
sensors

Article

Flight Planning Optimization of Multiple UAVs for Internet
of Things

Lucas Rodrigues 1 , André Riker 2 , Maria Ribeiro 3 , Cristiano Both 4 , Filipe Sousa 5 , Waldir Moreira 5 ,
Kleber Cardoso 1 and Antonio Oliveira-Jr 1,5,*

����������
�������

Citation: Rodrigues, L.; Riker, A.;

Ribeiro, M.; Both, C.; Sousa, F.;

Moreira, W.; Cardoso, K.; Oliveira, A.,

Jr. Flight Planning Optimization of

Multiple UAVs for Internet of Things.

Sensors 2021, 21, 7735. https://

doi.org/10.3390/s21227735

Academic Editor: Wojciech Kempa

Received: 1 October 2021

Accepted: 18 November 2021

Published: 20 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Informatics (INF), Universidade Federal de Goiás (UFG), Goiânia 74690-900, Brazil;
lsrodrigues@tjgo.jus.br (L.R.); kleber@ufg.br (K.C.)

2 Institute of Exact and Natural Sciences (ICEN), Federal University of Pará, Belém 66075-110, Brazil;
afr@ufpa.br

3 Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC),
4200-465 Porto, Portugal; maria.r.ribeiro@inesctec.pt

4 Applied Computing Graduate Program, University of Vale do Rio dos Sinos (UNISINOS),
São Leopoldo 93022-750, Brazil; cbboth@unisinos.br

5 Fraunhofer Portugal AICOS, 4200-135 Porto, Portugal; filipe.sousa@fraunhofer.pt (F.S.);
waldir.junior@fraunhofer.pt (W.M.)

* Correspondence: antoniojr@ufg.br

Abstract: This article presents an approach to autonomous flight planning of Unmanned Aerial
Vehicles (UAVs)-Drones as data collectors to the Internet of Things (IoT). We have proposed a model
for only one aircraft, as well as for multiple ones. A clustering technique that extends the scope of
the number of IoT devices (e.g., sensors) visited by UAVs is also addressed. The flight plan generated
from the model focuses on preventing breakdowns due to a lack of battery charge to maximize
the number of nodes visited. In addition to the drone autonomous flight planning, a data storage
limitation aspect is also considered. We have presented the energy consumption of drones based on
the aerodynamic characteristics of the type of aircraft. Simulations show the algorithm’s behavior in
generating routes, and the model is evaluated using a reliability metric.

Keywords: Internet of Things (IoT); Unmanned Aerial Vehicle (UAV); autonomous flight planning;
optimization

1. Introduction

Unmanned Aerial Vehicles (UAVs) are an emerging technology used for many pur-
poses, including military, surveillance, smart cities, and data communication [1,2]. Besides,
UAVs (or drones) are becoming more and more popular to provide wireless communica-
tion in a vast range of applications and scenarios, including in Internet-of-Things (IoT)
environments [3–6].

When it comes to communication infrastructure, UAVs can be useful to perform data
collection on a network of IoT devices [7–9]. Data collection from static nodes is a typical
application for IoT sensor networks. Given that the sensors are randomly spread over a
wide area, it is not easy to obtain information from all sensors if they are not fully connected.
The sensors used in an IoT network generally have low available energy. Moreover, some
do not have mobile connectivity making the collected data carried out alternatively to the
cellular station, either by land or mobile air vehicle. In these cases, UAVs are promising
vehicles for data collection in sensor networks due to their direct communication skills
between UAVs and the sensor [10].

A UAV has limited autonomy, and the same units are shared among many users,
causing their batteries to be found with little remaining charge [11,12]. Lack of battery can
risk falling during the flight causing possible loss of this equipment. Another critical aspect
to be observed in UAVs is their limiting data storage capacity. The memory provided
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in these vehicles uses flash technology, which has an ideal weight to carry this type of
aircraft. The data storage capacity in drones is a limiting factor because the amount of
collected data from the IoT devices can exceed the total storage available, making a mission
unfeasible [13,14]. The shared use of the same UAV by several users, coming from different
origins, also fills the vehicle’s internal memory capacity, for example, various software
installations, storage of collected image files as photos and videos, and other memory used
for multiple purposes. Applications of multi-UAVs in the IoT ecosystem have gained great
attention. In this regard, Wang et al. [15] proposes a multi-UAV collaborative data collection
system, where multiple UAVs collect data from two-dimensional distributed devices in
flying mode or hovering mode. Additionally, a multi-UAV deployment for mobile edge
computing (MEC) enhanced IoT architecture was designed by Reference [16]. The multiple
UAVs are endowed with computing offloading services for ground IoT devices with limited
local processing capabilities.

The current scenarios and applications involving UAVs for IoT data collection have
shown that the limitations concerning energy and memory must be solved in an integrated
way since they represent essential aspects for the flight plan generator. The urge for
this integration comes from these limitations, making the problem more challenging and
necessary. Moreover, both limitations raise other aspects not addressed by the classic
vehicle routing problem. The classic problem described in the literature is called the Vehicle
Routing Problem (VRP). Most of the works that focus on VRP do not consider drones
acting as data mules. It makes these works inefficient for planning flights aiming for
data collection with multiple users and UAVs. Another problem called Vehicle Routing
Problem with Drones (VRPD) [17] does not consider the energy and storage limitations
when planning drone flights. Due to the lack of works in the literature, it is necessary to
improve the existing optimization model responsible for drone flight planning in scenarios
involving IoT data collection with multiple users and UAVs.

The main objective of the work is to propose an optimization model for the Vehicle
Routing Problem focusing on minimizing the energy consumption and storage limitations.
Besides, the proposed model generates flight plans for multiple UAVs avoiding accidents
caused by energy shortage and reducing the effects of running out of memory during a
flight. Additionally, it is fundamental to highlight that the proposed solution generates a
flight plan to be executed autonomously by the aircraft.

The article is organized as follows. Section 2 presents the main related works.
Sections 3 and 4 introduce the formulation of the optimization model and the evalua-
tion results, respectively. Section 5 presents the conclusions of this work.

2. Related Work

The UAV-related work is extensive. To discuss the leading research, we start pre-
senting the investigations that use UAVs to collect data from the IoT devices that develop
applications to share the aircraft with several users based on cloud services. Therefore, we
present the vehicle routing problem with UAVs, and also the works use clustering to group
points that will be visited by drones and flight generation approaches.

2.1. Applications with UAVs in Wireless Sensor Networks and the IoT Context

To enable a fully automated intelligent transport system in a Smart City context,
Menouar et al. [18] used UAVs as IoT devices connected via Dedicated Short Range
Communications (DSRC) to cars, providing a Vehicle-to-Vehicle (V2V) and Vehicle-to
Communication-Infrastructure (V2X). The work concludes that the truly autonomous
operation of UAVs is a real challenge, as it demands the observation of human beings and
any other obstacles.

Seiber et al. [19] used drones as IoT sensors to detect hazardous areas contaminated
with chemical agents without requiring men to carry out this detection. The communication
technology used between the drones was Wi-Fi, and the connection between the drone
and the base station was Bluetooth Low Energy (BLE). The limitations found in the tests
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performed were concerning the scheduled flight of the drones, which was limited by
establishing a horizontal alignment in the UAV swarm, which would not happen in a
real situation.

Kirichek [20] developed a data delivery model starting from terrestrial sensors, trans-
mitted to drones until it arrives on a cloud server. The proposed model makes it possible
to calculate the number of UAVs necessary for data collection and delivery, taking into
account the intensity and volume of traffic on the network, the number of units, and the
radius of its connection. Jiang and Swindlehurst [21] investigated the optimal trajectory
of UAVs equipped with multiple antennas to maximize the sum of transmission rate in
uplink communications. Zeng, Zhang, and Lim [22] maximized the throughput of a UAV-
based relay system by optimizing the UAV trajectory and the transmission rate between
the source and the relay. Mozaffari et al. [23] investigated the optimal deployment and
movement of a single UAV to support wireless communications downlink. Although these
works present their considerations of the location and trajectory of the aircraft and the
best implementation according to aspects of the transmission range and communication
technologies used, they still do not consider the data collection function given an IoT
sensor network.

A stationary air stop is made to provide a small energy-saving before continuing
the UAV movement, without knowing the new trajectory to update the UAV mobility
trajectory. This scenario foresees the use of a UAV of medium energy consumption. It
considers the maintenance of the drone’s flight for an extended period, making it hover
in the air during this period to serve as a base station for the devices. For the scenario
determined in Mozaffari et al. [24], situations with autonomy limited to a battery without
recharging are considered. However, there are no changes in which devices are active over
time, as UAV is used as a data mule, differently from previous work that used a drone as a
base station. When drones have low remaining autonomy for flight, they must be used for
overflight and data collection from as many IoT devices as possible. In some cases, it is
possible to fly over all the existing IoT devices in a smart campus if the autonomy of the
drones is used efficiently.

Yang and Yoo [10] first acquired data sensing points from the entire sensor field. UAV
communicates with the sensors to obtain data, then determine the best trajectory to traverse
the neighboring acquisition points. A genetic algorithm is used to perform the optimization.
In a similar context, Sujit et al. [25] UAV flew over sensors retrieving data. To minimize
UAV flight time and maximize network lifetime, a joint optimized route for UAV and
sensor network was executed. The main technique used to make this possible is clustering.
Despite achieving excellent results, neither work establishes this optimal trajectory that
demonstrates an energy expenditure model based on drone aerodynamics.

2.2. Cloud Drone Sharing Services

Choi et al. [26] used a standards-based communication scheme that is useful in
realizing efficient management and control of UAV-based operations. Considering this
issue, they used a global standard called one Machine-to-Machine (M2M), which provides
M2M communication and a service layer to interoperate M2M and IoT solutions.

Koubâa et al. [27] contributed to the Internet of Drones (IoD) and the deployment
of UAVs over the cloud. An innovative service-oriented and cloud-based system and a
management system provided access to UAVs through Web Services, scheduling missions,
and promoting collaborations between drones.

In both works, the services developed do not include the drone’s availability when
flying over a network of IoT sensors. This service attends to numerous users or client
applications that define what sensors they need to consume data.

2.3. Vehicle Routing Problem with UAVs

Isaacs et al. [28] exploited data collector mobility to mitigate the power consumption
of stationary nodes and enable sparse deployments at the cost of additional data latency.



Sensors 2021, 21, 7735 4 of 14

Moreover, they looked for efficient strategies to alleviate this data latency. They also
provided data mule routing policies for locating acoustic sources in a large area involving
many sources and sensors. Fügenschuh et al. [29] formulated the mission planning problem
for a fleet of UAVs as a Mixed Integer Non-Linear Programming (LMLP) problem. The
problem calls for a selection of targets from a list for the UAVs and trajectories that visit the
chosen targets.

Semiz et al. [30] developed an algorithmic method to solve the vehicle routing problem
applied to UAVs. This method uses the divide and conquers method for resolution. In this
way, the problem is transformed into a combination of several sub-problems. A method is
designed to convert these minor problems into transport problems. Each transport problem
is solved with the simplex algorithm.

Robotic aerial systems can be beneficial to perform complex tasks in a distributed
and cooperative manner, such as locating targets and searching for Points of Interest
(POIs). Guerriero et al. [31] proposed a distributed autonomous UAV system capable of
coordinating and cooperating to ensure spatial and temporal coverage of specific time
and variable spatial POIs. It is considered that the UAV system can solve distributed
dynamic scheduling problems, requiring each device to move towards a certain position at
a certain time.

VRPD is an extension of the classic capable vehicle routing problem, where trucks and
drones are used to deliver to customers. A distinctive feature of the VRPD is that a drone
can travel with a truck, take it away from its stop to service customers, and land at a service
center to travel with another truck as long as range and carrying capacity limitations are
met. Wang et al. proposed a mixed-integer programming model and develop an algorithm
using the branch-and-price method [17]. In a similar approach, Adbelhafiz et al. briefly
analyzed VRP instances for UAV operations with multiple objectives [32]. Moreover, the
authors focus on multi-objective and multi-UAV mission planning problems and try to take
advantage of the literature on VRP and its variants. The results show that each military
multi-UAV mission has its corresponding VRP variant. A new algorithm based on a tree
search enhancement to solve complex multi-UAV mission planning problems with complex
constraints is presented.

Dorling et al. proposed two multi-trip VRPs for delivery drones addressing multiple
trips to the depot and the effect of battery weight and payload on energy consumption [33].
One minimizes costs constrained to a delivery time, while the other minimizes delivery
time subject to a budget constraint. The authors propose a power consumption model for
multi-rotor drones, demonstrating that power consumption varies approximately linearly
with payload and battery weight. In this similar scenarios, Coutinho et al. [34] defined
the UAV Routing and Trajectory Optimization Problem. A taxonomy was introduced, and
recent contributions to optimizing the UAV trajectory, UAV routing, and article approach
to these problems and their variants were reviewed.

The use of only one class of algorithm to solve complex problems, such as data mule
routing, has proven not to be a good strategy, so the above works use chaining algorithms
to have the best processing performance and the best optimal solution. However, the
authors do not make use of clustering in this thread to achieve the optimal result. MILP can
accommodate both continuous and binary decision variables and a variety of constraints
and objective functions. However, the NP-Complete nature implies a dramatic increase in
computation complexity as the number of variables and constraints increases. This issue is
highly critical and needs to be resolved in near real-time.

2.4. Trajectory Optimization Methods

Trajectory optimization methods that take aircraft dynamics and path constraints is
very relevant for problems addressed in this work. Hence, Hong et al. [35] proposed
a sequential quadratic programming (SQP) based optimization for state and input con-
strained guidance of aerospace vehicles with a free final time. The idea is to reformulate
a class of nonlinear guidance with path and terminal constraints into a generic quadratic
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programming (QP) and then to solve problems of the SQP concept. In this regard, a scheme
with five foundational elements is developed and tailored to the requirements of missions
by Reference [36].

Additionally, a very recent and relevant work proposed by Hong et al. [37] proposed
a hierarchical parameterization method in order to generating smooth flight trajectories
satisfying hard boundary constraints on controls and control derivatives of all orders.
The proposed method is to achieve a seamless transition that accurately connects two
steady flights. These methods are relevant for generating trajectories between sensors for
the vehicles.

Wang et al. [38] proposed a communication scheme based on UAV-enabled wire-
less powered communication network (WPCN) that can improve the energy harvest-
ing efficiency. Authors have used the UAV trajectory, time allocation, transmit power,
scheduling of wireless information, and wireless power transfer to minimize the whole
energy consumption.

In summary, methods that carry out exhaustive research may become unfeasible as
the sample space increases. Our proposed models have two different and complementary
goals, (i) to maximize the total number of visited sensors and (ii) to achieve the minimum
energy consumption for that maximum number of sensors. The next section is dedicated
to our proposal.

3. Flight Plan Optimization of Multiple UAVs with Storage Capacity

This section presents the formulation of our proposed optimization model, including
the aspects not covered by the classical formulations based on VRP. This section is orga-
nized into Problem Formulation (Section 3.1) and Hovering Calculation (Section 3.2). We
highlight that our proposed model does not consider the collisions of any types.

3.1. Problem Formulation

Let the set K = {1, 2, . . . , n} represent the drones used to carry out the mission to
be optimized. Consider a set of clusters S = {0, 1, 2, . . . , n} of sensors, forming an IoT
network. These sensors are scattered around campus at random, establishing an arc of the
distance between each of these sensors. The set S has the number of elements equal to the
number of sensors added to the starting point for modeling purposes. The element 0 is
a virtual node that identifies the location from where the aircraft takes off. Moreover, we
consider that drones can have heterogeneous characteristics, and the energy consumption
between the sensors is represented in this case by the set E = {E1

0,0, E1
0,1, . . . , Ek

n−1,n}, in
this set, an element Ek

i,j has i, j ∈ S, and k ∈ K. In the case of i = j, the energy cost is
zero. Each drone that performs the flight in this trajectory has a specific autonomy at the
moment before the flight. In this context, we present the set C = {C1, C2, . . . , Cn}, and
each element Ck represents the specific autonomy of the UAV k. The set shown above is
also known as VRPD since the objective of the classic model is to minimize the distance
traveled by vehicles. However, in this work, as a form of prevention, the objective is to
maximize the number of visited sensors. In this case, it is necessary to restrict the total
energy expenditure of each vehicle to the autonomy that each one has.

The capacity attribute of the problem statement is treated as the data storage capacity.
Most commercial drones that are on the market are sold with attached flash memory. These
memories have a high cost and are provided with small storage space. Furthermore, they
are used because their weight, being small, does not influence the total weight of the drone,
helping the vehicle maintain its reasonable total range. Sensors or sensor clusters have a
maximum storage buffer for the data that will be collected. In this case, we present the
set q = {q1, q1, . . . , qn}, where each element qs represents the total buffer in each specific
cluster. To identify the storage capacity of the flash memory that the UAV loads, we have
the set Q = {Q1, Q1, ..., Qn} for each aircraft. For each of the segments computed in the
flight routing, it is necessary to determine a binary variable that specifies whether the edge
(i, j) will be covered by the drone k. This decision variable is given in (1):
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Xk
ij ∈ {0, 1}, ∀i, j ∈ S, ∀k ∈ K. (1)

The most significant interest is that as many sensors or clusters can be visited, consid-
ering that vehicles have battery limitations. Moreover, UAVs must take off from the first
point and end the flight returning to the same point for this scenario. To know the number
of visited points, given a set Ar of traveled edges, it is necessary to subtract Ar − k, as the
last edges traveled are relative to the drones’ turn to the first point. The objective of the
optimization model is to maximize the number of visited points by maximizing the sum of
covered edges. This objective is demonstrated in (2):

Maximize ∑
i,j∈S,k∈K

Xk
ij. (2)

Constraint (3) ensures that the sum of times a given UAV arrives at a point through
an edge. For example, (i, j) must be equal to the sum of the output edges of the same
point, i.e., (j, i), this output being executed by the same drone that executed the input. This
restriction is necessary because, in each sensor or cluster that a drone enters, overflying
does not initially allow another vehicle to visit that point. In this case, an exit path is an
edge from the last point to the next sensor point to be visited.

∑
i∈S,i 6=j

Xk
ij = ∑

i∈S,i 6=j
Xk

ji, ∀j ∈ S, ∀k ∈ K. (3)

Constraint (4) and (5) determine that each vehicle must leave the starting point exactly
once and return once.

∑
i∈S,i 6=0

Xk
0i = 1, ∀k ∈ K, (4)

∑
i∈S,i 6=0

Xk
i0 = 1, ∀k ∈ K. (5)

Constraint (6) gives the possibility that a point is overflown. In this scenario, not
all points are visited, considering that the vehicle does not have the autonomy to do so.
However, there is a limit of visitation at most once. It is essential to highlight that the VRP
classic considers it mandatory to visit all points.

∑
k∈K

Xk
ij 6 1, ∀i, j ∈ S, i 6= j. (6)

For the drone to store the data collected from all visited clusters, the total amount of
data collected by a specific UAV must be less than or equal to the storage available on that
drone as formalized by restriction (7). The total energy consumption when visiting the
points and hovering to perform the synchronization must be less than the autonomy in the
specific vehicle (8). The ek

ij is the energy spent by UAV to travel between points ij. The Ck is
the total energy capacity for power consumption.

∑
i,j∈S,i 6=j

qjXk
ij ≤ Qk, ∀k ∈ K, (7)

∑
i,j∈S,i 6=j

ek
ijX

k
ij ≤ Ck, ∀k ∈ K. (8)

Given a subset R of clusters within the total set, in this one, the sum of edges traveled
must be equal to the total of vertices minus one so that a subpath is not closed within that
set of clusters (9). This restriction acts to avoid any waste in the remaining autonomy of
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the drone during the flight. Considering if a sensor has already been visited before, it is not
necessary to return to it.

∑
k∈K

∑
i,j∈S,k∈K

Xk
ji ≤ |R| − 1, R ⊆ K. (9)

3.2. UAV Hovering Calculation

This section describes the calculation of power consumption during the hover to use
in the optimization problem. The technology used was BLE, which has an Air Data Rate
of 1Mb/s for the connection between UAV and sensors [39]. Let set H = {H1, H1, ..., Hn}
represent the values related to the energy consumption of the drone during the planning in
which the data contained in the buffer of the sensors or clusters is transmitted.

The calculation of power consumption during the drone’s specific hover is shown
below. The Buffer is divided by the Data Rate to determine how long it takes to transmit the
entire buffer collected by the sensors. Right after that, to measure the energy consumption
of the plantation, the classic energy formula is used: E = P× t. This set of values resulting
from energy consumption from the moment of data transmission are added to the data
consumption values for visiting at a given point, making the optimization model consider
all energy expenditure as a single set.

The simplest method to obtain a first-order estimate of the power needed for the
hover is the One-Dimensional Axial Momentum Theory [40]. The slipstream has a vertical
axis through the center of the rotor. The inflow is from the top of Figure 1. Slipstream
contraction is explained with the same concepts used for the helix. When we take into
account these changes for application to the suspended helicopter, the One-Dimensional
Axial Momentum Theory provides the induced speed in the hover engine (10). The W
means weight, T means engine thrust, and ρ means air density:

Vh =

√
T

2ρA
=

√
W

2ρA
. (10)

The product gives the ideal power needed to hover between the thrust and the induced
speed, that is, (11):

Ph = T ×Vh = W

√
W

2ρA
=

W
3
2√

2ρA
=

√
W
2ρ

√
W
A

, (11)

where the disk area is A = πR2, we conclude that the induced power to hover increases
with the aircraft’s weight and decreases with increasing rotor radius (all other parameters
being constants). This assumption would imply that increasing the diameter would benefit
considering constant weight, which is not always the case.
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Figure 1. Hover condition with flow tube around rotor disc and frame.

4. Evaluation and Results

We have used MATLAB and PuLP library of Python to evaluate our proposed opti-
mization model. PuLP is an open-source linear programming (LP) package which largely
uses Python syntax and comes packaged with many industry-standard solvers. Simula-
tions presented in this section, two UAVs of equal storage capacity were considered, with
4000 mb each. The values of 5, 7, 9, and 11 points were simulated. Moreover, we define
that each vehicle had a total autonomy of 30,000 J of energy to be spent.

It is essential to highlight that, in Figure 2, the energy consumption changes and is
reduced using the proposed optimization model. One optimization objective is to minimize
the energy consumption of as many sensors as possible to be visited. At the last point of the
graphs, it is possible to see that there is a similar drop in consumption in the illustrations.
This drop happens because, even if the number of sensors visited is more significant than in
the previous simulated set, more possibilities to minimize power consumption are created
as the sample space increases.

(a) (b)

Figure 2. Maximum of sensors versus energy consumption. (a) Normal energy consumption.
(b) Minimum energy consumption.

We can see in Figure 3 that the amount of data collected has an almost linear growth
and has an approximately equal distribution between the two vehicles. This behavior
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occurs because both the load and the storage capacity of the two UAVs are set with
equal values.

In Figure 3, the total data collected by each of the vehicles is compared. As the number
of simulated nodes increases, the volume of data naturally also increases. Although UAV 2
presents a greater volume of data collected than UAV 1, there is no weighting in the model
that causes this, and the storage capacity of the two vehicles is equal.

(a) (b)

Figure 3. Total sensors visited versus total sync. (a) Total sensors visited by Vehicle 1. (b) Total
sensors visited by Vehicle 2.

Following the approach, a new simulation is made, as shown in Figure 4 keeping
all the previous data but changing only the total storage capacity. In this case, UAV 1
now has 6000 mb of space, and UAV 2 now has 2000 mb of space. We highlight that the
model makes the proper distribution in routing so that each vehicle does not overload your
storage space.

(a) (b)

Figure 4. Total sensors visited versus total sync. (a) Total sensors visited by Vehicle 1. (b) Total
sensors visited by Vehicle 2.

Figure 5 present the routes generated by the previous cases when the storage capacity
was similar. We can observe that the amount of visited sensors also remains the same
between the two vehicles. However, we observe that, despite the significant variation in
storage capacity, the number of sensors between the two does not differ that much. This
behavior happens because the model only selects an optimal solution that we define with a
larger buffer size.

Figure 6 presents 4 instances which were simulated allocating 5, 7, 9, and 11 sensors.
Each instance is run simultaneously in the multi-vehicle model and the same in the single-
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vehicle model. In this comparison, the same range of 80,000 J is attributed to each vehicle.
It is possible to observe the natural findings that, in the model with multiple vehicles,
considering that the instance uses two aircraft, it is possible to fly over more sensors.
However, the energy expenditure is necessarily higher. In this case, because the model
requires the two aircraft to leave and return at least once, an improvement would be the
possibility that the model assigns the tasks to only one UAV. In this case, if it identifies that
this way, it would use a lower total of energy.

(a) (b)

Figure 5. Routes with equal and different storage capacity. (a) Route with 9 points. (b) Route with
11 points.

Figure 6. Comparison between the model with a single vehicle and multi vehicles.

Model Performance

We have used response time, reliability rate (with variation in autonomy and visitation
points) and also the amount of energy consumption to extract data in order to analyze the
model’s performance with the confidence interval of 95% during the simulations.

Figure 7 show the histogram with energy consumption and reliability rate (with
variation in visitation points). Figure 8 show the histogram with response time and
reliability rate (with variation in autonomy).

For the reliability rate, in the two cases used, it is given as shown in Equation (12) [41]
where R is the number of replications of the simulation, and n the number of failures, that
is, the model does not have an optimal solution for the input data.

r =
R− n

R
. (12)
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According to Figures 7 and 8, the situation can happen because the basic premise is
that each vehicle must leave and return to the starting point at least once. However, there
may be situations in which the vehicle will not have enough autonomy to perform such
tasks so that the simulation will show no doable results. From other replications of the
simulations, 50 samples of mean values are extracted. Each of the samples is taken from
a simulation run from a different instance, considering new sensor location points and
variations in vehicle ranges.

Figure 7. Histogram with energy consumption and reliability rate varying locations.

A constant autonomy is maintained, allowing all instances to return an optimal
solution to measure the response time and energy consumption metrics. For simulations
with autonomy variation, a random value is generated between 35, 000 and 60, 000 joules.

I.C.media : µ± (t(1− α
2 ,df))×

s√
n

. (13)

According to Figures 7 and 8, the confidence interval formula for the sample mean is
used confirm shows Equation (13), where µ is the arithmetic mean of the samples, and t is
the t-distribution function, which depends on α, called significance level, and on df which is
the level of freedom. The element s is the sample variance, and the n is the sample set size.
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Figure 8. Histograms with response time and reliability ratio varying autonomy.

5. Conclusions

We have proposed a routing optimization model for multiple UAVs as a Data Mule
that considers the stopping time for data transfer, vehicle aerodynamics, drone autonomy,
buffer size of IoT devices, and UAV storage capacity. The model differs from the literature
because it focuses on preventing crashes due to lack of battery during the flight. This
preventing crash entails a series of modifications in the model compared to the traditional
structure of the vehicle routing problem.

The concern with storage capacity is also a fundamental differential in the model as
drones remain a scarce and limited resource in organizations. Autonomous and scheduled
flights must be concerned with the capacity of the data allocation space as this resource
will be used by several users. When flying over clusters, UAVs can encounter a heavy mass
of data. Another fundamental aspect was the calculation of energy expenditure during
data transmission at each stop.

As a future work, we are carrying out real experiments using the bebop2 by Parrot
drone. We are also considering applying our model with energy harvesting following
the work done by Reference [38]. Another issue is that the bit rate must be calculated for
the transmission of data each to from a dynamic model. There are some elements that
can cause signal degradation and that can impact this transmission rate, such as path loss
and interference from simultaneous connections among each other. The air vehicle may
encounter a group of sensors with heterogeneous communication technologies, as well as
a number of nodes, that it does not have the capacity to make all connections.
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