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Abstract: Acting as a virtual sensor network for household appliance energy use monitoring, non-
intrusive load monitoring is emerging as the technical basis for refined electricity analysis as well as
home energy management. Aiming for robust and reliable monitoring, the ensemble approach has
been expected in load disaggregation, but the obstacles of design difficulty and computational ineffi-
ciency still exist. To address this, an ensemble design integrated with multi-heterogeneity is proposed
for non-intrusive energy use disaggregation in this paper. Firstly, the idea of utilizing a heterogeneous
design is presented, and the corresponding ensemble framework for load disaggregation is estab-
lished. Then, a sparse coding model is allocated for individual classifiers, and the combined classifier
is diversified by introducing different distance and similarity measures without consideration of
sparsity, forming mutually heterogeneous classifiers. Lastly, a multiple-evaluations-based decision
process is fine-tuned following the interactions of multi-heterogeneous committees, and finally de-
ployed as the decision maker. Through verifications on both a low-voltage network simulator and a
field measurement dataset, the proposed approach is demonstrated to be effective in enhancing load
disaggregation performance robustly. By appropriately introducing the heterogeneous design into
the ensemble approach, load monitoring improvements are observed with reduced computational
burden, which stimulates research enthusiasm in investigating valid ensemble strategies for practical
non-intrusive load monitoring implementations.

Keywords: artificial intelligence; energy disaggregation; ensemble method; heterogeneous design;
non-intrusive load monitoring

1. Introduction

Knowing the refined electricity behaviors of household energy consumption is impor-
tant to residents, by means of which energy consciousness can be awakened and energy
conservation schemes can be customized [1]. Meanwhile, it is also important to power
utilities, where understanding the load components helps to model power system opera-
tions and schedule the demand response better [2]. Furthermore, it is also meaningful to
the development of the entire power industry, e.g., it is the technological base of tracking
household energy carbon emissions [3]. Therefore, insights into household electricity usage
are emerging as a vital link in the energy consumption chain and are attracting more and
more attention in both academic and industrial fields.

A straightforward way to realize refined electricity monitoring is to install smart
sockets for target appliances and form a sensor network for household electricity monitor-
ing [4]. The exploration enthusiasm for such a project had lasted for a period of time, but
it decreased due to the high financial costs associated with too many sockets [5]. Besides,
this method of electricity monitoring is strictly confined to socketed appliances, and it is
not friendly to residents due to intrusive installations [6]. Hence, the socket-based sensor
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network, considered as the intrusive way, was replaced once non-intrusive approaches
achieved reliable performance.

Non-intrusive load monitoring, NILM for short, is a technology proposed by Professor
Hart from MIT. The key idea of NILM is to use a disaggregation algorithm instead of
sensor hardware to realize individual appliance monitoring [7]. Thus, the original electric
topology and measurements do not need to be changed, and only the service panel data
are required, which can be captured by the existing electric meter [8]. Such non-intrusive
technology obviously decreases the monitoring cost, covers all appliances, and furthermore
does not interfere with residents’ normal life. Therefore, it is widely accepted, and receives
much attention in the field of household monitoring.

It is certainly the case that, to realize all the above advantages of NILM, the applied
disaggregation approach should be reliable in the first place. Although proposed in 1990s,
NILM has emerged as a potential solution only in recent years due to the development of
artificial intelligence technologies [9]. Acting as the key pillar during the early development
stage of artificial intelligence, pattern recognition plays an important role in the field
of non-intrusive load monitoring. Classification technologies, which reflect the essence
of pattern recognition, have been widely investigated for NILM research. Considering
different appliance characteristics, diverse electric features can be utilized for classification
in NILM, such as wavelet-based classification [10] and event-based classification [11]. As
to the classification algorithms, the classic k-nearest neighbors was explored in [12] to
improve the accuracy and efficiency of NILM. Further on, a support vector machine has
been introduced in an early stage [13], enhancing the classification of five nearest neighbor
methods. Besides, a novel neuro-fuzzy classification approach is proposed in [14] to address
the uncertainties in NILM. Furthermore, multi-label classification was proposed in [15] as
a solution with the highest potential for NILM problems, and was widely discussed in the
following years [16,17]. In addition to classification, other pattern recognition algorithms
also draw attention in the field of load disaggregation field. For example, non-negative
matrix factorization has been discussed in various works and demonstrated to be effective
in revealing the hidden pattern of energy consumption monitoring, which is suitable for
the non-intrusive load disaggregation of large buildings, e.g., industrial buildings [18]
and hospital buildings [19]. A revised form of matrix factorization, namely independent-
variation matrix factorization, was proposed in [20] to recover positive sources with strong
temporal dependency and independent variations, achieving a feasible NILM solution for
commercial buildings.

As seen, pattern recognition approaches have already drawn wide attention and
achieved considerable results in the field of NILM. However, some limitations show up
as the research goes further, e.g., the recognition performance is highly dependent on the
expert featured model. Such drawbacks are also observed along with the development of
artificial intelligence; therefore, machine learning was developed as an effective alterna-
tive [21,22]. Because pattern recognition and machine learning are both implementation
methods of artificial intelligence, and machine learning was developed on the basis of
pattern recognition, all the approaches discussed above can be categorized into machine
learning. In non-intrusive monitoring problems, machine learning is highlighted due
to strong self-learning ability, such as semi-supervised learning [23] and unsupervised
learning [24]. As a representative, clustering shows a good performance in NILM stud-
ies, while k-means clustering is able to deal with unlabeled appliances [25] and density
peak clustering improves the disaggregation remarkably [26]. Similarly, as an important
branch in machine learning, neural networks show reliable performance in NILM, where
convolutional neural networks [27], recurrent neural networks [28], and Siamese neural
networks [29] are all demonstrated to be effective. In particular, deep neural networks
can be improved for NILM by embedding a denoising autoencoder scheme, which is a
new trend in NILM research [30]. As the research progresses, researchers also find that
dictionary learning models, which are another machine learning approach, exactly match
the key idea of load disaggregation [31]. Showing potential in NILM implementations,
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dictionary learning was proven to be an outstanding formulation, naturally applicable
to NILM [32]. Additionally, further inspired by the sparse coding principle of dictionary
learning, transform learning was also explored in [33] and was found to be well-adapted to
NILM formulation.

In recent years, the practical experiences from world-leading artificial intelligence
races show that the ensemble method is the most powerful approach in machine learning.
Therefore, although limited, researchers have noticed the value of ensemble methods in
NILM studies, and conducted some explorations. In [34], a multiscale wavelet packet tree is
applied to collect comprehensive energy consumption features, and an ensemble bagging
tree is adopted as a classifier, where the performance is compared with various machine
learning schemes. In [35], an event detection and disaggregation framework based on an
ensemble approach is proposed, whose disaggregation target is the water heating operation.
Both of the above works focus on event-based load monitoring. Our team has established
a general ensemble framework based on bagging in [36] for the load disaggregation of
steady-state data, and proved its performance robustness and model flexibility in diverse
NILM scenarios.

However, to our knowledge, the current ensemble strategies applied to NILM all
follow the evaluation criterion used in individual classifiers, even the probabilistic quan-
titative scoring method proposed in [36]. Such implementation requires the individual
classifier to be reliable and differentiated, but the bias can hardly be avoided since the
combined classifier and individual classifiers are homogeneous. If the classifiers are chosen
in an inappropriate way, e.g., overemphasizing a specific electrical feature, some errors may
be generated and finally cause false decomposition. Since the combined classifier needs the
information from individual classifiers for decision making, such disadvantages always
exist in the ensemble decision system with homogeneous classifiers, only explicitly or
implicitly. Based on this observation and knowledge, the idea of utilizing a heterogeneous
design for ensemble-approach-based NILM is proposed and investigated in this paper.
Firstly, the multidimensional heterogeneity for an NILM-oriented ensemble method is
discussed. Since the individual classifiers can be naturally distinct in a traditional ensemble
framework, our research is featured by investigating the heterogeneities from the following
aspects, i.e., the heterogeneity between the combined classifier and individual classifiers, as
well as the heterogeneity in independent evaluation committees of the combined classifier.
Then, an implementation design is illustrated, where the individual classifiers are estab-
lished based on dictionary learning, while the sparsity is not considered in the combined
classifier. Meanwhile, multiple committees with distinguishing similarity measures are
employed and coordinated in the decision-making stage, providing valid disaggregation
evaluations from multi-perspective points. Through verifications on both a simulation
platform and a field measurement dataset, the proposed idea and strategy are proven to be
effective in enhancing NILM performance.

The major contribution of this paper is the presence of a multidimensional-heterogeneity-
enhanced ensemble approach for NILM. By introducing heterogeneity, the obstacles of
ensemble application, including design difficulty and computational inefficiency, are over-
come. In addition to providing an effective method to improve NILM performance, this
study also stimulates the explorations of applying the ensemble method to NILM for robust
and reliable disaggregation. Furthermore, deep thinking of the nature of NILM problems
as well as the rationality and completeness of disaggregation models is also inspired. In
support of the contribution, the following aspects are highlighted:

• Based on the properties of NILM problems, the heterogeneous evaluation design is
utilized in an ensemble model.

• Dictionary learning is deployed for basic load disaggregation, while the sparsity
measures are featured in individual classifiers.

• The combined classifier is free of sparsity measures, but composed of multiple decision
committees with different similarity measures.
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• Verifications on both a simulation platform and a field measurement dataset show the
effectiveness of our work.

2. Methodology

The task of non-intrusive load monitoring is to disaggregate the detailed appliances’
states via integral electrical measurements. In other words, it is to distinguish the compo-
nents of monitoring signals, which can be formulated as:

x = ∑ xi, i ∈ Ω (1)

where x ∈ RS×1 is the target signal with the length of S, xi ∈ RS×1 is the ith appliance
selective electrical signature in length, S, and Ω stands for the candidate appliance set.

Considering the background noise and signature fluctuations, Equation (1) can hardly
be followed in practical applications. Therefore, an error term is usually considered in load
disaggregation problems, i.e.,:

x = ∑ xi + e0, i ∈ Ω (2)

where e0 ∈ RS×1 is the error term for the decomposition and also in length, S.
Since background noise always exists in daily power consumption, and appliances’

operation states are highly dependent on manufacturing standards and electrical aging,
the error term provided in Equation (2) not only exists but also plays a key role in load
decomposition. The objective of the multidimensional-heterogeneity-enhanced ensemble
model is to evaluate the error term from diverse perspectives and avoid the bias caused by
certain evaluation approaches.

2.1. Ensemble Method Framework

Following the load disaggregation formulation provided in Equation (2), the corre-
sponding ensemble method framework is established in Figure 1, while the proposed idea
of multidimensional heterogeneity enhancement is highlighted in color.
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As seen in Figure 1, the NILM-oriented ensemble framework follows the bagging strategy.
The proposed multidimensional heterogeneity is integrated in the architecture with the
following considerations:

1. First: Dimensional heterogeneity in the individual classifiers. The basic idea of bag-
ging is to establish several weak classifiers to combine into a strong classifier. For
an effective combination, the weak classifiers should be distinctive from each other.
Therefore, the individual classifiers may be heterogeneous according to the definition
of the ensemble method. Therefore, in our following sections we do not present the de-
tailed discussions of this point. However, considering the entirety of the description,
we still illustrate this dimension in Figure 1 for readers to understand it better.

2. Second: Dimensional heterogeneity between the combined classifier and individual
classifiers. The individual classifiers act as the basic appliance disaggregation tool
in ensemble-method-based NILM, and the combined classifier acts as the ultimate
decision maker. Therefore, if these classifiers are homogeneous, the disaggregation
results may be biased, following the features of the applied algorithms. Hence, we
introduce heterogeneous evaluation for the combined classifier to assess the candidate
solutions from diverse perspectives.

3. Third: Dimensional heterogeneity in the multiple committees established for the
combined classifier. The combination strategy is essential for the ensemble method,
which is majorly dependent on the design of the combined classifier. In order to create
a valid combined classifier, we split the decision maker to be multiple committees
and also introduced heterogeneity into these committees. By evaluating the candidate
solutions from multi-dimensional points (these points are also distinct with individual
classifiers), a more reliable result may be provided.

For a better understanding and also the verification of the proposed idea, the detailed
designs and implementations are illustrated in the following sections. As mentioned above, we
focus on the newly proposed schemes, i.e., the heterogeneity designs for the last two dimensions.

2.2. Heterogeneous Design for Combined Classifier and Individual Classifiers

Aiming for heterogeneity, the individual classifiers and combined classifier should fol-
low different objective models. Since we will design multiple committees for the combined
classifier, the most commonly used model in Equation (1) is reserved for the combined clas-
sifier. As to the individual classifiers, dictionary learning is employed for formulation where
the sparsity is seriously considered. Therefore, whether considering the sparsity or not will
be the featured heterogeneity between the combined classifier and individual classifiers.

2.2.1. Dictionary Learning Model for Individual Classifiers

The dictionary learning models tries to establish a dictionary for the target signal in
Equation (1) and decompose the signal with as few dictionary atoms as possible. The basic
formulation is illustrated as:

x = D·α (3)

where the dictionary is defined as D = [d1,d2, . . . ,dN] ∈ RS×N, whose column dk ∈ RS×1 is de-
fined as an atom. One dictionary contains N atoms. α ∈ RN×1 is defined as a sparsity parameter.

For a well-established model, sparsity, α, has as an important role. On one hand, the
dictionary, D, is established based on an alternative optimization for both dictionary and
sparsity. On the other hand, once the dictionary is determined, sparsity becomes a key
factor for problem solving.

Therefore, based on the principles of dictionary learning, it is required to determine
the dictionary, D, first. The problem is defined as:

min
D,α

{
‖x−D·α‖2

F + λgα(α)
}

(4)
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where ||•||F is the F-norm calculation, measuring the differences between the target and
fitting in the physical sense. λ is the regularization parameter, indicating the proportion of
sparsity in the optimization objective. g•(•) is the unified sparsity measurement function,
revealing the sparsity calculation in the objective. Since both dictionary, D, and sparsity, α,
are unknown variables to be solved in the model, the K-SVD algorithm is utilized to solve
the alternative problem [31].

After completing the training stage, we have a feasible D for the NILM problem in
a specific house. Hence, the load disaggregation problem under normal operations is a
straightforward optimization, which is free of calculation burden:

α = argmin
α

{
‖x−D·α‖2

F + λgα(α)
}

(5)

2.2.2. Heterogeneous Design for the Combined Classifier

As seen from Equations (4) and (5), the role of sparsity may vary in the load disaggre-
gation problem, but will always be considered in the model. However, back to the original
problem in (1), sparsity is not tightly bounded. Therefore, in order to introduce the hetero-
geneous evaluation system, the design of the combined classifier considers the physical
properties only, while the sparsity is totally ignored. The key to this idea is illustrated
in Figure 2.
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The architecture shown in Figure 2 provides a design sample for the heterogeneity
between individual classifiers and the combined classifier. The core of this is that the
evaluation criteria of individual classifiers follow sparsity measures, while those of the
combined classifier follow similarity measures. The sparsity measures are calculated based
on Equations (4) and (5), and diverse individual classifiers can be personalized by allo-
cating a different regularization parameter, λ. The similarity measures, through which
sparsity is not considered, should provide an effective and justified evaluation for the
candidate solutions. Therefore, a multi-committee decision-making system is designed for
the combined classifier, where different committees hold different similarity measures.

2.3. Heterogeneous Design for Decision-Making Committees of the Combined Classifier

Following the heterogeneous design idea for the combined classifier discussed above,
diverse similarity measures should be selected for evaluation committees of the combined
classifier. Among dozens of similarity measures, three commonly used measures, i.e.,
Euclidean distance, Manhattan distance, and cosine similarity, are selected considering the
physical features of NILM. The design of the combined classifier is illustrated in Figure 3,
where the physical meanings of heterogeneous committees are visualized. The basic ideas
for choosing these three measures are listed below, while the rationality is demonstrated
by case results:
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• Euclidean distance is the most commonly used measure to evaluate the absolute
distance between two points in multidimensional space. Therefore, Euclidean distance
would provide an overall assessment of the differences between the estimation and
target in NILM.

• Manhattan distance measures the total sum of absolute distance on each coordinate
axis for a multidimensional system. Hence, Manhattan distance focuses on the fitting
differences for each electric features, paying more attention to the details.

• Cosine similarity utilizes the cosine value of the angle between two vectors in multidi-
mensional space to quantify the differences. Compared with distance measures, it is
more interested in the direction as opposed to the distance or length. This measure
would highlight the electric feature relevance of appliances in NILM.
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2.3.1. Multidimensional Space Mapping and Standardization

A vital design in similarity analysis for a multidimensional problem is how to unify
the measurements of diverse dimensions together. From the view of NILM, it is essentially
a trade-off problem of multi-objective fitting. This problem is quite similar to parameter
tuning in many system designs, which seems insignificant but actually matters.

In practice, the unity of multiple dimensions does exist in individual classifiers,
where the dictionary-learning-formulated disaggregation approach utilizes the different
regularization parameters to coordinate diverse electric features together:

min
α

{
‖norm(P)−DP·α‖2

F + ∑
∗∈LS

λ∗‖norm(∗)−D∗·α‖2
F + λgα(α)

}
(6)

where norm (·) is the normalization function, P is the target signal of real power, and
DP is the dictionary for the normalized real power analysis. D* is the dictionary for the
normalized electric feature of *. λ* is the regularization parameter for the electric feature
of *. LS is the load signature features apart from real power P, including reactive power, Q,
and different orders of harmonics, H.

For designs with heterogeneity, the mapping and standardization for the combined
classifier follows another strategy. All electric features are considered equally important,
and the target is mapped to be a reference point with all dimensions equaling to unity.
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Consistently, the estimation is also standardized by selecting the target values as a rating
base. The calculations are as follows:

Unified Space ← Mesauring Space
Target :

{
P̃tar, Q̃tar, ..., H̃tar

}
= {1, 1, ..., 1} ←

{
Ptar
Ptar

, Qtar
Qtar

, ..., Htar
Htar

}
Estimation

{
P̃est, Q̃est, ..., H̃est

}
←
{

Pest
Ptar

, Qest
Qtar

, ..., Hest
Htar

} (7)

where Ptar, Qtar, and Htar are, respectively, the measured value of real power, reactive
power, and harmonics, indicating the target. Pest, Qest, and Hest are, respectively the
estimation value of real power, reactive power, and harmonics through load disaggregation.
The above variables are all related to the original electric feature space. Meanwhile, P̃tar,
Q̃tar, and H̃tar are, respectively, the standardized target of real power, reactive power, and
harmonics. P̃est, Q̃est, and H̃est are, respectively, the standardized estimation of real power,
reactive power, and harmonics. These variables are considered in unified space, which
are comparable.

Hence, by the above detailed designs, the combined classifier is completely heteroge-
neous with individual classifiers, which conforms to the proposals of this article.

2.3.2. Similarity Evaluation and Scoring

With comparable multidimensional objects, it is possible to evaluate and score from
different views of similarity. Following the physical meanings of the selected measures
shown in Figure 3, the detailed calculations for the three committees are:

Socre1 = 100×

1− rpe ×

√(
P̃tar − P̃est

)2
+
(

Q̃tar − Q̃est

)2
+ · · ·+

(
H̃tar − H̃est

)2

√
P̃tar2 + Q̃tar2 + · · ·+ H̃tar2

 (8)

Socre2 = 100×

1− rpm ×

∣∣∣P̃tar − P̃est

∣∣∣+ ∣∣∣Q̃tar − Q̃est

∣∣∣+ · · ·+ ∣∣∣H̃tar − H̃est

∣∣∣∣∣∣P̃tar

∣∣∣+ ∣∣∣Q̃tar

∣∣∣+ · · ·+ ∣∣∣H̃tar

∣∣∣
 (9)

Socre3 = 100× P̃tar × P̃est + Q̃tar × Q̃est + · · ·+ H̃tar × H̃est√
P̃tar2 + Q̃tar2 + · · ·+ H̃tar2 ×

√
P̃est2 + Q̃est2 + · · ·+ H̃est2

(10)

where Score1 is the evaluated score for the candidate by the first committee of the combined
classifier, following the Euclidean distance. Score2 is the evaluated score for the candidate
by the second committee of the combined classifier, following the Manhattan distance.
Score3 is the evaluated score for the candidate by the third committee of the combined
classifier, following the Cosine similarity. rpe and rpm are, respectively, the regulation
parameters for the scoring of the first and second committees. By comparing the sum of
scores, the most optimal solution is determined from all candidates.

Since the candidates are generated following weighted standardization and sparsity eval-
uation, and selected by unified standardization and disparate measures, the decision process
is totally heterogeneous. Therefore, the idea of establishing an ensemble-method-based NILM
model with multidimensional heterogeneity is realized by the above implementations.

3. Results and Discussions

The proposed approach is tested and discussed in this section. Firstly, the evaluation
metrics for NILM are presented. Then, results and discussions are provided based on
simulation studies and field measurements analysis, respectively.
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3.1. Evaluation Metrics for NILM

The most commonly used metrics evaluating the performance of NILM, including
precision, sensitivity, and F-measure, are utilized in this section to verify the effectiveness
of the proposed approach. The calculations are as follows:

Ps = TPs/(TPs + FPs)× 100% (11)

Ss = TPs/(TPs + FNs)× 100% (12)

Fs = (2× Ps × Ss)/(Ps + Ss)× 100% (13)

where Ps, Ss, and Fs are, respectively, the precision metric, sensitivity metric, and F-measure
metric for an appliance, s. TPs is the true positive disaggregation, indicating the number
of detections that are correctly detected as the appliance, s. FPs is the false positive disag-
gregation, indicating the number of detections that are incorrectly detected as s. FNs is
the false negative disaggregation, indicating the number of detections related to s that are
incorrectly detected as other appliances.

If in the target house, all the electrical appliances form a set, Ωs. Then, the average values
of all appliance metrics are utilized for the evaluation of overall NILM performance, i.e.,:

Pre = ∑
s∈Ωs

Ps/Ns, Sen = ∑
s∈Ωs

Ss/Ns, F−mea = ∑
s∈Ωs

Fs/Ns (14)

where Pre, Sen, and F-mea are, respectively, the average metric values of precision, sensitiv-
ity, and F-measure for an appliance set, Ωs. Ns is the total number of electrical appliances
in an appliance set, Ωs.

3.2. Studies on Low-Voltage Network Simulator

For a comprehensive investigation of the proposed idea and approach, a simulation
platform, named the low-voltage network simulator (LVNS) [37], is employed in our work.
Since the validation of NILM studies is one of the original motivations for developing the
LVNS, it is appropriate for our extensive explorations.

A North American house, with almost twenty appliances, is simulated. The detailed
information of the appliance set is shown in Table 1. As seen, all types of commonly
used appliances, including ON–OFF, multi-state, repetitive mode, and transient mode, are
considered in our work. Such a setup contributes to the demonstration of the validity and
rationality of our study.

The proposed heterogeneity-enhanced ensemble approach is denoted as PHA in the
following discussions. Since the individual classifier is established based on the sparse
coding approach, the conventional dictionary learning approach is compared, and denoted
as CDA [32]. In addition, the former proposal of ensemble-method-based NILM in [36],
framed by the probability model, is also compared and denoted as EPA. Besides, in order to
investigate the insights of our proposed approach, the detailed performance of individual
classifiers is also recorded and analyzed. In this subsection, the individual classifiers are
formed based on the feature selection bagging strategy [36], and denoted as ICA1, ICA2,
ICA3, and ICA4, respectively.

3.2.1. Overall NILM Performance and Comparisons

The average NILM performances by diverse approaches are shown in Table 2. As seen,
by applying the ensemble strategy, the improvement of NILM performance is observed, no
matter by EPA or PHA. Although the enhancement is slight, it is an important contribution
to data-driven NILM research because such an improvement is achieved based on a given
dataset and with the same basic disaggregation algorithm.
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Table 1. The detailed information of studied appliances in the simulation.

Phase Appliances Rated Power (W) Power Factor Operation Patterns Code

A ASD-based washer 320 0.45 ON–OFF, repetitive WSH
A Compact fluorescent lamp 60 0.9 ON–OFF CFL
A CRT television 200 1 Multi-state CRTTV
A Desktop PC 260 1 Multi-state PC
A Food processor 1600 1 ON–OFF FOO
A Furnace 600 0.84 Multi-state, transient FUR
A Microwave oven 1200 0.99 ON–OFF MW
A Regular fridge 180 0.94 ON–OFF, transient RFR

B Coffee maker 920 1 ON–OFF, repetitive COF
B Freezer 220 0.9 ON–OFF, transient FRZR
B Heater 1400 0.97 ON–OFF, repetitive HEA
B Incandescent lamp 40 1 ON–OFF INC
B Laptop 75 0.96 Multi-state LAP
B LCD computer monitor 160 0.96 Multi-state LCD
B LCD television 300 0.99 Multi-state LCDTV
B Toaster 860 1 ON–OFF TOA

AB Regular dryer 4000 0.88 ON–OFF, repetitive DRY
AB Stove 2000 0.9 ON–OFF, repetitive STO

Table 2. Results comparison of the LVNS-based NILM for traditional approaches.

Metrics CDA EPA PHA

Pre (%) 94.02 94.99 95.02
Sen (%) 85.07 87.14 86.73

F-mea (%) 88.30 90.23 89.72

Comparing PHA with EPA, we find that the average performance of ensemble-method-
based NILM approaches is quite similar. Nevertheless, strictly speaking, the proposed
approach in this paper is slightly weaker than the probability-model-framed approach,
though the margin is very small. Such results are acceptable based on the calculation bur-
dens by these two approaches. In order to include the true solution, EPA conducts multiple
optimization calculations for each individual classifier, which requires high computational
power. However, the proposed approach in this paper requires only one calculation for
each individual classifier, which is desired by the practical implementation of smart meters.
The calculation burdens and statistical computation time are shown in Table 3. As seen,
the optimization times for one ensemble decision by PHA is one-fifth of that by EPA. Note
that the multiple optimizations by EPA are sequentially executed, so parallel computing
methods are not applicable. Besides, the practical NILM applications are usually deployed
on smart meters, so the high computation burden is not appropriate. By decreasing the
optimization times, the decision time of PHA is correspondingly reduced to one-third.
Therefore, the proposed approach shows superiority when considering both calculation
performance and efficiency.

Table 3. Computation burden and time comparison for ensemble approaches.

EPA PHA

Optimization times of individual classifiers 5 1
Optimization times for one decision 20 4

Average calculation time for one decision (s) 2.64 0.84

Besides, PHA does not always perform worse than EPA. In the simulations, six days are
randomly selected, and we use the metrics results of EPA as references, while the relative
performances of PHA are visualized in Figure 4. As seen, the two approaches perform
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similarly on day one and day five. From day two to day four, EPA outperforms PHA.
However, we still have one day, i.e., day six, on which PHA outperforms EPA. Additionally,
the biggest change for all metrics also happens on day six, where we have a more than
5% increase for the precision metric. Such results indicate that the proposed ensemble
strategy is indeed effective and does contribute to the enhancement of NILM.
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Figure 4. Comparison visualization of PHA and EPA in metric performance.

The detailed statistical disaggregation metrics for all appliances are also recorded, as
shown in Table 4. The load disaggregation performances on different appliances are differed
by diverse approaches. For example, PHA outperforms CDA and EPA for appliances HEA
and LAP stably, while it shows some degradation for appliances RFR and CRTTV. Generally
speaking, the proposed approach guarantees a reliable disaggregation for all appliances.

Table 4. Detailed appliance disaggregation performance of the LVNS (average value).

Appliance Ps (%) Ss (%) Fs (%)
CDA EPA PHA CDA EPA PHA CDA EPA PHA

WSH 99.78 99.66 99.66 90.09 96.42 96.42 94.61 98.01 98.01
CFL 98.79 98.62 98.37 62.43 67.14 67.46 76.23 79.76 79.89

CRTTV 92.19 92.40 90.53 66.17 70.92 62.50 76.75 80.14 73.63
PC 95.63 94.32 92.97 57.99 66.75 66.59 71.28 77.98 73.79

FOO 99.97 98.50 98.53 84.49 90.60 91.92 91.10 94.01 94.79
FUR 92.07 94.71 93.13 98.47 96.92 96.82 95.13 95.79 93.37
MW 98.71 97.94 99.85 94.68 99.40 98.27 96.61 98.65 98.95
RFR 93.14 93.87 92.58 75.21 81.52 73.30 83.02 87.02 80.47
COF 83.07 79.55 84.16 79.31 95.53 89.80 79.30 85.36 86.22

FRZR 99.95 99.99 99.96 96.43 91.14 92.49 98.15 95.23 95.90
HEA 97.42 99.98 99.98 85.09 80.69 87.89 90.60 89.30 93.42
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Table 4. Cont.

Appliance Ps (%) Ss (%) Fs (%)
CDA EPA PHA CDA EPA PHA CDA EPA PHA

INC 94.59 99.74 98.57 82.78 77.66 73.80 88.21 86.63 83.76
LAP 93.82 94.73 99.84 75.84 75.74 88.73 83.77 84.09 96.28
LCD 100 99.48 99.50 91.81 93.55 91.88 95.68 96.15 95.25

LCDTV 84.67 87.00 85.72 98.83 98.60 98.10 91.01 92.94 90.22
TOA 87.64 89.93 88.41 95.85 92.49 92.72 91.09 91.19 90.26
DRY 99.57 99.96 99.97 98.57 99.86 99.86 99.06 99.91 99.92
STO 81.28 89.53 88.45 97.18 93.52 92.55 87.77 91.89 91.00

3.2.2. Detailed Insights of Ensemble-Method-Based NILM

In order to reveal the effectiveness of the ensemble design for the proposed method,
extensive results and discussions are provided in this subsection, focusing on the perfor-
mance comparison between individual classifiers and combined classifier. The general
results are shown in Table 5, while the detailed appliance results are shown in Table 6.

Table 5. Results comparison of LVNS-based NILM for ensemble strategy.

Metrics ICA1 ICA2 ICA3 ICA4 PHA

Pre (%) 91.18 93.34 89.16 89.04 95.02
Sen (%) 81.36 81.87 82.85 75.62 86.73

F-mea (%) 84.33 86.15 85.40 79.33 89.72

As seen in Table 5, by the proposed ensemble strategy, the NILM performance is
improved compared with individual classifiers. The maximum enhancements of precision,
sensitivity, and F-measure are, respectively, 6%, 11%, and 10%, while the minimum im-
provements are around 2%, 4%, and 4%, respectively. In general, the proposed approach
shows a robust enhancement via the ensemble strategy. As seen in Table 6, once the indi-
vidual classifiers perform the same, such as the results of WSH, the combined classifier
also has the same results. Although the proposed approach shows a degraded performance
for RFR, it successfully combines the individual classifiers for most of the other appliances,
demonstrating the effectiveness of the proposed study.

Table 6. Detailed appliance disaggregation performance of the LVNS by individual classifiers (average value).

WSH CFL CRTTV PC FOO FUR MW RFR COF

Ps (%)

ICA1 99.66 97.69 82.61 85.53 65.64 93.86 99.95 94.72 69.78
ICA2 99.66 99.92 81.27 74.68 98.49 90.69 93.44 96.25 99.62
ICA3 99.66 97.03 88.47 91.47 98.50 92.88 98.09 94.74 84.93
ICA4 99.66 84.50 93.81 62.80 96.91 95.46 96.65 94.39 76.80
PHA 99.66 98.37 90.53 92.97 98.53 93.13 99.85 92.58 84.16

Ss (%)

ICA1 96.42 66.24 79.93 59.30 27.90 96.82 87.89 85.88 88.52
ICA2 96.42 66.59 66.88 64.98 86.83 96.58 67.52 79.15 89.58
ICA3 96.42 68.70 70.30 64.57 91.51 96.61 99.40 80.83 95.82
ICA4 96.42 34.03 31.04 63.48 91.13 92.89 99.68 73.13 90.60
PHA 96.42 67.46 62.50 66.59 91.92 96.82 98.27 73.30 89.80

Fs (%)

ICA1 98.01 78.85 79.69 69.10 36.89 95.29 93.23 89.87 73.86
ICA2 98.01 79.73 73.10 68.89 91.40 93.54 76.70 86.68 93.76
ICA3 98.01 80.28 78.35 75.54 94.59 94.68 98.74 86.93 88.73
ICA4 98.01 46.06 46.23 62.56 93.73 94.15 98.09 82.11 80.45
PHA 98.01 79.89 73.63 73.79 94.79 93.37 98.95 80.47 86.22
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Table 6. Cont.

FRZR HEA INC LAP LCD LCDTV TOA DRY STO

Ps (%)

ICA1 99.99 99.93 99.10 97.00 99.96 86.15 83.08 99.88 86.73
ICA2 99.99 99.77 99.50 92.30 99.96 87.45 80.31 99.85 87.06
ICA3 99.99 99.33 0 92.96 100 87.19 90.99 99.88 88.79
ICA4 95.70 99.97 97.95 49.31 99.97 79.22 90.43 99.95 89.23
PHA 99.96 99.98 98.57 99.84 99.50 85.72 88.41 99.97 88.45

Ss (%)

ICA1 93.23 54.15 74.34 86.67 94.85 98.66 84.60 99.86 89.21
ICA2 95.49 49.38 74.37 74.58 89.46 98.60 84.36 99.18 93.64
ICA3 94.35 89.68 0 75.76 91.42 98.64 83.98 99.86 93.52
ICA4 85.45 77.47 57.52 26.36 91.86 65.32 92.63 98.64 93.49
PHA 92.49 87.89 73.80 88.73 91.88 98.10 92.72 99.86 92.55

Fs (%)

ICA1 96.41 70.06 84.16 91.17 97.31 92.49 83.61 99.87 88.14
ICA2 97.69 65.92 84.38 82.48 94.34 93.19 80.77 99.51 90.65
ICA3 97.02 94.09 0 83.42 95.47 93.06 87.00 99.87 91.51
ICA4 89.83 87.29 67.77 34.24 95.68 69.27 91.49 99.28 91.73
PHA 95.90 93.42 83.76 96.28 95.25 90.22 90.26 99.92 91.00

Note that the heterogeneous design also plays an important role, which contributes
to the improved performance in our study. In order to clarify this, an additional test is
conducted. The combined classifier is redesigned with an additional decision-making com-
mittee, and the fourth committee holds the evaluation criterion similar to the individual
classifiers but loses the sparsity. By doing so, the evaluation heterogeneity between individ-
ual classifiers and the combined classifier discussed in Section 2.3.1. is no longer complied
strictly. This additional design is denoted as WHA, and the disaggregation comparisons
are illustrated in Table 7.

Table 7. Results comparison of LVNS-based NILM considering the heterogeneity design.

Metrics WHA PHA

Pre (%) 92.97 95.02
Sen (%) 82.52 86.73

F-mea (%) 85.86 89.72

As seen in Table 7, by ignoring the heterogeneity, the ensemble strategy is no longer
effective in NILM enhancement. The performance is not only worse than our proposed
method, but also the conventional dictionary learning approach, where electric features
are considered all at once. Therefore, the NILM performance is highly dependent on
the ensemble strategy, and our heterogeneous design is demonstrated to be effective in
improving disaggregation results.

3.3. Studies on Field Measurement Dataset

The above comprehensive investigations on the simulation platform have verified
the efficiency of the proposed approach. In order to further demonstrate the practical
application capabilities of the study, a well-known public dataset, REDD [38], collected
via field measurements from real houses in North America, is utilized and tested in
the following discussions. Specifically, House 1 is selected for verification. The electrical
appliances in this house are illustrated in Table 8.

The proposed heterogeneity-enhanced ensemble approach is still denoted as PHA in
this subsection, as well as the compared approaches by conventional methods, i.e., CDA [32]
and EPA [36]. Since the data of House 1 are low-frequency without harmonics information,
the individual classifiers are generated based on the original bootstrap sampling strategy
and, respectively, denoted as ICA1, ICA2, ICA3, and ICA4 in this subsection.
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Table 8. Detailed information of studied appliances in the REDD dataset.

Appliances Rated Power (W) Operation Patterns Code

Bathroom GFI 1600 ON–OFF, fluctuation GFI
Dish washer 1000 Multi-state, complicated, and transient DW

Dryer 1 5400 ON–OFF, repetitive, and fluctuation DRY
Kitchen outlet 1 1080 ON–OFF, transient KO1
Kitchen outlet 2 1540 ON–OFF, repetitive, and transient KO2

Lighting 1 70 ON–OFF LIG1
Lighting 2 80 ON–OFF LIG2
Lighting 3 60 ON–OFF LIG3

Microwave oven 1600 ON–OFF, fluctuation MW
Oven 1 1650 ON–OFF, repetitive, fluctuation, and transient OV1
Oven 2 2500 ON–OFF, repetitive, fluctuation, and transient OV2

Regular fridge 180 ON–OFF, repetitive, and transient RFR
Washer 600 ON–OFF, repetitive WSH

1 Dryer is connected on phase A–B.

Table 9 provides the general results of REDD-based NILM for different approaches.
As seen, by applying the ensemble strategy, the NILM performance based on field measure-
ments are all improved. However, the ensemble design matters for the specific results. The
probability-model-framed strategy in [36] achieves a higher precision, while the enhance-
ment for sensitivity is limited, resulting in a slight improvement for F-measure metric. As
to the proposed approach in this article, though the enhancement for the precision is not
that high, there is a remarkable increase in the sensitivity metric, leading to very satisfying
progress in F-measure.

Table 9. General results comparison of REDD-based NILM for different approaches.

Metrics CDA EPA PHA

Pre (%) 60.49 84.37 67.66
Sen (%) 49.17 49.62 55.60

F-mea (%) 49.62 53.99 56.72

Table 10 provides the detailed appliance disaggregation results by diverse approaches.
As seen, NILM enhancement by the proposed approach is mainly due to the sensitivity
metric increase for most appliances. By Tables 9 and 10, it is observed that the heterogeneity-
enhanced ensemble NILM approach is effective in load disaggregation under a field
environment, even when lacking sufficient data.

Table 10. Detailed appliance disaggregation performance on the REDD dataset (average value).

Appliance Ps (%) Ss (%) Fs (%)
CDA EPA PHA CDA EPA PHA CDA EPA PHA

GFI 13.53 95.24 12.88 16.37 14.06 24.56 14.81 24.50 21.18
DW 99.66 99.66 99.66 78.47 61.89 78.20 87.94 76.36 87.64
DRY 91.40 92.14 91.40 89.00 98.10 89.00 90.18 95.03 90.19
KO1 0 0 0 0 0 0 0 0 0
KO2 99.23 99.01 98.25 45.07 45.97 45.97 61.99 62.79 62.64
LIG1 99.66 98.04 97.71 94.19 71.27 98.78 96.85 82.54 98.72
LIG2 99.72 98.52 98.52 14.52 14.51 16.70 25.36 25.29 28.62
LIG3 0 99.90 99.90 0 38.98 69.13 0 56.08 81.73
MW 0 100.00 0 0 20.13 0 0 33.51 0
OV1 16.96 15.78 16.97 70.95 83.73 70.96 27.38 26.55 27.38
OV2 82.20 99.50 81.79 96.52 96.04 96.04 88.79 97.74 88.34
RFR 99.81 99.40 99.21 92.23 81.38 91.69 95.87 89.49 95.30
WSH 83.61 99.60 83.27 41.93 19.06 41.76 55.85 32.00 55.63
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For further investigations, the detailed results by individual classifiers are compared
in Table 11. Because the data of field measurement are limited, the bagging strategy cannot
generate highly differentiated individual classifiers. However, such deficiency is addressed
by embedding the heterogeneous evaluation method into the ensemble framework. There-
fore, by enhancing REDD-based NILM performance, the proposed study is verified to be
an effective solution for energy monitoring.

Table 11. Appliance disaggregation performance on REDD by individual classifiers (average value).

GFI DW DRY KO1 KO2 LIG1 LIG2 LIG3 MW OV1 OV2 RFR WSH Average

Ps (%)

ICA1 15.18 99.66 91.4 0 98.25 97.7 98.52 0 0 16.96 81.79 99.25 83.28 60.15
ICA2 15.21 99.66 92.14 0 99.01 98.04 98.52 99.90 0 15.78 99.50 99.40 99.60 70.52
ICA3 15.21 99.66 92.14 0 99.01 98.04 98.52 99.90 0 15.78 99.50 99.40 99.60 70.52
ICA4 15.82 99.66 92.14 0 99.01 98.04 98.52 0 0 15.96 99.50 99.40 99.60 62.90
PHA 12.88 99.66 91.40 0 98.25 97.71 98.52 99.90 0 16.97 81.79 99.21 83.27 67.66

Ss (%)

ICA1 17.52 78.21 89.00 0 45.97 72.46 14.52 0 0 70.95 96.04 91.67 41.76 47.55
ICA2 13.12 61.89 98.10 0 45.97 67.96 14.51 38.98 0 83.73 96.04 81.38 19.06 47.75
ICA3 13.12 61.89 98.10 0 45.97 71.27 14.51 38.98 0 83.73 96.04 81.38 19.06 48.00
ICA4 13.12 61.89 98.10 0 45.97 59.23 14.39 0 0 83.73 96.04 81.38 19.06 44.07
PHA 24.56 78.20 89.00 0 45.97 98.78 16.70 69.13 0 70.96 96.04 91.69 41.76 55.60

Fs (%)

ICA1 16.27 87.64 90.18 0 62.64 83.21 25.31 0 0 27.38 88.35 95.31 55.63 48.61
ICA2 14.09 76.36 95.03 0 62.79 80.27 25.29 56.08 0 26.55 97.74 89.49 32.00 50.44
ICA3 14.09 76.36 95.03 0 62.79 82.54 25.29 56.08 0 26.55 97.74 89.49 32.00 50.61
ICA4 14.34 76.36 95.03 0 62.79 73.85 25.12 0 0 26.81 97.74 89.49 32.00 45.66
PHA 21.18 87.64 90.19 0 62.64 98.72 28.62 81.73 0 27.38 88.34 95.30 55.63 56.72

4. Conclusions

In this paper, ensemble-method-based NILM studies are further investigated in terms
of calculation accuracy and efficiency. For the effective utilization of the ensemble strategy
in NILM, a multidimensional heterogeneity design is embedded into the NILM-oriented
ensemble model. Firstly, the individual classifiers are mutually heterogeneous by follow-
ing the bagging strategy. Then, the heterogeneity between individual classifiers and the
combined classifier is designed by applying diverse measure calculations from two perspec-
tives: evaluation considering sparsity or not and weighed standardization or not. Lastly,
the combined classifier is also split into multiple heterogeneous decision-making commit-
tees, whose similarity evaluations are distinct from each other. Through verifications on
a simulator platform and a field measurement dataset, the proposed approach is demon-
strated to be able to enhance NILM performance with limited computing consumption.
Besides, the heterogeneity design is effective in reinforcing the diversity requirement of
the ensemble method, which shows a potential in expanding ensemble-approach-based
NILM applications.
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