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Abstract: Recently, electrochemistry- and photoelectrochemistry-based biosensors have been re-
garded as powerful tools for trace monitoring of carcinoembryonic antigen (CEA) due to the fact
of their intrinsic advantages (e.g., high sensitivity, excellent selectivity, small background, and low
cost), which play an important role in early cancer screening and diagnosis and benefit people’s
increasing demands for medical and health services. Thus, this mini-review will introduce the cur-
rent trends in electrochemical and photoelectrochemical biosensors for CEA assay and classify them
into two main categories according to the interactions between target and biorecognition elements:
immunosensors and aptasensors. Some recent illustrative examples are summarized for interested
readers, accompanied by simple descriptions of the related signaling strategies, advanced materials,
and detection modes. Finally, the development prospects and challenges of future electrochemical
and photoelectrochemical biosensors are considered.
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1. Introduction

As a malignant tumor originating in epithelial tissue, cancer has become a serious
global disease that severely threatens human health and lives [1]. Tumor biomarkers are
related to the occurrence and development of some cancers and can be applied to the
early screening, diagnosis, and prognosis of cancer [2,3]. Among them, carcinoembryonic
antigen (CEA), a set of glycoproteins highly relevant to cell adhesion, has been considered
as a commonly used cancer biomarker in clinical diagnosis, because its overexpression in
human blood serum often means the presence or progression of various diseases such as
colorectal cancer, pancreatic cancer, and lung carcinoma [4–7]. Thus, designing facile and
accurate methods for ultrasensitive monitoring of CEA is of crucial importance for saving
patient lives and helps to stimulate people’s demands for medical and health services.

To date, several detection methods, including electrochemistry (EC)-, photoelec-
trochemistry (PEC)-, electrochemiluminescence-, surface-enhanced Raman scattering-,
fluorescence-, and chemiluminescence-based immunoassays have been utilized to trace
CEA detection in the early diagnosis of various cancers [8–13]. Among them, electrochem-
ical and photoelectrochemical biosensors, practical and potential analytical techniques,
can convert specific analyte information into readable electrical signals, which achieve
high sensitivity, low cost, and a small background in comparison with common optical
methods [14–17]. In particular, the proper bio-chemical probes (e.g., antibodies and ap-
tamers) are composed of powerful affinity interactions and satisfactory binding sites and
have been regard as indispensable recognition elements in sensing devices [18,19]. The
utilization of antibodies or nucleic acid aptamers not only benefit improved sensitivity and
selectivity of CEA biosensors due to the fact of their specific binding sites and desirable
designability but also present increased stability and repeatability due to the fact of their
easy assembly and stable bioactivity. With the exploitation of new materials and ingenious
signaling strategies, the past decade has witnessed the rapid evolution of electrochemical
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and photoelectrochemical CEA sensing devices, accompanied by the introduction of ver-
satile immuno- and aptamer-based recognition probes. Thus, according to the difference
in target-dependent biorecognition events, the developed CEA biosensors can mainly be
divided into two categories: immunosensors and aptasensors, although other recognition
elements, such as molecularly imprinted polymers, have also been reported [20].

In this mini-review, we briefly describe the current research status of electrochemi-
cal and photoelectrochemical biosensors for CEA assays and focus on recent illustrative
immunosensors and aptasensors from the viewpoint of target antibody/aptamer recog-
nition reaction, accompanied by several examples to outline the representative signaling
strategies, advanced nanomaterials, and detection modes (Figure 1). Finally, future de-
velopment trends and challenges are discussed. Moreover, by means of a comprehensive
summarization of the newly published achievements in research, we strongly believe that
this summarization of EC- and PEC-based CEA aptasensors and immunosensors is of
great significance for interested readers and will make a positive contribution to further
construction of sophisticated sensing devices due to the increasing enthusiasm of analytical
chemists and medical research staff.
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Figure 1. Overview of electrochemistry- and photoelectrochemistry-based immunosensing and
aptasensing of CEA.

2. Electrochemistry-Based CEA Detection
2.1. Electrochemical Immunosensors

Over the past several decades, immunoassays with specific recognition capability by
direct binding of an antigen and its antibody have become a well-established standard
detection technique for the quantitative analyses of disease-related biomarkers [21–23].
Some recently reported electrochemical immunosensors for CEA determination are listed
in Table 1. For example, Yang’s group constructed a novel label-free electrochemical
CEA immunosensing platform on the basis of platinum-nanoparticle-decorated reduced-
graphene oxide@polystyrene nanospheres (PtNPs@rGO@PS NSs), which were prepared
by the hydrazine reduction of graphene oxide (GO) on the surface of PS NSs and the
subsequent microwave-induced in situ generation of Pt NPs (Figure 2) [24]. As an ideal
electrode matrix, PtNPs@rGO@PS NSs are beneficial for the biofunctionalized modification
of streptavidin molecules and the further immobilization of biotinylated CEA antibodies
(biotin anti-CEA) due to the fact of their satisfactory biological compatibilities and large
specific surface areas. The formed nonconductive immune composites after the addition of
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target CEA can block electron transfer processes of [Fe(CN)6]3−/4− probes and, thus, the
obtained current response displays a wide linear negative correlation for CEA (ranging
from 0.05 to 70 ng mL−1).

Table 1. Performance comparison of recently reported electrochemical immunosensors for CEA.

Nanomaterial Detection Technique Linear Range (pg mL−1)
Detection Limit (pg

mL−1) Reference

MoS2-PBNCs DPV 5–10,000 0.54 [25]

AuNPs/BSNa-CNC-PPy SWV 0.001–200,000 0.00006 [26]

AuNPs/CNOs/SWCNTs/CS SWV 0.1–400,000 0.1 [27]

AuNPs/PB-PEDOT DPV 50–40,000 10 [28]

CPS@PANI@Au DPV 6–12,000 1.56 [29]

CuFe-MoC@NG@PDA i–t 0.01–80,000 0.003 [30]

AuNPs@ZrHCF@Fe3O4 SWV 0.5–50,000 0.15 [31]

Au/PDA/Au-PB/CNT DPV 5–50,000 3.3 [32]

CNTs/rGO/Ag@BSA/PEDOT LSV 2–50,000 0.1 [33]

Ag/MoS2/rGO i–t 0.01–100,000 0.0016 [34]

Au/γ-PGA-DA@CS EIS 0.02–20,000 0.01 [35]

HMSNs-Cu2+@HA i–t 0.01–40,000 0.0035 [36]

PBNCs, Prussian blue nanocubes; BSNa, sodium benzenesulfonate; CNC, cellulose nanocrystalline; PPy, polypyrrole; CNOs, carbon nano-
onions; SWCNTs, single-walled carbon nanotubes; CS, chitosan; PEDOT, poly(3,4-ethylenedioxythiophene); CPS, carboxy-functionalized
polystyrene spheres; PANI, polyaniline; NG, N-doped graphene; PDA, polydopamine; ZrHCF, zirconium hexacyanoferrate; rGO, reduced
graphene oxide; BSA, bovine serum albumin; γ-PGA, poly(γ-glutamic acid); HMSNs, hollow mesoporous silica nanoparticles; HA,
hyaluronic acid.
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Figure 2. Schematic illustration of the preparation process for PtNPs@rGO@PS NSs and the fabri-
cation of the electrochemical label-free immunosensor. Reprinted with permission from ref. [24].
Copyright 2020 American Chemical Society.

Since the intrinsic features of immune proteins limit their applications in immunoas-
says as redox partners, the combination of secondary antibodies (Ab2) and signal amplifica-
tion labels has been extensively applied to most immunosensors for the monitoring of cur-
rent intensities from electroactive probes (e.g., H2O2 and ferrocene) [37,38]. As a result, it is
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highly desirable to synthesize effective label materials with excellent catalytic performances
in the development of sensitive immunosensing platforms [30,39,40]. Based on this, copper
ion-loaded cubic Au@Pt dendritic nanomaterial-functionalized nitrogen-doped graphene
(Au@Pt DNs/NG/Cu2+) with large surface areas and remarkable adsorption capabilities
were first prepared and served as label units to capture numerous Ab2 (Figure 3) [41]. More-
over, Au nanoparticle-modified polydopamine (Au@PDA) nanocomposites with superior
electronic conductivity as signal transducing units were cast on a glassy carbon electrode
(GCE) surface for the immobilization of primary antibodies (Ab1). In the presence of target
protein, the formation of sandwich-type immune-complex from Ab1, CEA, and Ab2 can
prompt Au@Pt DNs/NG/Cu2+ nanocomposites to reach the GCE’s surface and further
catalyze the reduction in substrate H2O2 owing to their peroxidase-like properties. Taking
advantage of the synergetic effects of Au@Pt DNs/NG/Cu2+ and Au@PDA nanomaterials,
a low detection limit (0.167 pg mL−1), wide concentration range (from 0.5 pg mL−1 to
50 ng mL−1), high selectivity, and good practicality were achieved for CEA determination,
which may provide a new pathway in clinical analysis and diagnosis.
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of the sandwich-type electrochemical immunosensor. Reprinted with permission from ref. [41].
Copyright 2018 Elsevier.

In recent years, nucleic acid-based immunosensing strategies have been proved as
powerful tools for protein identifications via the integration of DNA strands and anti-
bodies to improve analytical performances [42,43]. Among the aforementioned meth-
ods, proximity hybridization-assisted amplification generally utilizes a couple of specific
antibody-labeled DNA strands (also called proximity probes) to synchronously recognize
the target antigen, followed by the hybridization of proximity probes for the stimulation of
detection signals [44,45]. According to this consideration, Xiong and coworkers exploited
an ultrasensitive electrochemical CEA immunosensor by the intelligent use of proximity
hybridization-stimulated, three-layer cascade amplification [46]. Upon addition of the
target analyte, the proximity hybridization between two antibody-labeled DNA strands
(i.e., Ab-DNA1 and Ab-DNA2) and CEA gave rise to the conformational change of hairpin
DNA1 (HP1) and the subsequent degradation process of exonuclease III (Exo III), which
resulted in the release of Ab-DNA1:CEA:Ab-DNA2 duplex for Cycle I and the generation
of many DNA fragments. The resultant DNA fragments could drive the next catalytic
hairpin assembly (CHA, Cycle II) and rolling circle amplification (RCA) processes on
the surface of Au electrode through their hybridization reactions towards hairpin DNA2
(HP2). After the RCA process, a large number of guanine-rich long DNA single strands
were obtained due to the circular cytosine-rich padlock probes. When the final electrode
was immersed in methylene blue (MB) solution, these guanine-rich DNA single strands
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were successfully linked to numerous MB molecules via the formation of guanine—MB
complexes, concomitant with a remarkable peak current enhancement of electroactive
MB. A wide linear range over seven orders of magnitude from the direct electrochemical
readout indicated that the designed sensing strategy may lay a solid foundation for other
biomarker assays.

Since a large proportion of conventional “off–on” or “on–off” electrochemical biosen-
sors usually only yield one kind of response current, false errors from background noise
and environmental influence may lead to unreliable experimental results. A variety of
sensing strategies have been established to boost the reliability of analytical data. As
shown in Figure 4, a facile sandwich-type immunosensor was developed on account of two
electrochemical detection methods [47]. The synthesized amino-functionalized graphene
sheet-supported Au nanoparticles (Au NPs/NH2-GS) with high electron transfer rate
were cast on a GCE surface to constitute the sensing platform. After the target CEA was
added, ferrous-chitosan-modified polypyrrole nanotube-supported Au@Pd nanodendrites
(Au@Pd NDs/Fe2+-CS/PPy NTs) not only acted as efficient electrocatalysts to catalyze
the reduction of H2O2 via the amperometric i–t curve but also served as electroactive
probes via the square wave voltammetry (SWV) without additional redox substance. By
the comparison of two analytical methods, an overlapped linear concentration range (from
500 fg mL−1 to 5.0 ng mL−1) was gained, which proved the reliability of this immunosensor
and opened an alternative avenue for quantitative monitoring of other tumor markers.
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Enlightened by the ratiometric fluorescence and electrochemiluminescence tech-
niques [48–50], the construction of dual-potential ratiometric electrochemical biosen-
sors based on the self-calibration of two different current signals is feasible for reduc-
ing a number of errors [51,52]. In this communication, using carboxyl-Au nanoparticle-
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decorated mesoporous CeO2 nanoparticles (Au–CeO2)-supported toluidine blue (TB) and
Au nanoparticle-functionalized Cu2S–CuS/graphene (Au–Cu2S–CuS/graphene) nanocom-
posites as signal label and transducing elements, respectively, Wei et al. proposed a novel
dual-potential ratiometric electrochemical biosensor to sensitively monitor CEA levels [53].
With the gradual introduction of CEA, the oxidation peak current of TB was enhanced,
while the peak current of Cu2S–CuS decreased. In addition, the integrated response signal
(∆I =∆ITB +

∣∣∆ICu2S−CuS
∣∣) exhibited a desirable linear positive correlation with a CEA

concentration in the range of 0.001–100 ng mL−1. Compared with the single signal-based
detection mode, the detection limit from ratiometric analysis was much lower than that
using ∆ITB or

∣∣∆ICu2S−CuS
∣∣ as a respective current response. Furthermore, the application

of a dual-responsive assay is another strategy to obtain accurate and persuasive detection
results by the simultaneous signal outputs from two types of sensing platforms [54,55].
Using electrochemistry-fluorescence dual-responsive methods, the ingenious integration
of sensitive electrochemical and stable fluorescent readouts has attracted tremendous
interest in recent years. To account for this, a reliable and sensitive electrochemistry-
fluorescence dual-responsive immunosensor on the strength of cation exchange reactions
was successfully exploited to precisely quantify CEA content [56]. The sandwich-type
immune reaction guided the connection of a capture probe (Fe3O4-Ab1), model analyte
(CEA), and amplification label (carbon nanotube-poly(amidoamine)-CdSe nanocrystals-
Ab2, CNT-PAMAM-CdSe NCs-Ab2). Upon addition of Ag+, thousands of Cd2+ can be
released through the cation exchange reaction, which achieves the direct detection of Cd2+

by electrochemistry and the indirect detection of metal-sensitive dyes (Rhod-5N) with
the existence of Cd2+ by fluorescence. The combination of CNT–PAMAM materials with
large specific surface areas and cation exchange reactions with high exchange efficiencies
guarantees a significant improvement in detection sensitivity.

2.2. Electrochemical Aptasensors

Aptamers with single-strand DNA or RNA sequences can specifically recognize and
bind different kinds of ligand molecules, ranging from small ions to large proteins. With
the increasing demand for biological analyses, the appearance of aptamers has shown great
potentials in bioassays due to the fact of their obvious superiority in high specificity, simple
synthesis, desirable affinity, and long-term storage by comparison with antibodies [57–59].
Huang and coworkers employed graphene quantum-dot ionic-liquid nafion (GQDs–IL–NF)
nanocomposites and Pb2+-assistant cyclic cleavage reaction to construct a novel electro-
chemical aptasensor for the highly sensitive monitoring of CEA [60]. It is well known that
the complicacy of biological matrixes (such as blood serum, human plasma, and urine)
can significantly influence the performance of electrochemical CEA biosensors due to
the serious nonspecific adsorption [61]. The exploitation of antifouling materials with
superior biocompatibility and good chemical durability has been verified as a useful way
to overcome this obstacle. For instance, choosing poly(sulfobetaine methacrylate) (PSBMA)
and PDA as the antifouling and adhesion substances, respectively, Xu et al. established an
electrochemical low-fouling aptasensor in complicated biological matrixes based on the one-
step copolymerization of PDA–PSBMA film [62]. During the Michael addition procedure,
the CEA aptamer with thiol groups were attached to the surface of PDA–PSBMA/GCE
through the covalent binding with PDA. The specific recognition of target CEA and its
aptamer could hinder the diffusion of [Fe(CN)6]3−/4− towards the electrode surface and
cause an obvious suppression of the response current. The low detection limit, down to
3.3 fg mL−1, and satisfactory antifouling ability in clinical serum samples confirmed the
broad application prospect of antifouling materials.

Nucleic acid-based amplification technologies, such as strand displacement reac-
tion (SDR) [63–65], metal ion-dependent DNAzyme [66,67], hybridization chain reaction
(HCR) [68–70], and nuclease cycling cleavage [71,72] remarkably enhanced the detection
sensitivity. Zhao et al. designed an ultrasensitive impedimetric CEA aptasensor based
on the amplification effect of Zn2+-dependent DNAzyme-inspired cycling cleavage [73].
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The reduction in the substrate DNA’s density on the electrode can effectively circumvent
the disadvantages of traditional impedimetric aptasensors (high initial resistance) and,
thus, a wide dynamic range from 10 fg mL−1 to 10 ng mL−1 and an ultra-low detec-
tion limit of 7.9 fg mL−1 were obtained. However, the involvement of one-dimensional
or two-dimensional tracks could restrict their amplification efficiencies. The highly or-
dered pores from metal–organic frameworks (MOFs) and high structural diversity from
DNA self-assembly endow DNA-gated MOFs with the ability of molecular recognition
and signal output. As shown in Figure 5A, the surface of MOFs are proactively linked
to carboxylated B-DNA1 and B-DNA2 via the amidation interaction and then act as a
nanocarrier for the capture of MB and lock DNA (L-DNA) to form three-dimensional
tracks (MB@DNA/MOFs) [74]. A hybridization reaction between a capture probe (CP)
and B-DNA2 strands triggered the deposition of MB@DNA/MOFs on the electrode, which
generated an arresting current signal from the MB. Selecting CEA as a model analyte, the
induced nicking endonuclease cycling cleavage by the specific binding of CEA aptamer
resulted in the production of numerous S1 and S2 strands (Figure 5B). During the SDR pro-
cess, the resultant S1 and S2 strands further hybridized with L-DNA on MB@DNA/MOFs
to expose toehold segments for the replacement DNA (R-DNA) assembly (Figure 5C).
After the liberation of L-DNA strands by the cascade amplification, a large number of MB
molecules were released from the pore of MOFs, leading to a reduction in the MB signal.
Thus, the sensitive detection of CEA was achieved by the incorporation of target-driven
cascade amplification and three-dimensional DNA-gated MOFs.
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CEA. (A) Assembly procedure of MB@DNA/MOFs. (B) Target-triggered nicking endonuclease
cleavage process. (C) Signal molecule release from MB@DNA/MOFs on the electrode. Reprinted
with permission from ref. [74]. Copyright 2020 American Chemical Society.
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Owing to the high sequence programmability, abundant DNA nanostructures have
been precisely constructed with various sizes and shapes according to Watson–Crick base-
pairing rules [75]. A DNA tetrahedron probe, a type of polyhedron, possessed distinct
superiorities, including excellent mechanical rigidity and favorable modulating capability,
which raised the hybridization efficiencies by the accurate control of probe distances [76].
Herein, Ye’s group put forward a novel double recognition–amplification CEA sensing strat-
egy based on the combination of a DNA tetrahedron and dual-function messenger probes
(DMPs) [77]. Using DMP-initiated HCR-induced hemin/G-quadruplex complexes, the
quantitative conversion of specific CEA–aptamer recognition events to gaugeable current
signals could be realized. The rigid scaffold and ordered orientation of self-assembled DNA
tetrahedron probes ensured efficient target accessibility and depressed non-specific ad-
sorption. Under the optimal conditions, this double recognition–amplification aptasensor
displayed high sensitivity and selectivity for CEA identification with a wide concentration
range from 0.1 pg mL−1 to 50 ng mL−1 and a low detection limit of 18.2 fg mL−1. Analytical
performances of other electrochemical CEA aptasensors are summarized in Table 2.

Table 2. Performance comparison of recently reported electrochemical aptasensors for CEA.

Amplification Strategy Detection
Technique

Linear Range
(pg mL−1)

Detection Limit
(pg mL−1) Reference

Strand displacement amplification SWV 100–50,000 20 [78]

G-quadruplex/hemin DNAzyme and
hybridization chain reaction DPV 0.1–50,000 0.0182 [77]

Exonuclease III-assisted amplification DPV 100–200,000 0.4 [79]

G-quadruplex/hemin DNAzyme DPV 0.01–200,000 0.0032 [80]

Glucose oxidase and
G-quadruplex/hemin

DNAzyme-initiated cascade amplification
EIS 0.05–20,000 0.023 [81]

Hybridization chain reaction EIS 0.1–40,000 0.03 [82]

Mg2+-dependent DNAzyme DPV 0.001–1.5 - [83]

Tetrahedral DNA and catalytic hairpin
assembly DPV 1–30,000 0.04567 [84]

For the past few years, flexible sensors have been emerging as promising candidates to
continuously monitor human health circumstances. However, the complicated integration
procedures between electrode materials, soft substrates, and current collectors give rise
to low stability and weak durability in flexible sensors. To address these problems, the
evolution of free-standing electrode-based flexible sensors away from soft substrates and
current collectors is urgently needed. As a flexible free-standing electrode, a conducting
PPy nanocomposite film with a sandwich structure was prepared by the successive elec-
tropolymerization of pentaerythritol ethoxylate-doped PPy (PEE–PPy) and 2-naphthalene
sulfonate-doped PPy (2-NS–PPy) [85,86]. After the stepwise modification of Au nanopar-
ticles and CEA aptamers on the thin composite film via electrochemical deposition and
Au–S interaction, 6-mercapto-1-hexanol (MCH) was served as a blocking agent to remove
the non-specific adsorption. Without the requirement of additional soft substrates and
current collectors, this aptamer-functionalized film electrode can be directly applied for the
establishment of a flexible free-standing electrochemical CEA aptasensor, which may have
promising applications in flexible and wearable electronics.

3. Photoelectrochemistry-Based CEA Detection
3.1. Photoelectrochemical Immunosensing

Antibodies, commonly produced by several mammals’ immunoreaction against for-
eign stimuli, have been considered as appealing capture probes or receptors for the detec-
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tion of various analytes due to the fact of their specific antigen–antibody interaction [87].
With the rapid evolution of sensing strategies and nanomaterials, recent achievements in
photoelectrochemical CEA immunosensors brought widespread attention to the early diag-
nosis of diseases [88–91]. The example of a label-free photoelectrochemical immunosensing
was reported by Wu’s group [92]; in this case, CEA antibody as a typical immunorecogni-
tion unit could be covalently linked to the matrix of a CdS nanowire-sensitized WO3@BiOI
nanocomposite, and the decreased photocurrent was recorded due to the steric insula-
tion from an antibody–CEA immunocomplex. Similarly, depending on the successful
preparation of ternary WO3/Au/CdS photocatalyst, Zeng et al. developed a sensitive
label-free immunosensor for photoelectrochemical CEA assay with a low detection limit of
1 pg mL−1 by means of the synergy of the sensitization of CdS and the localized surface
plasmon resonance effect of Au NPs [93]. Subsequently, Wu et al. designed a multiple
quenching-based immunosensors for CEA detection by using TiO2 nanoparticle-sensitized
PDA thin film (PDAfilm) as the photoanode and CEA secondary antibody-decorated PDA
nanosphere (Ab2-PDA) as the signal tag [94]. As shown in Figure 6, after the addition
of CEA, Ab2-PDA could be linked to the photoanode surface via sandwich immunore-
action. The immobilized PDA nanosphere could not only compete for light absorbance
with PDAfilm and capture the photoelectrons produced from PDAfilm but also block the
access of electron donors to regenerate the corresponding photoactive material due to the
formation of steric hindrance, which contributed to the decline of the photocurrent and
ensured an excellent sensitivity with a low limit of detection of 40 fg mL−1. Moreover,
some enzyme-catalyzed signaling strategies were proposed to further improve detection
sensitivity [95–97]. For instance, Wei et al. developed an ultrasensitive photoelectrochem-
ical immunosensing of CEA based on alkaline phosphatase (ALP)-mediated enzymatic
hydrolysis on Cu-doped TiO2 composited with carbon nitride [98]. In the presence of
the target analyte, the formation of sandwiched immunocomplex enabled ALP–Au-Ab2
bioconjugates as enzyme tags to catalyze the generation of ascorbic acid (AA), leading to
improvement in the photocurrent response. In another study, Zhang et al. designed an
ultrasensitive cathodic immunosensor in which TiO2 NP photoanodes enhanced signal
output and Ab1-decorated Cu2O nanowire photocathodes were used for the assembly of
Ab2-labeled horseradish peroxidase (Ab2-HRP) [99]. After the biocatalytic precipitation
in the presence of 4-chloro-1-naphtholand and H2O2, quantitative detection was realized
along with the evident photocurrent reduction. This proposed method also indicated
that the biorecognition reaction that occurred on the photocathode would present a better
anti-interference ability than traditional anodic modification.
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As a practical design concept, split-type photoelectrochemical sensing strategies have
been extensively concerned in the construction of immunosensors because of their inher-
ent advantages such as easy manipulation, simplified electrode modification procedures,
and desirable stability [100–102]. The split-type sensing platform is composed of two
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important regions: a signaling transducer region with photoactive materials and a biorecog-
nition region with specific capture probes. Among them, magnetic beads or 96-well plates
are generally selected as a matrix for specific biorecognition events, and the photoactive
material-modified photoelectrode is chosen as a signal transducer for photocurrent genera-
tion, so that the mutual disturbance of both can be eliminated effectively. Based on this,
Chen et al. synthesized CdS quantum dot-decorated V2O5 nanosheets (CdS-V2O5) and
anti-CEA antibody-capped magnetic beads, respectively, and then developed sensitive
immunosensing based on AA-dependent acid etching [103]. As displayed in Figure 7,
AA-encapsulated liposome immunonanocapsules as the signal tag were bound to the im-
munomagnetic nanobead surface via CEA-triggered immunorecognition. After magnetic
separation, large amounts of AA were released from the captured immunonanocapsule
with the aid of Triton X-100, which could effectively etch the V2O5 nanosheets to V4+

via a facile reduction reaction, leading to a significant suppression of the photocurrent
response. Following that, Zhu et al. prepared PdPt bimetallic nanozymes-modified CdS
nanorods (CdS/PdPt) and constructed a nanozyme-activated split-type photoelectrochem-
ical CEA immunosensor [104]. By using CEA as a model, glucose oxidase (GOx) and
Ab2-functionalized zeolitic imidazolate framework-8 conjugate was immobilized onto an
Ab1-decorated 96-well microplate and subsequently catalyzed the oxidation of glucose into
H2O2 as an oxidant. After being mixed with 4-chloro-1-naphthol, the resulting mixture
was dropped onto a CdS/PdPt photoanode and catalyzed by PdPt nanozymes to form
insoluble precipitates, accompanied by enzymatic bio-etching of CdS nanorods, achieving
a synergistically declined output signal with the promotion of detection sensitivity and
accuracy. This DNA assembly technique with diverse programmability is a promising
candidate for signal amplifications. In this regard, Zang et al. designed a sensitive photo-
electrochemical immunosensor by combining HCR-triggered in situ formation of Cu NPs
and a Cu2+-based quenching reaction [105]. As shown in Figure 8, TiO2 and a double-shell
ZnCdS hollow nanosphere (TiO2/DS-ZnCdS)-modified photoanode was prepared as a
signal transducer, and an Ab1-functionalized 96-well microplate was fabricated for target
capture. In the presence of CEA, biotin-labeled anti-CEA antibodies (biotin-Ab2) could
be assembled in a 96-well microplate by antigen–antibody interaction and then initiate an
HCR reaction to form a long double-stranded DNA (dsDNA) scaffold so that numerous
Cu2+ ions were adsorbed and, in situ, generated Cu NPs by facile reduction reaction. After
acid dissolution, the obtained Cu2+ ions could largely suppress the photocurrent due to
the formation of CuxS, exhibiting a wide linear range and low detection. These examples
suggested that the split-type photoelectrochemical immunosensors could not only dispense
with complex electrode modification for improved reproducibility and accuracy but also
tend to introduce various signal amplifications for high sensitivity.
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In addition to the above, ongoing efforts have been made to develop other advanced
photoelectrochemical immunosensors with the exploitation of new materials and innova-
tive detection modes. Based on this, Wang et al. synthesized an ionic liquid-functionalized
metal–organic framework for in situ growth of Au NPs to obtain a Yb–MOF@Au-NP
nanocomposite and then constructed a near-infrared light-driven photoelectrochemical
CEA immunosensor [106], which benefited from biological detection even in in vivo anal-
ysis, because the near-infrared light possessed lower-energy photons and a deeper pen-
etration depth compared to visible light and ultraviolet light. The introduction of Au
NPs significantly raised the photocurrent response, four-fold over the pristine Yb-MOF.
After the assembly of anti-CEA antibodies, CEA could be linked to the Yb–MOF@Au-NP
surface, resulting in a declined signal response. Similarly, Fu et al. synthesized the ag-
gregation of perylene tetraformic acid derivatives (PTCs) as an electron donor–acceptor
organic semiconductor and in situ decorated Au NPs to form a PTCs@Au nanocomposite,
which acted as an amplified signal tag and immune probe after the immobilization of Ab2
(Ab2-PTCs@Au). The prepared PTCs@Au with a Schottky heterojunction had an extended
light absorption range and improved photon-to-electron conversion efficiency. When CEA
existed, Ab2-PTCs@Au could bond to Ab1-modified photocathodes, achieving a stable
and enhanced cathodic signal without the additional electron donor or acceptor, which
also exhibited a low background and high sensitivity [107]. Moreover, the design of new
detection modes will inject fresh vitality into the further development of photoelectrochem-
ical sensing devices. Based on this, Wang et al. developed a photoelectric effect-driven
multicolor visualized immunosensing platform using anti-CEA/Au NPs/Ag2S NPs@ZnO
nanotubes (NTs)/FTO as photoelectrode and polyaniline/Prussian blue (PANI/PB) bi-
layer films as indicator electrodes [108]. Under light irradiation, the photoexcited Ag2S
NPs@ZnO NTs generated electron–hole pairs in which photoelectrons and holes could
migrate to reduce PB and oxidize PANI, respectively, enabling the multicolor transition
of PANI/PB. When CEA was linked to Ag2S NPs@ZnO NT-based photoelectrodes, the
increased steric hindrance inhibited the electron transport of photogenerated carriers so
that the different color changes of PANI/PB were observed for quantitive detection of
CEA. Similarly, Sun et al. designed a renewable dual-readout photoelectrochemical/visual
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immunosensor for synchronous CEA monitoring [109]. As shown in Figure 9, the designed
photoelectrochemical sensing device was composed of two cells: a sensing cell for CEA
detection and an electrochromic cell for reusage of PB. Among them, Ni:FeOOH/BiVO4
nanocomposite and PB served as the photoanode and cathode to constitute the sensing
cell, respectively, in which the carried GOx, immobilized by CEA-driven sandwich-type
immunoreaction in photoelectrochemical sensing cells, could catalyze glucose oxidation
to generate H2O2 as a hole scavenger and then move to the photoanode for improved
electron transfer efficiency. Simultaneously, the PB cathode could enable the photoelectron
reduction of PB to Prussian white (PW) through a digital multimeter (DMM)-joined circuit,
providing a synchronous naked eye visual/photoelectrochemical detection system. On
the other hand, laccase-based biocathode could convert PW back to the original PB state
via biocatalyzing oxygen reduction, achieving a renewable sensing system. Most strik-
ingly, Hu’s group reported a single light-addressable photoelectrochemical immunosensor
for multi-analyte detection (e.g., CEA and other tumor markers) [110], exhibiting a huge
potential for future clinical diagnosis. Finally, an extended list of more currently photoelec-
trochemical CEA immunosensors are provided in this section (Table 3), together with their
respective photoactive materials and analytical properties.
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Table 3. Analytical performances of various photoelectrochemical immunosensors for the determination of CEA.

Nanomaterial Linear Range (pg mL−1) Detection Limit (pg mL−1) Reference

AuNPs/ZnO/Cu2O NWs 1.0–100,000 0.36 [111]

C3N4-BiOCl 0.1–10,000 0.1 [88]

AuNP-P5FIn/erGO 0.5–50,000 0.14 [112]

TiO2/C@ZnCdS MSDCs/Au 0.05–500,000 0.00228 [113]

I-BiOCl/CdS 10–40,000 2.0 [114]

Au/WS2 NTs 1.0–40,000 0.5 [90]

TiO2/CdS:Mn 0.1–100,000 0.02 [115]

NWs, nanowires; AuNP-P5FIn/erGO, AuNPs-decorated poly(5-formylindole)/electrochemically reduced graphene oxide nanocomposite;
C@ZnCdS MSDCs, porous hollow carbon nanobubbles@ZnCdS multi-shelled dodecahedral cages; Au/WS2 NTs, AuNP-modified WS2
nanosheets; TiO2/CdS:Mn, Mn2+-doped CdS-modified TiO2 nanoparticles.

3.2. Photoelectrochemical Aptasensing

Until now, since aptamers have the features of low immunogenicity, excellent pro-
grammability, and easy chemical modification, the focus has been on their sensing ap-
plications in clinical diagnosis, food security, and environmental monitoring [116–118].
Photoelectrochemical aptasensors, an emerging and interesting research subject, also make
a significant contribution to the monitoring of tumor markers because of their selectiv-
ity, stability, and potential for miniaturization and portability [119,120]. Considering the
biophysical binding between specific aptamers and CEA antigens, a series of photoelec-
trochemical aptasensors have been designed by various signaling strategies in recent
years [121–123]. For example, Gao et al. constructed a signal-on photoelectrochemical
aptasensing platform by self-assembly of 3D DNA nanospheres on Au NPs/ZnSe QDs-
modified ITO electrodes [124]. As displayed in Figure 10, the formed DNA nanospheres
were self-assembled by base complementary pairing and RCA and subsequently immobi-
lized on the electrode’s surface for increased steric hindrance, making the photocurrent
present “off” state. Meanwhile, the presence of target CEA could bind to its hairpin aptamer
and then trigger multiple strand displacement processes to produce numerous single DNA
strands (S1). After magnetic separation, the obtained S1 could competitively bind with
captured DNA to remove DNA nanospheres on the electrode’s surface, so that the photocur-
rent signal switched to the “on” state, implementing the quantitative assay of CEA with the
amplified photocurrent intensity. Subsequently, Yang et al. designed a polarity-reversal-
mode photoelectrochemical CEA aptasensor using TiO2@AuNPs as negative and CdS QDs
as positive signal indicators [125]. When CEA was added, a sandwich-type nanostructure
was formed on captured CEA aptamer-modified TiO2@Au NPs in the presence of trigger
CEA aptamers, which initiated the HCR process to immobilize CdS QDs on the electrode’s
surface with the aid of CdS-labeled DNA probes. The formation of TiO2@Au NPs//CdS
QDs plasmonic conformation contributed to the direct cathodic-to-anodic signal switch,
making the detection limit of aptasensor decrease to 18.9 fg mL−1.
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To further improve the detection selectivity of sensing devices, a robust two-electrode
aptasensor was designed by selecting ZnIn2S4 nanocrystal-decorated Fe3+-doped TiO2
nanotubes/Ti as photoanodes and CEA aptamer–bilirubin oxidase conjugate-modified
Au NPs/carbon nanotubes/ITOs as photocathodes [126]. Among them, the photoanodes
generated a stable photocurrent output, and the cathodic substrate presented excellent
biorecognition and oxygen-reduction capability. Upon the addition of CEA, the aptamer–
bilirubin oxidase conjugate departed due to the formation of a CEA–aptamer conjugate, and
CEA determination hinged on a decline in the photocurrent response, endowing a desirable
selectivity in the biological matrix because of the effective separation of biorecognition
elements from the photoanodes. Moreover, to avoid time-consuming modification proce-
dures, a sensitive immobilization-free aptasensor was developed using dsDNA-capped
MOFs as electron donor encapsulations and CdS NPs as photoactive species [127]. As
shown in Figure 11, the conformational structure of the self-blocked hairpin probe could
change after the specific binding of its aptamer sequence to target CEA and then trigger the
digestion reaction of T7 exonuclease-mediated recycling amplification due to the formation
of duplex DNA, which effectively opened the core of dsDNA-capped MOFs to obtain
abundant electron donors so that the photocurrent increased gradually with an increment
in the target’s concentration, achieving a wide linear range (1.0 fg mL−1~10 ng mL−1) and
low detection limit of 0.36 fg mL−1.

Except for the above, several other ingenious aptasensors have been designed by the
introduction of advanced nanoparticles and other technical characteristics. For instance,
since a near-infrared excitation light source presents several characteristics, including near-
zero photobleaching, low phototoxicity, and strong penetration depth, Tang et al. developed
a near-infrared light-driven photoelectrochemical aptasensing of CEA in terms of HCR-
dependent in situ generation of Ag2S NPs on dsDNA scaffold anchored on NaYF4:Yb,Er
up-conversion NPs [128]. In the presence of CEA, an HCR process was initiated to produce
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a long dsDNA scaffold that allowed for the imbedding of large amounts of Ag+ ions via
the chelation of C–Ag+–C. After reacting with sulfide, the generated Ag2S NPs could be
excited by well-matched visible light emitted from up-conversion NPs under near-infrared
light irradiation and, thus, an enhanced photocurrent was observed with an increasing
CEA level. Later, to avoid to the signal’s background fluctuation, Tang’s group also
designed a near-infrared light-stimulated and spatial-resolved ratiometric aptasensor for a
CEA assay by combining with NaYF4:Yb,Er@CdTe nanocrystal-functioned dual channel
electrodes and target-driven recognition events [129]. As displayed in Figure 12, CEA
aptamer 1 and capture DNA:Au NP-labeled CEA aptamer 2 conjugate were anchored
onto two adjacent photoelectrodes (WP1 and WP2), respectively. Upon the addition of
CEA, aptamer 1 could bind to the analyte for the increased steric hindrance, whereas the
specific reignition between aptamer 2 and CEA weakened the existing exciton–plasmon
interactions with the release of the formed Au NP-labeled CEA aptamer 2@CEA conjugate,
leading to an attenuated signal for WP1 and an enhanced signal for WP2. Obviously, the
integration of various materials and detection modes can enable more possibilities for
advanced aptasensing devices in clinical applications, and other interesting examples of
recently published photoelectrochemical aptasensors for CEA analysis are listed in Table 4.
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Table 4. Analytical performances of various photoelectrochemical aptasensors for CEA assays.

Nanomaterial Linear Range (pg mL−1) Detection Limit (pg mL−1) Reference

PEDOT/Bi2S3/ZnO 1.0–100,000 0.67 [130]

g-C3N4/CuInS2 20–40,000 5.2 [131]

ZIS/Fe:TiO2 0.05–1000 0.018 [126]

NaYF4:Yb,Tm@ZnO 100–300,000 32 [132]

Tremella-like Bi2WO6 0.01–10,000 0.0026 [133]

BiFeO3 5.0–50,000 1.5 [134]

ZnO/g-C3N4-AuNPs 10–2500 1.9 [135]

g-C3N4/CuInS2, copper indium disulfide-sensitized graphitic-like carbon nitride; ZIS/Fe:TiO2, ZnIn2S4 nanocrystal-functionalized
Fe3+-doped TiO2; BiFeO3, bismuth ferrite; ZnO/g-C3N4-AuNPs, g-C3N4-AuNPs-functionalized ZnO flower-rods.

4. Conclusions and Future Perspectives

In this mini-review, we outlined the current progress of electrochemical and photo-
electrochemical CEA biosensors, with a particular focus on the utilization of antibody-
and aptamer-based recognition units. In addition to the intrinsic virtues of a small back-
ground, rapid response, and simple instrumentation, the specific target antibody/aptamer
biorecognition reaction endows the developed electrochemical and photoelectrochemical
biosensors with excellent anti-interference capability, and the successful fabrication of
several advanced materials (e.g., MOFs and up-conversion nanoparticles) and amplified
signaling tags (e.g., antibody–enzyme conjugates, aptamer–nanoparticles conjugates, and
DNA assembly-based signaling probes) enables immunosensors and aptasensors with
enhanced detection sensitivity. Furthermore, some robust detection modes, such as the
dual-potential ratiometric assay and split-type sensing, can largely improve the accuracy
and reliability of designed biosensors.

Despite substantial achievements in CEA assays, the existing electrochemical and
photoelectrochemical biosensors are still confronted with some opportunities and chal-
lenges. For examples, the stepwise construction of a biosensing platform is generally
time-consuming due to the tedious electrode assembly/washing procedures; thus, simpli-
fied and efficient construction methods are urgently needed for reliable and accurate CEA
analysis. Moreover, modern biosensors are limited in point-of-care testing and real-time
monitoring of CEA samples. To further expand their potential applications, the portable
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and family sized sensing devices should be explored, especially for photoelectrochemical
biosensors that require excitation light, accompanied by the integration of paper-based elec-
trodes or microfluidic devices. More interestingly, some emerging detection modes remain
to be exploited for next generation of biosensors, such as self-powered and dual-signal-
output-based biosensors, by coupling with various analytical methods (e.g., colorimetry
and chemiluminescence) and other available techniques (e.g., biofuel cell and molecular
imprinting), which will bring new vitality to the electrochemical and photoelectrochemical
sensing devices in clinical diagnosis and medical research.
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