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Abstract: Diagnosing the condition of rotating machines by non-invasive methods is based on the
analysis of dynamic signals from sensors mounted on the machine—such as vibration, velocity, or
acceleration sensors; torque meters; force sensors; pressure sensors; etc. The article presents a new
method combining the empirical mode decomposition algorithm with wavelet leader multifractal
formalism applied to diagnosing damages of rotating machines in non-stationary conditions. The
development of damage causes an increase in the level of multifractality of the signal. The multi-
fractal spectrum obtained as a result of the algorithm changes its shape. Diagnosis is based on the
classification of the features of this spectrum. The method is effective in relation to faults causing
impulse responses in the dynamic signal registered by the sensors. The method has been illustrated
with examples of vibration signals of rotating machines recorded on a laboratory stand, as well as on
real objects.

Keywords: wavelet leaders; multifractal spectrum; rotating machines; fault diagnostics

1. Introduction

When properly processed, dynamic signals recorded during the operation of rotating
machines are a valuable source of information about the condition of machines. Algo-
rithms are still being developed, which will quickly, unequivocally, and automatically
determine the operational state of the machine. One of the most commonly used methods
in diagnostics are vibration sensors due to the ease of assembly, the possibility of obtaining
information without disassembling the machine, and the wealth of information obtained
about the condition of the machine in various frequency ranges. In the case of machine
operation with constant speed and load, the most effective method of analysis is the fre-
quency spectrum [1]. However, due to the fluctuating rotational speed of the machine,
often due to a variable load, the frequency spectrum becomes blurred. The real challenge is
to diagnose machines in non-stationary conditions. In order to avoid resampling in the
analysis of dynamic signals, time–frequency methods are used [2]. The authors present
a systematic review of over 20 time–frequency methods used to detect machine damage.
One of the simplest is the short-time Fourier transform STFT [3]. The improved version of
the spectrogram is the Wigner–Ville analysis, the use of which in diagnosing damage to
gears is described in [4,5]. The use of wavelet analysis in diagnosing damage to rotating
machines can be found, among others in [6,7]. Other papers [8–10] present a method of
detecting and diagnosing gear damage on the basis of a reference model based on the
signal averaging technique. The proposed algorithm first establishes an autoregressive
(AR) model of the gear vibration signal in its base state, and then diagnoses the state based
on the residual signal. The use of the synchronous method (order-tracking analysis) allows
to synchronize the diagnostic signal with the rotation of the diagnosed machine, as well as
to eliminate the influence of background noise from other sources [11,12]. The article [13]
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proposes a method of informative selection of frequency bands. It utilizes the approach of
non-negative matrix factorization applied to time–frequency signal representation. For the
analysis of non-stationary signals, the empirical mode decomposition EMD algorithm is
also used, which decomposes the signal into modes in an empirical manner [14,15]. Since
the classic method can mix two or three modes, various modifications of the EMD method
are developed [16–18].

In recent years, more and more often, efforts are being made to automate the diagnosis
process, and qualified diagnosticians are to be replaced by diagnostic algorithms. So-called
data-driven statistical methods can also be successfully used in diagnosing machines in
non-stationary conditions. Determining the characteristics of a dynamic signal and its clas-
sification is carried out by machine learning algorithms [19–22]. More and more papers are
devoted to the diagnostics of machines with the methods of deep learning [23–29]. Meth-
ods that allow detecting failures at an early stage, especially in non-stationary conditions
that often occur in real objects, are still being searched and developed.

The fractal theory has unique advantages in dealing with transient, nonlinear, and
non-stationary signals. It is a new trend in solving practical problems involving the study
of short-term signals in a transient process with strong nonlinearity, based on the fractal
theory in order to diagnose damage to mechanical equipment. The impact of damage to the
outer race of a rolling bearing on the width of the multifractal spectrum is presented in [30].
Detrended fluctuation analysis MF-DFA is a commonly used algorithm for multifractal
analysis. The method is often used to diagnose damage to rolling bearings [31–33] and
gears [34–36]. In [37], the MF-DFA algorithm was used for the analysis of frictional
vibrations, where the ensemble empirical mode decomposition EEMD was used to denoise
the signal. The adaptive MF-DFA algorithm is presented in [38]. The disadvantage of the
MF-DFA algorithm is its sensitivity to analysis parameters. These disadvantages are not
present in the method of wavelet leaders (WLMF). The wavelet leaders algorithm was used
to analyze the images [39] and diagnose damage to rotating machines [40].

The article proposes a novel EMD-WLMF method consisting in the multifractal analy-
sis of the first empirical component (IMF1) of the vibration signal using WLMF algorithm.
As a result, a multifractal spectrum is obtained, the parameters of which are used to distin-
guish the state of the machine. Since the tested damage causes impulse disturbances of
the vibration signal, the signal is first filtered out using the empirical decomposition of the
signal EMD. Only the first intrinsic mode function (IMF1) containing high-frequency infor-
mation is subject to multifractal analysis. The method has been illustrated with examples of
signals recorded on a laboratory stand as well as on real objects. The presented examples,
especially the analysis of signals recorded in the vehicle, show that the combination of
EMD and WLMF methods allows the detection of damage at an early stage in conditions
unfavorable to diagnosis—i.e., at floating rotational speed and load.

The article is organized as follows. Section 2 describes the methods of signal analysis
used in the study, i.e., the WLMF algorithm, as well as determining the first intrinsic mode
function (IMF1) using the EMD method. In Section 3, the described algorithm for fault
diagnosis was used on the basis of signals recorded on a laboratory stand and on real
objects under operating conditions. The discussion is presented in Section 4.

2. Materials and Methods
2.1. Multifractal Formalism

Multifractal analysis, which is based on estimated signal scaling exponents, is a
popular statistical tool for studying time series. The mathematical formalism is based on
the increments of their values, the measure of which are the pointwise Holder exponents
h of the time function x(t) at the point t0, determined by the supremum of all exponents
satisfying, for the constant C > 0, the condition

|x(t)− Pn(t− t0)| ≤ C|t− t0|h (1)
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where Pn(t− t0) is a polynomial of the order n < h. The pointwise Holder exponent
describes the regularity of the function. The greater the local regularity of the time series, the
higher the singularity exponent. The multifractal spectrum D(h) represents the histogram of
the Holder exponents and determines the fractal dimensions of the subsets of singularities
with a given exponent value [41–43].

In the time–frequency approach to signal analysis, the WTMM (wavelet transform
modulus maxima) method was initially used, which is based on a continuous wavelet
transform (CWT). It consists in determining the chains of local, the structure function and
its scaling exponents, as well as the Legendre transform. Practical implementations of such
an algorithm showed a number of faults that make it impossible to conduct research for
some types of real signals [44].

Another approach to the problem of estimating local scaling exponents as a method of
studying the regularity of time series and their multifractality is related to the multifractal
detrended fluctuation analysis (MF-DFA) method. MF-DFA enables to study the observed
signals in terms of their multifractality, provides a more stable approach to multifractal
formalism than the WTMM method [31,36,45–47].

The formalism in the time–frequency domain used in the paper allows for the estima-
tion of multifractal parameters using wavelet leaders (WLMF), which are representatives
of local Holder exponents of the signal. In the case of wavelet coefficients centered around
zero values, it is difficult to guarantee numerical stability. This problem does not arise in
the case of the WLMF method, based on the wavelet coefficients obtained as a result of the
discrete wavelet transform (DWT). The next steps of the algorithm include the selection
of coefficients called wavelet leaders, determination of the structure function with scaling
exponents, and the multifractal spectrum. The algorithm shows low computational costs,
numerical stability, and high versatility in terms of real signals [39,40].

The scaling exponents of the structural function do not depend on the selection of
the wavelet, provided that the number of zero wavelet moments is two times greater
than the largest exponent of the signal holder. The mother wavelet must be orthogonal or
biorthogonal. In the work, the Daubechies (db2) wavelet mother was arbitrarily selected.

For the coefficients (2) of the discrete wavelet transform (DWT) of the function x(t)
and the basic wavelet with a compact support ψ0 (t)

dx(j, k) =
∫

R
x(t)2−jψ0

(
2−jt− k

)
dt (2)

wavelet leaders (3), for the set of the largest coefficients dx(j′, k′) ≡ dλ′ in the vicinity of 3λ,
are defined by the dependence on any scale

Lx(j, k) = supλ′∈3λ|dλ′ | (3)

where j, k are integers and 3λ := 3λj,k = λj,k−1∪ λj,k ∪ λj,k+1 and λ := λj,k =
[
k2j, (k + 1)2j].

Lx(j, k) consists of the largest wavelet coefficient dx(j′, k′) computed at all finer scales
2j′ ≤ 2j within a narrow time neighborhood (k− 1)·2j ≤ 2j′k′ < (k + 2)·2j.

It can be shown that the Holder exponents are the scaling exponents of wavelet leaders:
Lx(j, k) ∼ 2jh. Moreover, the structure function (4) defined for wavelet leaders is described
by the power dependence, the exponent of which is the multifractal scaling exponent
ζ(q) : R→ R .

ZL(q, j) =
1
nj

nj

∑
k=1

Lx(j, k)q = ELx(j, k)q ∼ 2jζ(q) (4)

where q is the order of the structure function and nj is the number of intervals of the
multiresolution analysis.
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The function obtained by the Legendre transformation of the multifractal scaling expo-
nent ζ(q), under mild conditions of signal regularity, is the upper limit for the multifractal
spectrum (5) of the tested signal

D(h) ≤ minq 6=0[1 + qh− ζ(q)] (5)

The description of dynamic properties of systems is successfully carried out on the
basis of the parameters of multifractal spectra of representative time series.

The following were selected as parameters of the multifractal spectrum D(h) related
to singularities h representing the local scaling of the measure in different places of the
time series:

• multifractality level, representing the heterogeneity of the signal under study,
∆ = hmax − hmin, where hmax and hmin are the singularities corresponding to the
largest and the smallest fluctuations in the time series (observed signal);

• span of dimensions of subsets of singularities ∆D = D(hmax)− D(hmin);
• the singularity with the greatest dimension, which is the most common singularity of

the time series
{

h0 : D(h0) = maxD(h)
}

.

The procedure of the method is shown in Figure 1.
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Figure 1. The method scheme.

The effect of the algorithm is illustrated in Figure 2 for a harmonic signal and various
types of noise, examined in terms of multifractality. Figure 2a shows sample waveforms
of signals, Figure 2b shows their multifractal spectra with the characteristic points. The
harmonic signal, three types of random signals varying in the level of multifractality, and
the sinusoidal signal disturbed by the multifractal signal were analyzed. The level of
multifractality can be measured by the width of the multifractal spectrum. Thus, both the
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harmonic signal and the white noise cannot be treated as multifractal signals. Multifractal
signals are characterized by impulse disturbances, such as harmonic signals with noise.
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Figure 2b shows the characteristic points of the multifractal spectrum, which were
used to define the characteristics of the spectrum:

• Spectrum width

width = ∆ = h(q = −5)− h(q = 5) (6)

• Spectrum asymmetry

asymmetry = ∆D = D(q = −5)− D(q = 5) (7)
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• The singularity exponent with the greatest fractal dimension

shi f t = h0 = h(q = 0) (8)

Figure 2c shows the multifractal spectra determined when selecting the Daubechies
mother wavelet of orders 1 to 6. As the selection of the wavelet order has little effect on
the parameters of the spectrum, the Daubechies wavelet of order 2 (‘db2’) was arbitrarily
selected. The selection of Daubechies wavelets of different orders should yield consistent
results when used repeatedly.

2.2. Empirical Mode Decomposition

The EMD is an iterative numerical approximation algorithm designed to extract intris-
tic mode functions IMFs from signals adaptively by cubic spline interpolation according to
the local characteristic time-scale. It decomposes a signal into IMFs via iterative sifting.

Any signal can be approximated by a superposition of a series of IMFs as written by

x(t) = ∑n
i=1 ci(t) + rn(t), (9)

where ci(t) is the i-th IMF, and rn(t) is the residual signal which represents the slowly
varying or constant trend of the signal.

Applying the Hilbert transform [14] to each IMF in Equation (9), we can construct
the corresponding analytic signal. Then we can compute the instantaneous frequency
via the derivative of instantaneous phase relative to time. By expressing the analytic
signals in polar coordinate form, and taking the real part, we can obtain the Hilbert
amplitude spectrum

TFRx(t, f ) = Re
n

∑
i=1

{
ai(t)exp

∣∣∣∣j ∫ 2π fi(t)dt
∣∣∣∣} (10)

and Hilbert energy spectrum

TFRx(t, f ) =
n

∑
i=1

ai
2(t)δ[ f − fi(t)] (11)

where δ(·) is the Dirac delta function.
The EMD is the core of the Hilbert–Huang transform. For a real signal x(t), the EMD

procedure is as follows.

1. Initialize parameters: Set iteration index i = 1, residual signal r0(t) = x(t).
2. Extract the i-th IMF:

a. Let j = 0, and hij(t) = hi−1(t).
b. Find the local minima and the local maxima of hij(t).
c. Interpolate the local minima and the local maxima with cubic spline to con-

struct the lower and the upper envelopes of hij(t).
d. Compute the instantaneous mean of the lower and upper envelopes mij(t)
e. Let hij(t) = hij(t)−mij(t).
f. If hij(t) satisfies the stop criteria for IMF sifting, then set the i-th IMF

ci(t) = hij(t). Otherwise, let j = j + 1, return to step 2b.

3. Let ri(t) = ri−1(t)− ci(t).
4. If ri(t) satisfies the stop criteria for EMD, then set ri(t) as the residue, and terminate

the EMD process. Otherwise, let i = i + 1, return to Step 2.
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To illustrate the method, a simulated signal was used, which shows the vibrations of a
gear transmission operating at a variable rotational speed [9].

x(t) =
M

∑
m=0

Am[1 + ãm(t)] cos
{

2π fm(t) + βm + θ̃m(t)
}
+ z(t) + φ(t) (12)

where m (0,1, . . . ,M) is the meshing harmonic number, Am the amplitude at the m-th
harmonic frequency fm (i.e., fm = m·N· fs(t), where N is the tooth number and fs is the
shaft rotation frequency), t time vector (with sampling time dt), βm the initial phase, z(t) the
impact-induced resonant vibration, ãm(t) and θ̃m(t) are the modified amplitude and phase
modulation functions at the m-th harmonic, respectively, φ(t) the white noise.

The following model parameters were adopted for the simulation: M = 2, A1 = 5,
A2 = 1.25, N = 10, βm = 0, dt = 0.01 s; ã1(t) = 0.1 sin(2π fs·t), ã2(t) = 0.025 sin(4π fs·t);
θ̃1(t) = 4.7 sin(2π fs·t), θ̃2(t) = 1.2 sin(4π fs·t). fs(t) is a random walk around the value 1.
z(t) is described as a convolution of the resonant response to impact during one rotation
and the pulse train z(t) = h(t) ∗ g(t), where h(t) = 30 sin(40π·t)·exp(−10t) and g(t) is
the sequence of pulses occurring once per revolution.

Signal-to-noise-ratio, SNR, is calculated as

SNR = 10 log10
∑n

i=1(si)
2

∑n
i=1(wi)

2 (13)

where si is i-th amplitude of the signal and wi i-th amplitude of the noise. For a simulated
signal, SNR = 4.6 dB. The main components of signal power are visible impacts.

The signal includes both quasi-harmonic components and impulse responses related
to the damage of the gear. The signal presented by the Formula (12) is shown in Figure 3a,
together with the following intristic mode functions from 1 to 5, which are the result of
decomposition. Figure 3b shows the multifractal spectra for waveforms illustrated in
Figure 3a.

The first empirical mode reveals the high-frequency impacts. This high-frequency
mode increases in energy as the wear or damage progresses. The next modes show the
resonance in the vibration signal and rotating frequency. The first intristic mode function
will be used for further analysis. The spectrum for IMF1 is broader and more regular than
the spectrum of the raw signal and the other IMF, while the IMF2 is a monofractal.
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2.3. EMD-WLMF Method

Figure 4 shows a diagram of the EMD-WLMF method. From a dynamic signal using
EMD analysis is extracting the first IMF. Then, using the WLMF algorithm, the signal
parameters h and D(h) are determined, on the basis of which a multifractal spectrum can be
drawn. Based on the characteristics of this spectrum, the operational state of the rotating
machine is classified.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 3. Simulated signal and five intristic mode functions (a) and their multifractal spectra (b). 

The first empirical mode reveals the high-frequency impacts. This high-frequency 

mode increases in energy as the wear or damage progresses. The next modes show the 

resonance in the vibration signal and rotating frequency. The first intristic mode function 

will be used for further analysis. The spectrum for IMF1 is broader and more regular than 

the spectrum of the raw signal and the other IMF, while the IMF2 is a monofractal. 

2.3. EMD-WLMF Method 

Figure 4 shows a diagram of the EMD-WLMF method. From a dynamic signal using 

EMD analysis is extracting the first IMF. Then, using the WLMF algorithm, the signal pa-

rameters h and D(h) are determined, on the basis of which a multifractal spectrum can be 

drawn. Based on the characteristics of this spectrum, the operational state of the rotating 

machine is classified. 

 

Figure 4. Diagram of the EMD- WLMF method. 

Figure 4. Diagram of the EMD- WLMF method.



Sensors 2021, 21, 7677 9 of 21

3. Application of the EMD-WLMF Algorithm in Diagnostics of Rotating Machines

The method presented in Section 2.3 was tested on the vibration signals recorded for
the gear transmission on a laboratory stand and on a real object, which is a passenger car
while driving.

3.1. Gear Transmission Vibration Signal Analysis on a Laboratory Stand

Measurements were carried out on a demonstration stand (Figure 5). The influence of
assembly errors and gear teeth wear on vibrations was investigated. The electric motor
enables speed control in the range of 100–3000 rpm (without load). The load is pressure
regulated with an overflow valve up to 5 MPa. Vibration acceleration was measured with
an accelerometer bolted to the gear bearing housing in the vertical direction. The optimal
backlash was set to 0.1 mm.
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Figure 5. The test stand [48].

Compared to previous papers [48], the experiment was extended with additional
intermediate operating states and the analysis method was modified.

Measurements were carried out for the following five states:

• fault-free (new gears, the optimal backlash, parallel shaft location);
• new gears and misalignment by an angle up to 1/3◦ (two cases);
• new gears and increased backlash +0.1 mm up to +0.3 mm (three cases);
• worn teeth (three cases);
• worn teeth and increased backlash +0.3 mm (two cases).

Vibration acceleration signals were recorded for a rotational speed of about 1050 rpm
and a load of 12%—pressure 0.6 MPa. Each sample included a time series with a length of
n = 10,000, recorded at a sampling frequency of 10 kHz.

The representative waveforms of the vibration acceleration signal for each of the five
states are shown in Figure 6. The first IMF is marked on them, which is taken into account
in further analysis of the signal. The signals presented in the graph represent a significant
degree of damage, and their characteristic features are visible.
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Figure 6. Time series of the vibration signal in various operating states (a) fault-free state;
(b) misalignment 1/3◦; (c) increased backlash 0.2 mm; (d) worn teeth second stage; (e) worn teeth
second stage, and increased backlash 0.2 mm.

Twenty records for each condition were used for further analysis, each 1 s long
(10,000 samples) for a total of 220 records. Each record was subjected to the EMD-WLMF
analysis. Figure 7 shows the multifractal spectra for various operational states of the gears.
The examples show up to two cases per state to increase the visibility of the image.
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The least multifractal character is for the fault-free state. As the damage develops,
the width of the spectrum increases. The spectral peak is also shifted. For the base state,
the spectrum asymmetry index is close to zero. For the tested damages, the absolute
value of the asymmetry index increases, and for the wear condition of the gears it has the
opposite sign than for the increased backlash. For mixed states of damage, the spectrum is
characterized by a large width and indices of asymmetry varying within wide limits.

Three parameters were selected for the diagnosis of the gear condition: the width
of the multifractal spectrum, the asymmetry index, and the singularity of the greatest
dimension. The list of these parameters is presented in the scatter plot (Figure 8a).
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As the damage develops, the level of multifractality of the signal increases and the
spectrum is wider. The asymmetry index for the ‘base state’ is close to zero, and not
much higher for the ‘misalignment’ state. The states of increased backlash and wear are
characterized by the opposite sign of the spectrum asymmetry index and an increase in its
absolute value. The spectrum shift indicator also changes for different operating states.

Any known machine learning method—e.g., k-nearest neighbours (k-NN), support
vector machines (SVM), or neural network (NN)—can be used to classify the damage [25].
The fault classification was performed for a newly generated test set of data (240 records)
with support vector machines (SVM). The confusion matrix is shown in Figure 8b. The
average true positive rate for the test set is 95.16%. The faulty recognition of the state
was for ‘fault-free’ and initial ‘misalignment’. The remaining states found to be in error
are ‘increased backlash’ and ‘worn teeth and increased backlash’. The tests performed on
the laboratory stand brought the desired effect. The influence of damage development
on the parameters of the multifractal spectrum was presented. However, the stand lacks
additional disturbances that accompany the operation of real machines.

3.2. Analysis of the Transmission Vibration Signal in a Car

The tests were carried out on a Punto five-speed gearbox (Figure 9a). The experiment
was carried out during road tests for various rotational speeds and loads. The experi-
ment used the recorded signals of acceleration of vibrations of the gearbox housing and
additional signals from the crankshaft position and throttle position sensor.
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The vibration accelerations of the gearbox housing were measured with a Bruel &
Kjaer type IEPE No. 4514 sensor. The signals were recorded with a Bruel & Kjaer PULSE
type 3560E portable data recorder with a sampling frequency of 65,536 Hz.

Signals of a duration of about 1 min were recorded while driving at the most preset
speed possible. Additional signals enabled signal synchronization and measurement of
rotational speed and load.

The active experiment consisted in registering signals under simulated mechanical
damage to the gearbox, mimicking those often diagnosed in car repair shops. Such damage
includes, among others, wear of the gearbox teeth.

In order to investigate the influence of gearbox teeth wear on the vibration signal, an
active experiment was performed for the following conditions:

• gearbox in good condition
• fifth gear drive gear teeth worn at about one-third of the circumference
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• fifth gear drive gear teeth heavily worn at about one-third of the circumference
(Figure 9b)

• gearbox after replacing worn wheels with new ones.

Figure 10a–d show the first IMF waveforms of the gearbox housing vibration signal
for four operating states, and Figure 10e shows examples of changes in rotational speed
during the record registration.
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Figure 10. Time series of the first IMF for (a) initial state, (b) initial wear, (c) advanced wear, (d) after
repair, (e) examples of rotational speed changes during registration.

The EMD-WLMF algorithm was tested for 80 records, 20 records for each state.
Figure 11a presents sample multifractal spectra for four states, and Figure 11b presents
multifractal spectra for the same states using the only WLMF algorithm.



Sensors 2021, 21, 7677 14 of 21Sensors 2021, 21, x FOR PEER REVIEW 14 of 21 
 

 

 

Figure 11. Sample multifractal spectra of (a) EMD-WLMF, (b) WLMF. 

By comparing the multifractal spectra for the first IMF of the vibration signal and the 

raw of the vibration signal, it can be concluded that the introduction of the EMD enables 

the identification of tooth wear at an early stage. In Figure 10b, the spectrum at initial wear 

almost does not differ from the base state and the spectrum for a new pair of gears. The 

EMD-WLMF analysis showed that the spectrum for the new pair of gears (‘after repair’) 

is the most symmetrical. The spectrum for the ‘initial state’ is narrower, but shows a shift 

and asymmetry. As the wear develops, the spectrum becomes wider, shifted along the 

h(q) axis, and shows asymmetry. The illustration of spectrum features for all 80 records is 

shown in Figure 12a. 

The scatter plot for more records confirms that the spectrum width increases as the 

wear develops. The asymmetry coefficient for all states has a large spread, while for the 

new pair of teeth (‘after repair’) the spectrum is the most symmetrical. As the wear of the 

teeth increases, the spectrum shifts to the right. The average trend of damage development 

was marked. For a new pair of teeth (‘after repair’), the development of the damage may 

follow a ‘different path’ on the scatter plot, but the increasing trend of the width indicators 

and spectrum shift should be analogous. 

The fault classification was performed for a newly generated test set of data (120 rec-

ords) with support vector machines (SVM). The confusion matrix is shown in Figure 12b. 

The average true positive rate for the test set is 94.17%. The faulty recognition of the state 

was for ‘fault-free’ and ‘initial wear’. Due to the dispersion of the data, the diagnosis can 

be confirmed on the basis of the average trend shown in Figure 12a. 

Figure 11. Sample multifractal spectra of (a) EMD-WLMF, (b) WLMF.

By comparing the multifractal spectra for the first IMF of the vibration signal and the
raw of the vibration signal, it can be concluded that the introduction of the EMD enables
the identification of tooth wear at an early stage. In Figure 10b, the spectrum at initial wear
almost does not differ from the base state and the spectrum for a new pair of gears. The
EMD-WLMF analysis showed that the spectrum for the new pair of gears (‘after repair’) is
the most symmetrical. The spectrum for the ‘initial state’ is narrower, but shows a shift and
asymmetry. As the wear develops, the spectrum becomes wider, shifted along the h(q) axis,
and shows asymmetry. The illustration of spectrum features for all 80 records is shown in
Figure 12a.

The scatter plot for more records confirms that the spectrum width increases as the
wear develops. The asymmetry coefficient for all states has a large spread, while for the
new pair of teeth (‘after repair’) the spectrum is the most symmetrical. As the wear of the
teeth increases, the spectrum shifts to the right. The average trend of damage development
was marked. For a new pair of teeth (‘after repair’), the development of the damage may
follow a ‘different path’ on the scatter plot, but the increasing trend of the width indicators
and spectrum shift should be analogous.

The fault classification was performed for a newly generated test set of data (120 records)
with support vector machines (SVM). The confusion matrix is shown in Figure 12b. The
average true positive rate for the test set is 94.17%. The faulty recognition of the state was
for ‘fault-free’ and ‘initial wear’. Due to the dispersion of the data, the diagnosis can be
confirmed on the basis of the average trend shown in Figure 12a.
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Figure 12. Damage classification based on three features of the multifractal spectrum (a) and confu-
sion matrix (b).

3.3. Analysis of the Vibration Signal of the Internal Combustion Engine Head

The next example shows the analysis of the vibration signal of the engine head signal
recorded under operating conditions.

The tests were carried out on the drive system of the Fiat Punto car, with a four-
cylinder 1.2 spark-ignition engine. The experiment was carried out during road tests for
various rotational speeds and loads. The following dynamic signals were recorded:

• acceleration of vibrations of the cylinder head at the first cylinder in the vertical and
horizontal directions

• acceleration of vibrations of the cylinder head at the fourth cylinder in the vertical direction

and additional signals

• from the crankshaft position sensor
• ignition in the first cylinder
• throttle position.

Vibration accelerations of the cylinder head were measured with Bruel & Kjaer DeltaS-
hear type 4393 sensors, mounted with a threaded connection. The signals were recorded
using a Bruel & Kjaer PULSE type 3560E portable data recorder with a sampling frequency
of 65,536 Hz.
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Signals of approximately 1 min duration were recorded while driving at a constant
speed. Additional signals made it possible to identify engine cycles, injection and ignition
timing, and valve timing.

A leak in the piston-cylinder system may be caused by burnout of the exhaust valve.
During the tests, such damage was simulated by cutting the valve plug at a length of
approx. 3 mm (defect 1) and 6 mm (defect 2)—Figure 13.
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Figure 13. View of the damage of outlet valve.

The process of generating vibrations in an internal combustion engine is very complex.
The measured vibrations are a combination of periodic waves related to the operation of
rotating elements and responses to impulse excitations related to reciprocating motion, as
well as excitations caused by gas pressure. Strong transients in the vibroacoustic signal
come from the work of the intake and exhaust valves, injectors, the combustion process, and
piston strokes against the cylinder sleeve. Additional impulse excitation can be a response
to mechanical failures not detected by the on-board diagnostic (OBD) system [49,50].

The time series of vibration accelerations after determining the first IMF for four engine
operation cycles and three operating states are shown in Figure 14.
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Figure 14. Acceleration time series of the engine head vibrations—the first IMF for (a) base state,
(b) defect 1, (c) defect 2.
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Figure 15 presents exemplary multifractal spectra for three operating states using the
WLMF and EMD-WLMF algorithms. Due to the presence of transients in the signal, a large
share of responses to impulse excitations—such as valve closing, ignition, piston hitting
the cylinder, etc.—of the multifractal spectrum after EMD application does not differ much
from the spectrum without EMD filtration. As a result of the damage development, the
spectrum becomes wider and its maximum value for q = 0 is shifted to the right.
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Figure 15. Multifractal spectrum of the vibration signal for three states of valves.

Figure 16 shows the scatter plot for the three operational states, each with 20 records.
As the damage develops, the values of the ‘width’ and ‘shift’ parameters increase. The
‘asymmetry’ parameter is characterized by the largest dispersion of values, although it also
increases taking into account the average values for the entire set. The average trend for
damage development is marked.

The fault classification was performed for a newly generated test set of data (120 records)
with support vector machines (SVM). The confusion matrix is shown in Figure 16b. The
average true positive rate for the test set is 92.5%. The faulty recognition of the state was for
‘fault-free’ and ‘defect 1’. Due to the dispersion of the data, the diagnosis can be confirmed
on the basis of the average trend shown in Figure 16a.
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4. Discussion

The article uses the method of wavelet leaders’ multifractal analysis dedicated to the
first IMF of the vibration signal of rotating machines. The presented method can be applied
to dynamic signals in non-stationary conditions due to the use of the EMD and wavelet
analysis methods. Previous works [32] used the EMD analysis and the MF-DFA algorithm
to diagnose the damage. However, the WLMF algorithm shows lower computational
costs, numerical stability, and high versatility in terms of real signals compared to MF-DFA.
The method corresponds to the need to find a relatively fast algorithm for diagnosing the
condition of machines in non-stationary conditions. It is a statistical method. It can be
an alternative to methods based on a set of signal features. Failure classification can be
done using one of the machine learning methods, such as SVM, k-NN, or a neural network
based on the features of the multifractal spectrum.

The method has been tested for signals recorded on a laboratory stand and for real
objects. Damage was distinguished based on three features of the multifractal spectrum,
named here: width, asymmetry, and shift. The tests performed on the laboratory stand
brought a good effect. Multifractal analysis of only the first IMF allowed to filter out har-
monics that do not show multifractality features. The development of damage to the gear
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transmission was reflected in the examined features of the multifractal spectrum. However,
the stand lacks additional disturbances that accompany the operation of real machines.

The next two investigated cases are the diagnosis of mechanical damage to the vehicle
while driving, such as gearbox wear and burnout of the exhaust valves of the internal
combustion engine. The signals were recorded in non-stationary conditions. Due to the
fluctuations in rotational speed and load, which could affect the dynamics of the signal, the
dispersion of the features of the multifractal spectrum was much greater than that observed
in the tests on the laboratory stand. Due to the dispersion of the features of the multifractal
spectrum, the average value of these features can be used to diagnose the damage. By
comparing the multifractal spectra for the first IMF of the vibration signal and the raw of
the vibration signal of the gearbox, it can be concluded that the introduction of the EMD
enables the identification of tooth wear at an early stage. Due to the presence of transients
of the engine head vibrations signal, a large share of responses to impulse excitations—such
as valve closing, ignition, piston hitting the cylinder, etc.—the multifractal spectrum after
EMD application does not differ much from the spectrum without EMD filtration.

Like any method, this one also has its limitations. The main limitation is the multifrac-
tality of the signal, so the signal must contain impulse excitations caused by damage, as in
a toothed gear. If the damage causes an increase in the harmonic component, the change in
the multifractal spectrum will be hardly noticeable and then other methods—e.g., order
tracking or the AR reference model—will bring better results.
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13. Wodecki, J.; Kruczek, P.; Bartkowiak, A.; Zimroz, R.; Wyłomańska, A. Novel method of informative frequency band selection for
vibration signal using Nonnegative Matrix Factorization of spectrogram matrix. Mech. Syst. Signal Process. 2019, 130, 585–596.
[CrossRef]

14. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.; Tung, C.C.; Liu, H.H. The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London. Ser. A Math.
Phys. Eng. Sci. 1998, 454, 903–995. [CrossRef]

15. Sharpley, R.; Vatchev, V. Analysis of the Intrinsic Mode Functions. Constr. Approx. 2006, 24, 17–47. [CrossRef]
16. Moore, K.J.; Kurt, M.; Eriten, M.; McFarland, D.M.; Bergman, L.A.; Vakakis, A.F. Wavelet-bounded empirical mode decomposition

for measured time series analysis. Mech. Syst. Signal Process. 2018, 99, 14–29. [CrossRef]
17. Ge, H.; Chen, G.; Yu, H.; Chen, H.; An, F. Theoretical Analysis of Empirical Mode Decomposition. Symmetry 2018, 10, 623.

[CrossRef]
18. Sharma, V.; Anand, P. Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox

under varying speed. Eng. Fail. Anal. 2020, 107, 104204. [CrossRef]
19. Sánchez, R.; Lucero, P.; Macancela, J.; Cerrada, M.; Vásquez, R.E.; Pacheco, F. Multi-fault Diagnosis of Rotating Machinery

by Using Feature Ranking Methods and SVM-based Classifiers. In Proceedings of the International Conference on Sensing,
Diagnostics, Prognostics, and Control (SDPC), Shanghai, China, 16–18 August 2017; pp. 105–110. [CrossRef]

20. Wang, Y.; Zhou, G. The Novel Successive Variational Mode Decomposition and Weighted Regularized Extreme Learning Machine
for Fault Diagnosis of Automobile Gearbox. Shock. Vib. 2021, 2021, 5544031. [CrossRef]
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