used as an activation function in the network, which was defined as

𝑥 ∙ 𝑡𝑎𝑛ℎ(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)), where 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = ln (1 + 𝑒𝑥) [27]. Through many properties

such as the unbounded positive domain, bounded negative domain, non-monotonic

shape, and smooth derivative, mish reduced our training time and provided performance

in this experiment. This function computed and saved the Jacobian matrices of all of the

layers in order to propagate learning. These matrix multiplications are an inefficient com-

putational process from a memory usage perspective, as they increase the network’s GPU

memory share. Therefore, to increase the GPU’s memory efficiency, the mish function’s

derivative, 𝑓′(x) = tanh(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)) + 𝑥 ∙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) ∙ sech (𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥))2 , where

𝑓(𝑥) is the mish function, was calculated in advance and was implemented by diving the

forward and backward sections for network learning. The Algorithm 1 that shows the

function’s efficient application is provided in this study.

Figure 8. Examples of results with and without data augmentation. (a) Input image; (b) a result of
training without augmentation; (c) a result of training with augmentation.

Algorithm 1: Implementation of the memory efficient mish

ctx: stashed information for backward computation;
input: data to be applied to the mish;
grad_output: gradient to the precious layer.

Class mish is Function forward(ctx, input) is
ctx← input
return input * tanh(softplus(input))

Function backward(ctx, grad_output) is
x← ctx
sigmoidX = sigmoid(x)
softplusX = softplus(x)
tanhX = tanh(softplusX)
sechX = 1/cosh(softplusX)
return grad_output * (tanhX + x * sigmoidX * sechX2)

5. Experiments

The Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI)
dataset was used to test the system through experiments [28]. The KITTI dataset consists

Sensors 2021, 21, 7623 11 of 15

of point cloud data in a perspective coordinate system from a 64-channel LiDAR, Velodyne
HDL-64E. The road detection sector provides 1242 × 375-pixel RGB images that have been
synchronized with the point cloud. In addition to the visual data, camera-based intrinsic
and extrinsic parameters are included for calibration. Performance comparisons of sensor
configurations and comparisons between the bird’s eye view transformations and image
plane projection times demonstrated the system’s efficiency. The KITTI road benchmark
test compared the proposed method to SOTA methods. The computer specifications were
as follows: an NVIDIA RTX 3090 GPU, Intel core i9-10900X CPU, and Ubuntu 18.04 OS.
We used Python and PyTorch to build the proposed network, which consumed 195 MB
GPU memory for the inference, and the proposed network had 7.5 MB parameters. Some
examples of the road detection results projected onto the image are presented in Figure 9.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 15

Algorithm 1: Implementation of the memory efficient mish

ctx: stashed information for backward computation;

input: data to be applied to the mish;

grad_output: gradient to the precious layer.

Class mish is

Function forward(ctx, input) is

ctx ← input

return input * tanh(softplus(input))

Function backward(ctx, grad_output) is

x ← ctx

sigmoidX = sigmoid(x)

softplusX = softplus(x)

tanhX = tanh(softplusX)

sechX = 1 / cosh(softplusX)

return grad_output * (tanhX + x * sigmoidX * sechX2)

5. Experiments

The Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI)

dataset was used to test the system through experiments [28]. The KITTI dataset consists

of point cloud data in a perspective coordinate system from a 64-channel LiDAR, Velo-

dyne HDL-64E. The road detection sector provides 1242 × 375-pixel RGB images that have

been synchronized with the point cloud. In addition to the visual data, camera-based in-

trinsic and extrinsic parameters are included for calibration. Performance comparisons of

sensor configurations and comparisons between the bird’s eye view transformations and

image plane projection times demonstrated the system’s efficiency. The KITTI road bench-

mark test compared the proposed method to SOTA methods. The computer specifications

were as follows: an NVIDIA RTX 3090 GPU, Intel core i9-10900X CPU, and Ubuntu 18.04

OS. We used Python and PyTorch to build the proposed network, which consumed 195

MB GPU memory for the inference, and the proposed network had 7.5 MB parameters.

Some examples of the road detection results projected onto the image are presented in

Figure 9.

Figure 9. Examples of the road detection result projected onto a bird’s eye view image plane. The

green pixels indicate true positives, red pixels indicate false negatives, and blue pixels indicate false

positives.

Figure 9 shows some successful cases and corner cases of proposed method. This

figure shows some inappropriate results from when the height value of the point cloud

was changing slowly, as in the case of a curved road or when the vehicle shadows are

long. However, in most cases, it can be seen that our method is robust enough for severely

bad environment such as traffic jam, small objects such as people or cyclists, and rail roads.

Figure 9. Examples of the road detection result projected onto a bird’s eye view image plane. The
green pixels indicate true positives, red pixels indicate false negatives, and blue pixels indicate
false positives.

Figure 9 shows some successful cases and corner cases of proposed method. This
figure shows some inappropriate results from when the height value of the point cloud
was changing slowly, as in the case of a curved road or when the vehicle shadows are long.
However, in most cases, it can be seen that our method is robust enough for severely bad
environment such as traffic jam, small objects such as people or cyclists, and rail roads.

5.1. Performance Comparison by Sensor Configuration

Table 1 depicts the ablation experiment results and shows the advantages of using
additional point cloud geometric information with the RGB images. The KITTI training
dataset is composed of 95 urban marked (UM) images, 96 urban multiple marked (UMM)
images, and 98 urban unmarked (UU) images. One piece of data per ten images from the
training dataset was added to the test scenario validation dataset. The first environment
described the performance of the network that only used tI. The next scenario conducted a
performance test using only tL. Afterward, the proposed method using both tI and tL was
evaluated. Because the encoding paths of the first and second cases were cut in half, the
encoder’s depth was doubled to compensate for the diminished encoder. F1 measurements,
average precision, precision, and recall were compared to show performance differences
based on sensor configurations, and all measures were assessed using ground truth data in
the transformed format. The table indicates that configurations using LiDAR have higher
scores in recall but lower scores in precision than the camera-only configuration. This
is because the network frequently predicts the area outside of the road, such as a corner
curb or uphill road, as free space when geometric information is missing. This tendency
increases precision by making excessively large guesses regarding the road boundary.
However, considering the overall measurement, the results indicate that a heterogeneous
sensor configuration is better than single-sensor configurations.

Sensors 2021, 21, 7623 12 of 15

Table 1. Performance evaluations according to the sensor configuration. Best scores are highlighted
in bold.

MaxF
(%)

AP
(%)

PRE
(%)

REC
(%)

Runtime
(s/Frame)

Camera 94.31 92.16 98.31 90.63 0.024
LiDAR 94.36 92.17 96.68 92.15 0.024

Camera + LiDAR 94.91 92.88 96.39 93.48 0.025

5.2. Comparison of the Transformation Time

An LUT was utilized to transfer an image to a bird’s eye view plane, and the system
eliminated its z-axis to project a point cloud that calculated the cells’ maximum height,
maximum intensity, stashed points, and altitude difference. Since the image was already
contained in the image plane, image transformation occurred instantaneously. Point cloud
transformation occurred by multiplying three different matrices to project a 3D = {x, y, z}
point to a 2D = {u, v} pixel in the image plane. Table 2 shows the domain transformation
times. During testing, the total time to project a bird’s eye view image was 10.94 ms,
approximately 13 times faster than the time needed to transform point clouds into an image
plane (146.48 ms).

Table 2. Results of calculating the transformation time to each plane.

Data Format
Transformation Time (ms/Frame)

Bird’s Eye View Plane Image Plane

Image 0.46 0
Point cloud 10.48 146.48

5.3. KITTI Road Benchmark

Table 3 compares the proposed algorithm’s benchmark with other existing methods.
An urban scenario, including all of the categories, was assigned as the test dataset. In
addition to the evaluation measures in Table 1 (MaxF, AP, PRE, and REC), the runtime was
utilized to analyze the method’s speed–performance ratio. Some SOTA algorithms were
compared to the study’s proposed method.

Table 3. KITTI road benchmarks compared to other methods.

MaxF
(%)

AP
(%)

PRE
(%)

REC
(%)

Runtime
(ms/Frame)

Operating
Complexity

PLARD [23] 97.03 94.03 97.19 96.88 160
Heavier
network

than ours

RBANet [29] 96.30 89.72 95.14 97.50 160
LidCamNet [14] 96.03 93.93 96.23 95.83 150

NIM-RTFNet [30] 96.02 94.01 96.43 95.62 50

Study method
(BJN) 94.89 90.63 96.14 93.67 27

HA-DeepLab [10] 94.83 93.24 94.77 94.89 60
Lighter
network

than ours

LoDNN [16] 94.07 920.3 92.81 95.37 18
ChipNet [31] 94.05 88.59 93.57 94.53 12
OFANet [32] 93.74 85.37 90.36 97.38 40

Some SOTA algorithms were compared to the study’s proposed method. Here,
RBANet [29], OFANet [32], and HA-DeepLab [10] used a single sensor and camera. Like-
wise, ChipNet [31] and LoDNN [16] only used LiDAR in their proposed system. ChipNet
preprocessed point cloud data by organizing them in a spherical view, as a LiDAR naturally
scans, and LoDNN transforms the point cloud into the bird’s eye view plane. On the other
hand, PLARD [23], NIM-RTFNet [30], and LidCamNet [14] take advantage of multisensor

Sensors 2021, 21, 7623 13 of 15

data. They transform a 3D point cloud into the image plane by projecting its LiDAR
coordinates. Runtimes for all of the methods only included the prediction time without
the data transformation time. However, the proposed method’s runtime was treated as
the sum of its prediction time and transformation time. When comparing the proposed
method with other SOTA algorithms using the evaluation measures, the proposed method
was approximately 1.46% less accurate than heavier networks such as PLARD and RBANet,
which are placed above our proposed method in Table 3. However, it was almost 4.8 times
faster even though the domain transfer time was added to the network prediction time.
Furthermore, compared to the lighter methods that are ranked below our proposed method
in Table 3, such as HA-DeepLab, the study’s system showed a 0.72% improvement while
running 1.2 times faster. The bird’s eye view plane transformation to fuse data ensures
that the calibration time is extremely fast, and the channel modulation layer streamlines
the convolution module so that it improves the computing cost and execution time of the
network. After reducing the computational complexity, the HFF method that combines
feature maps with higher weights that are closer to the origin and that improved the struc-
ture that populates the plural dilated the convolution layers from a standard convolution
to diversify the gradient path. This enabled the robustness and accuracy of the system to
improve while maintaining the runtime. As a result, the proposed algorithm segmented
roads at almost real-time speeds, faster than other light methods and slightly less accurately
than other heavy methods that have demonstrated SOTA performance.

6. Conclusions

In this study, a camera–LiDAR fusion-based CNN architecture was developed to
perform bird’s eye view road detection. Common methods demand massive computa-
tional costs because they conduct several matrix multiplication computations to transform
amorphous point clouds. In the proposed method, applying a small LUT computation
to transfer standardized images to the bird’s eye view plane and eliminating the point
cloud’s z-axis created data configurations that were 10 times faster than other methods.
The transformed image and point cloud were used as independent encoder inputs to align
and extract dissimilar features and were up-sampled to the original size using the decoder.
In this process, an ERFP with a large receptive field and strong kernel expressiveness was
used. Some of the limitations of our proposed method, such as inaccurate results at a
long distance and low-resolution data as a result of data transformation, still remain and
degrade the performance. We think that these issues can be solved by considering the
dynamic kernel size of the convolution according to the distance and deep-learning data
processing. The designed road detection system is powerful, ranking 22nd in the KITTI
benchmark, and is very efficient, taking only 27 ms to perform all of the tasks.

Author Contributions: Conceptualization, B.Y. and D.L.; methodology, B.Y.; software, B.Y.; valida-
tion, B.Y., D.L., J.-S.L. and S.-C.K.; formal analysis, B.Y.; investigation, B.Y.; resources, B.Y. and S.-C.K.;
data curation, B.Y.; writing—original draft preparation, B.Y., J.-S.L. and S.-C.K.; writing—review and
editing, B.Y. and S.-C.K.; visualization, B.Y. and D.L.; supervision, S.-C.K.; project administration, B.Y.
and S.-C.K.; funding acquisition S.-C.K., All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by Ministry of Trade, Industry and Energy, grant number
N0002428 and Ministry of Science and ICT, grant number IITP-2021-2020-0-01462.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: http://www.cvlibs.net/datasets/kitti/eval_road.php.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.cvlibs.net/datasets/kitti/eval_road.php

Sensors 2021, 21, 7623 14 of 15

References
1. Mehta, S.; Rastegari, M.; Caspi, A.; Shapiro, L.; Hajishirzi, H. ESPNet: Efficient spatial pyramid of dilated convolutions for

semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14
September 2018; pp. 552–568.

2. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848.
[CrossRef] [PubMed]

3. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. In Proceedings of the 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016.

4. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. ENet: A deep neural network architecture for real-time semantic segmentation.
arXiv 2016, arXiv:1606.02147.

5. Songtao, L.; Di, H.; Wang, Y. Receptive field block net for accurate and fast object detection. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 404–419.

6. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

7. Park, J.; Joo, K.; Hu, Z.; Liu, C.; Kweon, I. Non-local spatial propagation network for depth completion. In Proceedings of the
Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 120–136.

8. Cordts, M.; Rehfeld, T.; Schneider, L.; Pfeiffer, D.; Enzweiler, M.; Roth, S.; Pollefeys, M.; Franke, U. The Stixel World: A
medium-level representation of traffic scenes. Image Vis. Comput. 2017, 68, 40–52. [CrossRef]

9. Teichmann, M.; Weber, M.; Zöllner, M.; Cipolla, R.; Urtasun, R. MultiNet: Real-time joint semantic reasoning for autonomous
driving. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1013–1020.

10. Mukherjee, S.; Guddeti, R.M.R. A hybrid algorithm for disparity calculation from sparse disparity estimates based on stereo
vision. arXiv 2014, arXiv:2001.06967.

11. Fan, R.; Wang, H.; Cai, P.; Wu, J.; Bocus, J.; Qiao, L.; Liu, M. Learning Collision-Free Space Detection from Stereo Images:
Homography Matrix Brings Better Data Augmentation. IEEE ASME Trans. Mechatron 2021. [CrossRef]

12. Liu, M.; Shan, C.; Zhang, H.; Xia, Q. Stereo Vision Based Road Free Space Detection. In Proceedings of the 2016 9th International
Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 10–11 December 2016; pp. 272–276. [CrossRef]

13. Han, X.; Wang, H.; Lu, J.; Zhao, C. Road detection based on the fusion of Lidar and image data. Int. J. Adv. Robot. Syst. 2017, 14,
1–10. [CrossRef]

14. Caltagirone, L.; Bellone, M.; Svensson, L.; Wahde, M. Lidar-camera fusion for road detection using fully convolutional neural
networks. Robot. Auton. Syst. 2019, 111, 125–131. [CrossRef]

15. Zhuan, Z.; Li, R.; Jia, K.; Wang, Q.; Li, Y.; Tan, M. Perception-aware Multi-sensor Fusion for 3D LiDAR Semantic Segmentation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021;
pp. 16280–16290.

16. Caltagirone, L.; Scheidegger, S.; Svensson, L.; Wahde, M. Fast LIDAR-based road detection using fully convolutional neural
networks. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017;
pp. 1019–1024.

17. Lu, C.; van de Molengraft, M.J.G.; Dubbelman, G. Monocular Semantic Occupancy Grid Mapping with Convolutional Variational
Encoder–Decoder Networks. IEEE Robot. Autom. Lett. 2019, 4, 445–452. [CrossRef]

18. Roddick, T.; Cipolla, R. Predicting Semantic Map Representations from Images Using Pyramid Occupancy Networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 11138–11147.

19. Wang, Z.; Zhan, W.; Tomizuka, M. Fusing Bird’s Eye View LIDAR Point Cloud and Front View Camera Image for 3D Object
Detection. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1–6.
[CrossRef]

20. Lee, J.-S.; Park, T.-H. Fast Road Detection by CNN-Based Camera–Lidar Fusion and Spherical Coordinate Transformation. IEEE
Trans. Intell. Transp. Syst. 2021, 22, 5802–5810. [CrossRef]

21. Yang, K.; Zhang, J.; Reiß, S.; Hu, X.; Stiefelhagen, R. Capturing Omni-Range Context for Omnidirectional Segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021;
pp. 1376–1386.

22. Simon, M.; Milz, S.; Amende, K.; Groß, H. Complex-YOLO: An euler-region-proposal for real-time 3D object detection on point
clouds. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 197–209.

23. Chen, Z.; Zhang, J.; Tao, D. Progressive LiDAR adaptation for road detection. IEEE CAA J. Autom. Sin. 2019, 6, 693–702. [CrossRef]
24. Iyer, G.; Ram, R.K.; Murthy, J.K.; Krishna, K.M. CalibNet: Geometrically Supervised Extrinsic Calibration using 3D Spatial

Transformer Networks. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, 1–5 October 2018; pp. 1110–1117. [CrossRef]

http://doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://doi.org/10.1016/j.imavis.2017.01.009
http://doi.org/10.1109/TMECH.2021.3061077
http://doi.org/10.1109/ISCID.2016.2072
http://doi.org/10.1177/1729881417738102
http://doi.org/10.1016/j.robot.2018.11.002
http://doi.org/10.1109/LRA.2019.2891028
http://doi.org/10.1109/IVS.2018.8500387
http://doi.org/10.1109/TITS.2020.2988302
http://doi.org/10.1109/JAS.2019.1911459
http://doi.org/10.1109/IROS.2018.8593693

Sensors 2021, 21, 7623 15 of 15

25. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the 2016 Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

26. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

27. Misra, D. Mish: A self regularized non-monotonic activation function. In Proceedings of the British Machine Vision Virtual
Conference (BMVC), Manchester, UK, 7–10 September 2020.

28. Fritsch, J.; Kühnl, T.; Geiger, A. A new performance measure and evaluation benchmark for road detection algorithms. In
Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019;
pp. 1693–1700.

29. Sun, J.-Y.; Kim, S.-W.; Lee, S.-W.; Kim, Y.-W.; Ko, S.-J. Reverse and Boundary Attention Network for Road Segmentation.
In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea,
27–28 October 2019; pp. 876–885.

30. Wang, H.; Fan, R.; Sun, Y.; Liu, M. Applying Surface Normal Information in Drivable Area and Road Anomaly Detection for
Ground Mobile Robots. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Las Vegas, NV, USA, 25–29 October 2020; pp. 2706–2711. [CrossRef]

31. Lyu, Y.; Bai, L.; Huang, X. ChipNet: Real-Time LiDAR Processing for Drivable Region Segmentation on an FPGA. IEEE Trans.
Circuits Syst. I Regul. Pap. 2019, 66, 1769–1779. [CrossRef]

32. Zhang, S.; Zhang, Z.; Sun, L.; Qin, W. One for All: A Mutual Enhancement Method for Object Detection and Semantic
Segmentation. Appl. Sci. 2019, 10, 13. [CrossRef]

http://doi.org/10.1109/IROS45743.2020.9341340
http://doi.org/10.1109/TCSI.2018.2881162
http://doi.org/10.3390/app10010013

	Introduction
	Related Works
	Data Transformations
	Perspective Transformation
	Bird’s Eye View Transformation

	Bird’s Eye View Free Space Detection
	Efficient Receptive Field Pyramid Module
	Structure of the Network
	Data Augmentation and Learning Details

	Experiments
	Performance Comparison by Sensor Configuration
	Comparison of the Transformation Time
	KITTI Road Benchmark

	Conclusions
	References

