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Abstract: The collection of physiological data from people has been facilitated due to the mass use of
cheap wearable devices. Although the accuracy is low compared to specialized healthcare devices,
these can be widely applied in other contexts. This study proposes the architecture for a tourist
experiences recommender system (TERS) based on the user’s emotional states who wear these devices.
The issue lies in detecting emotion from Heart Rate (HR) measurements obtained from these wearables.
Unlike most state-of-the-art studies, which have elicited emotions in controlled experiments and with
high-accuracy sensors, this research’s challenge consisted of emotion recognition (ER) in the daily
life context of users based on the gathering of HR data. Furthermore, an objective was to generate
the tourist recommendation considering the emotional state of the device wearer. The method
used comprises three main phases: The first was the collection of HR measurements and labeling
emotions through mobile applications. The second was emotional detection using deep learning
algorithms. The final phase was the design and validation of the TERS-ER. In this way, a dataset of HR
measurements labeled with emotions was obtained as results. Among the different algorithms tested
for ER, the hybrid model of Convolutional Neural Networks (CNN) and Long Short-Term Memory
(LSTM) networks had promising results. Moreover, concerning TERS, Collaborative Filtering (CF)
using CNN showed better performance.

Keywords: CNN; emotion detection; IoT; heart rate; LSTM; recommender system; tourist experience;
wearable; xiaomi mi band

1. Introduction

Internet of Things (IoT) technology enables the integration of wearable and mobile
devices to gather historical data from users. Personalized services are designed based
on this data to contribute to people’s well-being and quality of life [1,2]. Researchers, in
recognition of emotional patterns, find the physiological data of people that is relevant
in their daily lives. These devices become a ubiquitous source for providing this data [3].
Emotional detection can be applied in various contexts, including tourism, to improve the
tourist experience at destinations [4,5].

On the other hand, tourist expectations from a temporal perspective are analyzed in
three phases: before, during, and after the tourist visit [6,7]. This study focuses on the
preliminary phase of the visit, which detects the affective condition of people as a contextual
factor of a recommender system. To this end, the World Tourism Organization highlights
that the tourism industry is more competitive when receptive tourists are more inclined to
the emotional benefits than to the physical features and cost of the destination [8].
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Preliminarily, the literature review was conducted to identify the components of the
emotion-based tourism recommender frameworks [9]. This study showed the gap in
integrating physiological data from wearable sensors to detect the affective condition of
the user as a relevant contextual factor in the satisfaction of the recommendation. The
analyzed approaches mainly considered sentiment analysis techniques to detect emotional
states from the social networks reviews. Moreover, these models did not consider low-cost
wearables to discover emotional patterns in the user’s daily life.

In this review of the state-of-the-art, it was also found that there is a disparity of
formats, emotional states, and physiological signals in the datasets. Wearables of a different
range were also used, mainly medium and high-end. Most of these studies took biosignal
measurements in controlled experiments [9–13]. As wristbands evolve, they integrate
more sensors and with better accuracy. The most common sensors measure heart rate
(HR), Galvanic Skin Response (GSR), and temperature. In the context of tourism, the most
common wearables are those that are affordable and non-intrusive. Therefore, in this study,
the wearable Xiaomi Mi Band was chosen because it is cheap, includes basic physiological
sensors, is comfortable, and is easy to use.

One of the research challenges of this study was detecting changes in people’s
emotional states in natural and uncontrolled conditions, using wearables with low accuracy
in their measurements. To do this, we developed a mobile application to record emotions,
independent of the HR record. As a result of this double registration, creating a time series
synchronization algorithm called the adjustable and sliding window became necessary.

There are different types of emotions, and therefore their duration and intensity are
varied. Norman’s model [14] describes three levels of brain processing to explain the distinct
emotional reactions that a person experiences: visceral, behavioral, and reflective. Each
person interprets their emotional response according to their identity, culture, personality,
and context. Therefore, the automatic detection of emotional states in a time series of
physiological measurements became another challenge for this research. In this way, another
algorithm was proposed to detect emotional states, known as Emotional Slicing (ES). This
algorithm groups HR instances into a time slot to which it assigns an emotional label.

In the previous study of emotional detection on the AMIGOS dataset [15], Convolu-
tional Neural Networks (CNN) [16] were used. Now, in this study, a hybrid Deep Learning
(DL) algorithm from CNN and Long Short-Term Memory (LSTM) networks [17–19] was
implemented for Emotion Recognition (ER) from the ES dataset.

Once the emotion was detected, the Tourist Experience Recommendation System
based on the ER (TERS-ER) was developed as the last phase of this study. An interface was
designed with the Tourist Traceability Ontology (OntoTouTra) [20] to get the contextual data.

In addition, for the TERS engine, two approaches to Content-Based Filtering (CBF) [21,22]
and Collaborative Filtering (CF) based on CNN [2,9,23] were designed to generate the
top-N list of Tourist Experiences (TE) recommendations. The TERS engine integrated a
user similarity algorithm, selecting candidate users from the ontology based on the profile
and contextual data of the wearable user.

This document is organized as follows: Section 2 describes the background to this
study and discusses related papers. Section 3 defines the method used for this study.
Then Section 4 describes the TERS-ER architecture and its components. Later, Section 5
outlines the TERS-ER performance evaluation and validation. Finally, Section 6 presents
the discussion of the results, conclusions, and future work.

2. Literature Review
2.1. Background

Previously, the performance of some Shallow Machine Learning and Deep Learning
algorithms for emotion detection [16], based on the AMIGOS public dataset [15], was
compared. In conclusion, it was evidenced that the DCNN architecture showed a better
performance in detecting Arousal (0.71 and 0.81) and Valence (0.75 and 0.71) using GSR and
Electrocardiogram (ECG) signals (see Table 1). The AMIGOS dataset was collected in tests
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controlled in the laboratory, using 14 electrodes for the electroencephalogram (EEG), two
for the ECG, and one for the GSR. These electrodes were placed on the body of each of the
40 participants. Emotions were elicited through 16 short videos of less than 250 s in length.
The resulting dataset is a time series with features corresponding to the physiological signal
measurements displayed on 17 channels. Moreover, as labels, it presents the annotations of
Arousal, Valence, and dominance [24,25].

Table 1. Performance of DCNN and shallow ML algorithms using AMIGOS dataset [16].

Classifier of Emotion Detection
GSR Signals ECGL Signals

Arousal Valence Arousal Valence

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Naive Bayes [15] 0.54 0.53 0.59 0.57
Nearest Neighbors 0.68 0.64 0.69 0.68 0.69 0.66 0.58 0.57
Linear Discriminant Analysis 0.67 0.61 0.64 0.55 0.72 0.63 0.67 0.65
Linear Support Vector 0.69 0.56 0.68 0.55 0.68 0.6 0.61 0.55
Multi-Layer Perceptron 0.68 0.6 0.64 0.55 0.68 0.59 0.61 0.51
AdaBoost 0.64 0.59 0.66 0.65 0.7 0.66 0.61 0.58
Random Forest 0.58 0.58 0.64 0.64 0.68 0.67 0.59 0.59
DCNN [16] 0.71 0.68 0.75 0.71 0.81 0.76 0.71 0.68

Wearables have entered the market in great numbers in recent years [9,26], as have
increasingly incorporate sensors that measure physiological signals. The most common
sensor present in this type of device is the Photoplethysmogram (PPG) [12,27–29], which
registers HR signals. The configuration of these devices has aroused scientific interest in
detecting the emotional state of a person from these signals [12,13,30]. However, not all
wearables have the same level of accuracy in getting the physiological signals [29]. There
are devices ranges [10,26]: Expensive devices with high accuracy sensors, principally used
for healthcare purposes, for instance, include the Emphatica E4 [11,13,28,31]. Medium
range devices with precise sensors have more extensive use, targeted to high-performance
athletes, mainly for fitness and sports, and these include, for example, Garmin and Microsoft
Band [10,12,32,33]. Affordable devices for all audiences are used for general purposes, for
instance, the Xiaomi Mi Band [10,34–37].

The second stage of the research project [16] corresponds to the study proposed in
this paper, applied in the context of tourist recommendations outside the laboratory. The
massification of low-cost devices made it possible to reach different contexts, including
tourism. Of the three ranges of wearables, the low-cost ones have the highest probability of
being used by people who want to have a tourist experience in a destination soon. Then a
scientific challenge is created to take advantage of these wearables, which despite their low
precision in the measurement of physiological signals, still generate a large amount of data
that can be processed with data analytics to discover hidden patterns and trends.

Most of the studies described to the TERS design worked with traditional filtering
classifiers such as Collaborative and Content-Based [9]. The second challenge of this
study is to integrate the detection of people’s emotional states into the recommender
systems. It was traditionally recommended through the reviews of other tourists on
lived experiences or based on the context and configuration of the tourist experience in a
destination. Nevertheless, this study is intended to refine this type of recommendation
according to a person’s emotional state, either to counteract it for negative moods; or to
maximize it for positive emotional states. The related work in [9] did not show previous
studies regarding a TERS based on the emotional state of a person using HR signals from a
low-cost wearable device.

The third challenge of this study is related to how to register the emotional state of
a person. In experiments such as the consolidation of the AMIGOS [15] and DEAP [38]
datasets, self-annotators and external annotators recorded perceived emotion using a
Self-Assessment Manikin (SAM) questionnaire [25]. However, in the daily life context of a
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person, the researchers of this study developed a mobile application that recorded the mood
of the wearable user at different times when he/she felt that an emotion elicitation was being
presented. A new challenge arises: synchronizing the time series data of HR measurements
with the recording of emotional elicitations. This is achieved by developing a new algorithm,
which is the contribution of this study, the sliding and adjustable window algorithm.

2.2. Related Works

In this section, ER architectures and methods based on data from wearable devices
are analyzed. On the other hand, TERS studies similar to the architecture proposed in this
paper are related, based on the previous research of [9].

2.2.1. Affective Detection

Studies have been developed on the detection of the emotional state in different
contexts [13,27], most of them in controlled environments and with sensors or specialized
wearable devices. The number of participants involved in these types of experiments is
around 20 people. Table 2 describes some research for affective detection according to
the two-dimensional model of emotions by Arousal (A) and Valence (V) [24]. Also, the
specification of the wearable device (physiological sensors and low-cost sensors) and the
data collection method (dataset, experiment type, and participants) are given. The last three
columns of Table 2 show the physiological signals, the emotion classification approach, and
the best performance results of each study.

Table 2. Emotion detection studies based on physiological data from wearable devices.

Reseach
Wearable Method Emotion Detection

Technology Low-Cost Dataset Experiment Participants Signal Classifier Accuracy

[27] Electrodes No DEAP Controlled 32 GSR and PPG: Co-
variance matrix

Random
Forest

0.72 A and 0.71 V

[30] Electrodes No DEAP Controlled 32 EEG: Time domain LERM 0.73 A and 0.74 V

[16] Electrodes No AMIGOS Controlled 40 GSR and ECG: SCR
peak and R-peak

DCNN A (0.71, 0.81) and
V (0.75, 0.71)

[12] Garmin Vívos-
mart 3

No (own dataset cre-
ated)

Controlled 17 PPG: IBI (Frequency
and Time domain)

Bayesian
DNN

F1 score: 0.7 V

[13] Empatica E4 No (own dataset cre-
ated)

Controlled 20 PPG: HR SVM 0.46: HVHA,
HVLA, LVHA,
LVLA

This
study

Xiaomi mi band Yes (own dataset cre-
ated)

Semi con-
trolled

18 PPG: HR 1D CNN-
LSTM

0.44: HVHA,
HVLA, LVHA,
LVLA

Meanwhile, Abdel et al. [30] described a method of extracting covariance matrices
from EEG signals for the emotion classification using the Log-Euclidean Riemannian Metric
(LERM). The study [27] proposed an ER framework by merging multiple physiological
signals from the DEAP dataset. Also, they extracted time-domain features from GSR and
PPG signals to assess AV detection. These attributes are provided as input to a music
recommendation system.

Bulagang et al. [13] used the Empatica E4 device for the collection of HR data from
20 participants, a virtual reality viewer for the elicitation of emotions (emotional quadrants:
HVHA, HVLA, LVHA, and LVLA) while the subjects visualized a stream of sixteen 360º
videos, for 365 s. Accuracy performance is compared to three methods: Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), and Random Forest (RF).

The SAM questionnaire was adopted for the self-assessment of the emotions of
17 participants while watching a series of 24 short videos of affective induction [12]. Inter-
Beat-Interval (IBI) features were processed to classify emotional valence using a Bayesian
Deep Neural Network (DNN) model.
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Deep Learning reduces the complexity of extracting features of traditional statistical
techniques because, with manual extraction, the inconvenience of bias in data induction can
arise [9]. Another drawback to take into account is the accuracy level of the sensors used.
Researchers prefer specialized devices but recognize the need to build new datasets with
enough instances, achieved through the use of cheap off-the-shelf wearable devices [12,29].

Unlike the previously described methods for collecting physiological data and emo-
tional labels [9] (see Table 2), this paper proposes data collection methods in people’s daily
lives, processing, labeling, and emotional detection based on HR data from Xiaomi Mi
Band devices.

2.2.2. Tourist Recommendation Systems

Habitually, Recommender Systems (RS) are becoming more relevant for the decision of
the choice of tourist experiences by people [5–7,39]. The large Online Travel Agencies (OTAs)
incorporate the RS in their systems, and the competitive factor of the agency depends on
its effectiveness in the recommendation. Typically RS engines base the prediction primarily
on CF and CBF. Considering the maximum number of contextual variables contributes to
the accuracy enhancement of the RS [2,4,40].

Preliminarily, in the analysis of the RS literature [9], related works were filtered,
whose domain is tourism and that have used sentiment analysis as a contextual factor
in the recommendation process (see Table 3). This table incorporates some studies with
descriptions of datasets related to tourist destinations (reviews, users, and items), the RS
approaches, the similarity metrics (similarity of cosine and Pearson’s coefficient), and the
performance evaluation outcomes.

Table 3. Studies of recommendation systems based on emotions.

Research Dataset Algorithms Similarity Result

[41] 312,896 Tongcheng reviews and
5722 destinations

UBCF, IBCF, and TF-IDF (scenery,
cost, infrastructure, accommoda-
tions, traffic, and travel senti-
ments)

CS MAE and RMSE: Hybrid CF (0.63,
0.97) and TopicMF (0.76, 1.04)

[42] TripAdvisor and Yelp: 48,253 POI,
33,576 users, and 738,995 ratings.

Emotion Induced UBCF and
Emotion Induced IBCF

CS Precision: 0.74 UBCF, 0.66 IBCF,
and 0.67 Hybrid

[43] 312,896 Tongcheng reviews and
5722 destinations

Syn-ST SVD++ model: senti-
ment tendency and temporal fac-
tors dynamic

PCC MAE and RMSE: Syn-ST SVD++
(1.04, 0.91)

[44] TripAdvisor and Yelp: 48,253 POI,
33,576 users, and 738,995 ratings.

HSS (AKNN and SPTW) and
AbiPRS (Fuzzy-C-means).

User cluster Precision and MAE: HSS (0.81,
0.63) and AbiPRS (0.77, 0.73)

This study OntoTouTra [20]: 1939 TE, 42,202
users, and 530,294 ratings

CF-CNN and CBF CS MAE and RMSE: CBF (0.15, 0.23)
and CF-CNN (0.12, 0.16)

Data from social networks promote emotion analysis and opinion mining from user
reviews to determine TE preferences, as well as addressing issues related to a cold start and
data scarcity in CF [41,42]. Other studies [41,43] proposed to involve the feelings of the trip
as a relevant factor in the experience at the destination using the Term Frequency-Inverse
Document Frequency (TF-IDF) technique in the emotion polarity. The studies [42,44]
involved the affective, temporal, and location features of users to improve the quality of
the RS through a hybrid preference mining algorithm.

Furthermore, in other contexts such as entertainment, business, health care, and smart
tourism, the contextual factors of emotions applying sentiment analysis techniques in the
classification of reviews have been the subject of research [9]. The user models, based on
contextual features extracted from social networks, established the similarity of the users’
preferences of tourist destinations. Also, the application of the algorithms of SVM, KNN,
DNN, CNN, and LSTM have been used for the automatic extraction of features and the
classification of the mood [9,16].
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Unlike the sentiment analysis based on the explicit rating of the reviews in the
recommendation processes, this study defines a TERS-ER architecture incorporating the
contextual data of the users’ emotions before the tourist visit. For this purpose, a knowledge
base of tourist destinations from OntoTouTra [20] is obtained, and the TE are defined
according to the AV quadrants. Subsequently, Deep Learning techniques are employed for
extracting features and generating the top-N list of TE recommendations.

3. Materials and Methods

The general process of the methodology used is depicted in Figure 1, which comprises
three phases: HR measurements and emotion labeling, detection of emotional states, and
TERS-ER design and validation.

Figure 1. Method overview.

3.1. HR Measurement and Labeling Emotions

The purpose of this phase was to create an emotional dataset. This dataset is a time
series of HR measurements tagged with the emotion felt by the wearable user. The HR
register is an objective response to the elicitation of the perceived stimulus in the context,
while the emotion register is a subjective response.

As in the similar experiments described in Section 2.2.1, a group of 18 participants was
formed, nine men and nine women, whose ages ranged from 18 to 44 years. However, unlike
the related work experiments, the study was carried out in contexts outside a laboratory,
in the participants’ daily lives. However, three group sessions of controlled elicitation of
emotions were programmed to verify the correct recording of the measurements. Each
participant was given a Xiaomi Mi Band wristband, and two applications were installed
on their mobile device: Master For mi Band (MFB) [45] and MyEmotionBand (MEB).
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The first app recorded heart rate measurements. The second app was developed in this
study to record the person’s emotional states, activities, and location. Before starting the
experiment, a group of healthcare professionals assessed the physical and emotional state
of the participants. Once the group of participants knew the purpose and procedure of the
investigation, they signed the consent for participation. The duration of the experiment
was eleven weeks. Short videos were projected for the three group sessions: 19, 19, and
11 videos, respectively. These videos were chosen from the FilmStim repository [46]
according to the emotional elicitation of the four AV quadrants [24].

As a result of registering HR measurements, a dataset was created in MongoDB, and
from registering the labels, another dataset was created in Firebase. Later, both datasets
were synchronized so that the time series coincided with labeling the HR measurements
with emotions. For this, Algorithm 1 was developed. Then it was necessary to determine
the duration of emotional states [14] using Algorithm 2. Once both algorithms were
executed, the emotional dataset was created.

Algorithm 1. Sliding and adjustable window for the time series data tagging.

1: procedure getTagDataset
2: max_size_window = 180;
3: for k, v in hrData.items() do
4: hr = {};
5: for hrTimestamp, heartRate in v.items() do
6: W∆ = 0;
7: for k1, v1 in emotion.items() do
8: if k1 = k then
9: for key, value in v1.items() do

10: while W∆ ≤ max_size_window do
11: window_start = hrTimestamp - W∆;
12: window_end = hrTimestamp + W∆;
13: f ind = False;
14: for eTimestamp in v1.keys() do
15: if window_start ≤ eTimestamp ≤ window_end then
16: hr.update(hrTimestamp(v1, hr));
17: f ind = True;
18: break;
19: end if
20: end for
21: if f ind = True then
22: break;
23: else
24: hr.update(hrTimestamp(v1, hr));
25: end if
26: W∆ = W∆ + 1;
27: end while
28: end for
29: end if
30: end for
31: end for
32: hrData.update(hrTimestamp(k, hr));
33: end for
34: end procedure
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Algorithm 2. Emotional slicing.

1: procedure buildSlices
2: timeBetweenInstances = 60; sliceSize = 30; sliceLimit = 20; slicesCounter = 0;
3: tagHrList = dataLoad(hrData); previous = tagHrList[0];
4: initSlice();
5: addInstanceToSlice();
6: getMinMaxByImei();
7: for row in range(1, len(tagHrList) do
8: previous = tagHrList[row− 1];
9: current = tagHrList[row];

10: if previous[0] = current[0] then
11: if int(current[0]) - int(previous[0]) ≤ timeBetweenInstances then
12: if current[4] =′ movie′ then
13: if previous[3] , current[3] then
14: closeSlice();
15: end if
16: addInstanceToSlice();
17: else
18: addInstanceToSlice();
19: end if
20: else
21: closeSlice();
22: addInstanceToSlice();
23: end if
24: else
25: closeSlice();
26: addInstanceToSlice();
27: end if
28: end for
29: end procedure

3.2. Detection of Emotional States

In IoT environments, the collection of user datasets can lead to multi-class imbalance,
which affects the efficiency and performance of the prediction models. The consolidated
dataset in this study presented an unequal distribution in the emotion classes (see Figure 2b)
because the participants showed different affective behaviors in their contexts. Likewise,
the participants were predisposed to the affective states of pleased, calm, tired, and glad. In
contrast to the lower emotional classes of HR records (embarrassed, alarmed, and depressed).
In Figure 2a, this same distribution was confirmed for the positive emotion quadrants
(HVHA and HVLA) compared to the negative emotion quadrants (LVHA, LVLA).

For this purpose, some studies have used heuristic sampling methods and over-
sampling techniques for the Multi-class Imbalanced Classification (MIC) using neural
networks [47–49]. These sampling techniques are based on the nearest neighbor rule of
the feature space of each class [49,50]. For the above, the data balancing component sizes
the dataset and adjusts the label names by quadrants or emotional states. It also uses
class balancing methods to evaluate the performance of affective detection models. That
is, the dataset is transformed with the ES instance interpolation methods in the minority
classes [51] with the Synthetic Minority Oversampling Technique approaches with K-means
(K-SMOTE) [49,52] and TomekLinks (TL) [50]. Subsequently, the combined techniques
(K-SMOTE + TL) and oversampling (K-SMOTE) were implemented separately to process
the dataset in training [51].
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(a) (b)

Figure 2. Physiological dataset with a distribution of classes: (a) by emotional quadrants; (b) by affective states.

Once the emotional dataset had been balanced, a CNN and LSTM networks hybrid
model was used to detect emotion. This model was chosen because it better classified the
shallow algorithms’ emotional quadrants (happy, calm, sad, and angry).

An algorithm was designed to determine the predominant emotional state that defined
the frequency of the emotion felt by the participants. The results of the execution of this
algorithm were stored in a MongoDB collection.

3.3. Design and Validation

This phase corresponds to the moment that the wearable device user plans their next
TE. The emotional dataset has already been collected, and the predominant emotion of
the user has been calculated. So, a TERS is needed that recommends TE according to the
person’s emotional state, context, and profile. Therefore, as input sources, the TERS needs
the emotional dataset, and concerning the other two requirements, a knowledge base in
tourism is used. For this study, OntoTouTra was used.

Initially, similar features were selected among users of the tourist review dataset.
To know the profiles of the participants of the experiment, they, in advance, completed
a survey with their profile data and TE preferences. With the data from these profiles,
similar users were filtered using NLP techniques applied to the username in the ontology
to determine its gender. Features of the ontology such as country, ratings, TE, and location
were also extracted. The location was compared with the geographic coordinates obtained
in the emotional dataset. Then, the similarity was calculated using the Cosine Similarity
(CS) metric. In this way, the candidate users were obtained from OntoTouTra.

Two approaches were developed for the TERS engine: A CBF method that determines
the similarity between tourist destinations and the other CF-CNN method to relate user
preferences. These classification methods processed the filtered information from the
destination dataset and extracted the most relevant TE items for the recommendation
process. Finally, the list of recommended TE was generated based on the target user’s
profile, preferences, context, and emotions.

The following categories of TE [53–55] were established:

• Adventure: defines experiences of risky activities such as scuba diving, waterskiing,
horse riding, and canoeing.

• Ecological: relates experiences of contact with nature such as hiking, ecological walks,
and bicycle tours.

• Entertainment: involves experiences of fun attractions such as movie theaters, theme
parks, live music, and sports shows.

• Family: promotes experiences of strengthening relationships between parents and
children through attractions on the beach, in the pool, family and children’s games.

• Fitness: promotes wellness experiences and physical activities such as aerobics, gym
routine, personal training, and dance.
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• Heritage/Culture: promotes experiences of authentic activities such as visits to muse-
ums, archaeological sites, and typical food festivals.

• Romantic: involves couples’ romance experiences such as themed dinners, fun in
nightclubs and bars.

• Relaxation: involves health care experiences and relaxation activities such as spa,
hydrotherapy, sauna, yoga, among others.

The distribution analysis of affective states showed a high rate of participants who
registered positive emotions in contrast to negative ones (see Figure 2a). This study
assumed that the TE recommendations that people seek are strongly related to increased
satisfaction and improving their experiences at destinations [5–7]. For this reason, if the
detected emotion was negative (sad: LVLA quadrant or anger: LVHA quadrant) or positive
(happy: HVHA or calm: HVLA emotional quadrant), the recommender emphasizes
positive emotions and mitigates negative ones. For instance, the suggestion for a person
who was stressed is the relaxation experience. At the same time, the recommendation for
someone calm may be the ecological experience. In this sense, the relationship of emotions
with the categories of TE was:

• Happy (HVHA) or sad (LVLA): encourages adventure, family, romantic, and her-
itage/culture experiences.

• Calm (HVLA) or angry (LVHA): promotes ecological, entertainment, fitness, and
relaxation experiences.

4. System Architecture

This section describes the operational and structural levels of detail of the TERS-ER
architecture. For this purpose, the functional modules, data models, user profiles, and
services represented in the context diagrams, containers, components, and classes were
identified [56]. Also, according to the IoT architecture [2,19], the TERS-ER layers are:

• The perception layer: It is responsible for collecting HR data using the PPG sensor
of the wearable and the emotion and context data from the MEB app installed
on smartphones

• The network layer: Transfers HR measurement data using the Bluetooth connection
between the wearable and the mobile device. In addition, the smartphone using
mobile networks for transferring the emotion and location data of the MyEmotionBand
app to the Firebase cloud.

• The service layer: Provides the connections to the Firebase cloud to get the emotion
data, the MongoDB server to obtain the HR collections, and the SPARQL endpoint
server to retrieve the tourism knowledge base. These datasets are then pre-processed
and filtered for the TERS-ER subsystems.

• The application layer: Manages an intelligent RS that displays TE suggestions according
to the user’s preferences and contextual factors.

4.1. System Context

How satisfying is a particular tourist experience for a person? It depends mainly on
the reason for the tourist visit. Often a person looks for options according to information
from travel agencies, suggestions from friends, cost of the plans, or the desire to know new
destinations. However, the emotional burden that the person manifested before the visit is
seldom taken into account. Specifically, to understand the emotional state in a period before
the tourist visit, wearable devices are an exciting alternative for capturing physiological
and context data. In this way, with the processing of these data, the user’s emotions can be
recognized and therefore recommend the appropriate tourist experiences to their affective
state. The research question arises: How to design a TERS based on the wearable users’
emotional state in the preliminary visit phase?

Before the visit that can measure in days or weeks, a person in their daily life uses the
wristband and mobile devices to record physiological and affective data. In this scenario
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(see Figure 3), a user, depending on the activity type, (for instance, working, watching
movies, resting, traveling, driving, among others) can experience an emotional change
caused by various stimuli from the context. Then, through mobile applications, the user can
measure HR and record the emotion perceived at that moment (happy, content, sad, calm,
angry, and stressed). Afterward, the data from the objective and subjective measurements
are processed and analyzed by machine learning (ML) algorithms that detect the person’s
affective state.

The recommender system uses the user’s profile (gender and tourist preferences),
emotional data, location, and TE portfolio as input items to display destination suggestions.
The recommendation list is created from similarity metrics and ML algorithms. Subse-
quently, the user checks the recommendations of TE according to their emotional state,
profile, and preferences.

4.2. TERS-ER Architecture

The TERS-ER architecture has two main subsystems. The first is the ER built with the
following components: data collection, preprocessing, ES analysis, emotion class balancing,
and affective detection using DNN models. The second is TERS, which is implemented with
the dataset management components and the recommender engine. This recommender
generates the most relevant TE according to the preferences, location, and user emotion in
a period before the tourist visit.

Figure 3. Scenario and context.

Figure 4 summarizes the model, and it shows the integration of the subsystems of the
TERS-ER architecture.

4.3. Technological Container Communication

In this section, Figure 5 depicts the distribution of the technological infrastructure
functionalities and the interaction in the TERS-ER subsystems. The following outlines the
high-level implementation of the software architecture:

• The users in their context use the Xiaomi Mi Band wristband and the MFB mobile
application [45] to store HR data in an SQLite database. In turn, the emotion, activity,
and location data is recorded in the MyEmotionBand (MEB) mobile application.

• A real-time database that stores the JSON files of the MEB application in the
Firebase cloud.

• An application that manages the connection to the Firebase and MongoDB databases.
Also, it handles the collections gathered from wearable and mobile devices.

• A MongoDB database to store collections of HR, emotions, and user profiles.
• An application for ER that generates an affective detection dataset.
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• A dataset of the TE portfolio is consulted from the SPARQL endpoint server. This
dataset was acquired from the Ontology of Tourist Traceability (OntoTouTra) proposed
in [20].

• A recommender engine that processes MongoDB data collections and TE datasets. It
then analyzes and displays a list of tourist recommendations.

Figure 4. Data model of the TERS-ER architecture.

Figure 5. Containers of technological infrastructure.
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4.4. Apps Architecture

Figure 6 shows the user interface of the mobile applications developed and used by
the participants during the experiment.

(a) (b)

Figure 6. The mobile app’s graphic interface used by the participants: (a) MyEmotionBand for recording emotional state,
activity, and location; (b) MFB [45] for HR measurement.

The MEB app provided the user interface for recording the affective state (16 emotions
and one neutral state) and the activity performed (21 tasks). According to the context of the
participants, categorical emotions were associated with activation (Arousal) and emotional
polarity (Valence) of Russell’s bi-dimensional model [9,24]. That is, four emotions were
defined for each emotional quadrant: happy (HAHV: excited, amused, glad, and pleased),
calm (LAHV: satisfied, calm, relaxed, and tired), sad (LALV: bored, depressed, embarrassed,
and sad), and anger (HALV: stressed, afraid, angry, and alarmed). The location (latitude
and longitude), the date, and time were obtained from the smartphone GPS. In addition, the
authentication and synchronization methods were created to store the data on the Firebase
server. In particular, the emotional dataset collected 21,000 records from the participants.
The SQLite files of the MFB application were converted into CSV files, and a dataset of
1,535,992 HR instances was collected.

In other studies [9,16] the recording of emotions, either by the participant of the
experiment or by an observer, was carried out manually on a sheet of paper; this instrument
is called SAM [25]. SAM can be used in controlled experiments, but its use is inappropriate
in the context of a person’s daily life. For this reason, the MEB app was developed (see
Figure 6a). Although the emotion recording is still manual, it is more practical and complete
than SAM because the user makes a tap on the emoticon that depicts the emotion that he
was feeling at that moment and then another tap on the icon of the activity performed. In
this way, MEB correlates the variables of emotion and activity.

4.5. Sliding and Adjustable Window Algorithm

The preprocessing of the datasets was made with the synchronization algorithm called
a Sliding and Adjustable Window. Because it uses the time series of each participant’s HR
and emotional state, this algorithm is sliding because the timestamp window is located in
the segment that contains data for both datasets. It is adjustable because the size of the
timestamp window is configured depending on the behavior of the data (see Figure 7). The
Algorithm 1 loads the two MongoDB data collections (HR and emotion) to tag the emotion
in each participant’s HR instances:
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• Initially, set up a loop to iteratively go through the HR instances dictionary of
the participants.

• Obtains the timestamp and HR measurement of each record. Defines a time variable
(W∆) that controls the window size setting.

• Establishes an iterative cycle through the dictionary of the experiment participants’
emotion, activity, and location.

• Gets the HR and emotional data that correspond to the same participant.
• If the emotion label is not found within the maximum window size (for example,

180 s), it loops through the collection of emotions and gets the tag that matches the
timestamp of the HR instance. If the label cannot be found, the size of the window
is increased.

• Then, set the emotion tag on HR time series instances. In addition, it adds the activity
data and geographical location in the HR dictionary.

• Finally, build a new collection in MongoDB with the HR dataset labeled.
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Figure 7. A participant’s sample of HR data with the configuration of a dynamic window adjusted to the HR and
emotion timestamp.

Hence, the method (see Algorithm 1) that we developed is adaptive and dynamic to
the time series windows of the physiological and emotional datasets.

As a result of the preprocessing, a tagged data collection of 218,297 records (documents
in JSON format) was generated. The data structure is made up of a document identifier
(_id), a participant number (IMEI), the emotion timestamp (emotionts), the affective state
(emotion), type of activity (activity), HR (hr), location (longitude and latitude) and HR
timestamp (hrTimestamp).

4.6. Emotional Slicing Algorithm

The size of the segment parameterizes the Emotional Slicing (ES) algorithm (by default
30 HR instances), the time between instances (for example, 60 s), and the limit size of
instances (for default 20). The algorithm loads the MongoDB HR collection, consolidates
the labeled instance blocks, and generates the physiological dataset used in the affective
detection module. This algorithm was created for detecting the duration of the emotion
(See Section 3.1).

Algorithm 2 has the following activities:
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• Loads the preprocessed collection into a list and gets the first HR instance.
• Initializes a new physiological slice.
• Add the values to the HR, timestamp, and emotion vectors.
• Creates a list with the minimum and maximum HR values for each participant to

normalize the data.
• Browses the records of the HR collection. Each iteration verifies that the instance

belongs to the same emotional slice of the participant and complies with the limit size
of instances. It controls that when the activity is a movie and has the same emotion, it
adds the instance to the data vectors. It checks the addition of new instances to other
activities that meet the established parameters.

• Then, creates the list of affective segments with the predominant emotion of the
HR instances.

Furthermore, the algorithm uses the duplication time-series values technique to adjust
the number of HR instances (for instance, a record of 20 HR instances repeats the initial
sequence of the vector until it completes the default size of 30). Lastly, the new collection
of 5247 ES is stored in MongoDB. The data structure of each participant (JSON format)
handles a vector of timestamp and affective segment data (_Id, imei, instances number, slice
duration, activity, emotion, longitude, and latitude), together with an HR vector normalized
through the linear transformation function depicted in Equation (1) [19]. This method
reduces the standard deviation in the data and suppresses the event of outlier values.

xnormalized =
x− xmin

xmax − xmin
(1)

where:
x = measurement of a user’s heart rate;
xmin = minimum measurement of all a user’s heart rates;
xmax = maximum measurement of all a user’s heart rates;

4.7. DNN Models

The ER component defines the DNN approaches for detecting affective states based
on HR data (see Figure 8) using the Deep Convolutional Neural Network (DCNN)
model [16]. This model was built by stacking four 1D CNN layers that reached emotional
patterns of physiological signals and three Fully Connected (FC) Layers to predict emotion.
Furthermore, two models based on 1D CNN and LSTM architectures [17,19] were defined.
Initially, both models used a 1D-CNN to extract the emotion features related to the input
vectors. The convolution has a kernel size of 10 and a filter of 128. The second MaxPooling
layer reduces the dimensionality of the feature map and has a pool size of two. The first
model uses a third flatten layer to convert the feature map into a one-dimensional vector.
Then, the fourth FC layer that receives the learned features is connected.

Physiological features extraction

1D CNN
Max 

Pooling
Dropout 

layer

FC layer

Emotion detection

LSTM LSTM

Dropout 
layer

Input vector

Figure 8. 1D CNN LSTM Architecture.
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On the other hand, in the second model (Figure 8), after the connections of the 1D
CNN and Maxpoling layers, a third dropout layer of 0.5 is added as an exclusion mask
to the LSTM that can improve the generalizability. This fourth LSTM layer learns the
order of the contextual dependencies of the local features entered. Then, in both models,
the 0.5 dropouts fifth layer prevents overfitting during model training and transfers the
learned features to the FC sixth layer. Besides, the Rectified Linear Unit (ReLU) activation
function is used in the middle layers of the network. While in the output layer, the Softmax
trigger function defines the predicted emotion of the multiclass classification.

4.8. Recommender Components

The CBF approach computes the similarity between all the pairs of hotels (see
Equation (2)) with the scalar product of categories of TE (binarized vector of TE), location
(longitude and latitude), description (summary of services related to TE), and the hotel
review tags (for instance exceptional, fantastic and outstanding). The CS metric determines
the likeness between TE categories, and the Haversine distance establishes the closeness
of locations. On the other hand, the fuzzy match metric [57] compares the description
of hotels, and the Python tool “difflib.SequenceMatcher” measures the similarity of the
categorical rating of the reviews. As a result, a matrix correlates the similarity of the hotel
ratings during the model training and estimates the prediction of the hotel rating for a
user. Furthermore, the KNN algorithm derived from the AlgoBase class [21] was used.
Afterward, the split of the dataset, the evaluation of the recommendation algorithm’s
performance is backed up in the evaluation framework proposed in [22].

TE(hi, h j) = 1− spatial.distance.cosine(te[hi], te[h j])

Location(hi, h j) = mt.exp(−haversine(te[hi], te[h j])/1.0e3)

Category(hi, h j) = SequenceMatcher(cat[hi], cat[h j]).ratio()

Description(hi, h j) = f uzz.token_sort_ratio(des[hi], des[h j])/1.0e2

Sim(hi, h j) = TEi j · Locationi j ·Categoryi j ·Descriptioni j

(2)

where:
hi, h j = pair of hotels related to the users’ rating;
te = binarized vector of hotels’ tourist experiences.;
cat = the hotels’ score category string;
des = the hotels’ services description string;

The CF-CNN model preprocesses the user and hotel identifiers of the rating dataset.
Then, the 50-dimensional feature vectors to train and evaluate the algorithm [23] were
generated. Initially, the embedment layers transformed the input vectors into matrices and
regularized the embeddings using the Gradient Descent (GD) technique [19]. Furthermore,
a concatenation layer decreased the dimensionality of the embedding layers. The developed
model CF-CNN employed a 1D CNN layer to automatically extract the patterns from
the concatenated vector and a Max-Pooling layer to reduce the convolution features map
(see Figure 9) [9,19]. Also, a dropout layer to regularize the model during training was
added. The FC layers later compressed the extracted features and used a ReLu activation
function to produce the predicted rating of the tourist destinations. In contrast to the
CF-CNN approach, the embedding matrices-based CF approach (CF-Net) proposed in [23]
was implemented. A scalar product between the incrustations (users and hotels matrices)
was computed, and, finally, the CF-Net model was trained to apply the GD through a
sigmoid function.
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OntoTouTra

User vector

TE vector

Features extraction

Concatenate

TE rating prediction layer

Embedding
layer

Embedding
layer

1D CNN
Max 

Pooling
Dropout 

layer

FC layers

Figure 9. Collaborative Filtering based on 1D CNN and FC layers.

The CBF model used the prediction method of KNN [21,22] for estimating the rating
of an item based on the average similarity score of the hotels and the ratings registered by a
user of the testing dataset.

Finally, the recommendation list was adjusted to 10 items, and the binary vector of TE
was added. Also, depending on the predominance of the emotion, the similarity with the
TE (cosine similarity in Equation (2)) and the location (Haversine distance in Equation (2))
of the hotels in the top-N list were calculated. The top-N list of tourist recommendations
was ordered according to the geographic proximity of the person. Subsequently, the final
top-N list of TE recommendations performed better in the proposed algorithms compared
to the SVD, SVD++, and normalPredictor algorithms [21].

The source code of the technological components of the ER subsystems and TERS is
available in the following public repository: https://github.com/luzsantamariag/terser.

5. Experimental Results and Discussion

The datasets were split into a meaningful percentage to train the approaches (80%)
and the other percentage to test the performance of the emotional detection and recommen-
dation models.

5.1. Emotion Recognition

When evaluating the classification of the imbalanced AV classes, we used k-fold Cross-
Validation (CV) to guarantee the presence of all affective states. As defined in Section 4.5,
we analyzed the ES dataset with different times between HR instances. Then, we used
the ES dataset to predict emotions with shallow ML algorithms and with imbalanced AV
classes. Subsequently, we used the parameters of the ES with the best performance to test
the ER of the DNN models with balanced AV classes.

5.1.1. Multi-Class Imbalanced Classification

Figure 2 depicts the distribution by emotional quadrant of the physiological dataset
and shows an imbalance between the observations of the minority classes (LVHA with
16.3% and LVLA with 10.8%) concerning the majority classes (HVHA with 36.7% and
HVLA with 36.2%). Therefore, we used the Scikit-learn library to evaluate the dataset
with assembly classification algorithms using stratified 5-fold CV [51]. The dataset was
parameterized with ES of 30 HR measurements and different times between instances
(60 and five seconds). Figure 10b shows a better performance in the prediction by affective
quadrants with less time between instances (five seconds) than the longest time (60 s) (see
Figure 10a).

Also, the results of the Random Forest (RF), Gradient Boosting (GB), and Extra Trees
(ET) algorithms tend to be slightly better in each case, compared to the Bagging (BAG) and
Ada Boost (AB) algorithms that recorded less accuracy in the emotion detection. It should
be noted that tests with ES of 20 HR instances were also performed, and the accuracy scores
were slightly lower than the tests with 30 HR instances for each ES, as reported in Figure 10.
Therefore, the experiments with the DNN models are parameterized with ES of the size of
30 HR instances.

https://github.com/luzsantamariag/terser 
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(a) (b)

Figure 10. Multiclass classification for ES dataset of 30 HR instances: (a) with 60 s between instances; (b) with five seconds
between instances.

5.1.2. Affective Classification Using DNN Models

The performance of DNN models depends on the volume and quality of the datasets.
Therefore, the implementation of heuristic sampling methods compensates for the imbalance
in the distribution of affective classes [47,48]. Table 4 shows the results of the DNN models
proposed in Section 4.7 for affective detection from the physiological dataset balanced with
the K-SMOTE and TL techniques. The three models (1D CNN LSTM, 1D CNN Flatten, and
DCNN) used a batch size of 32, with repetitions of 50 epochs and a loss parameter calculated
with the categorical cross-entropy function. We configured the Adam optimizer and the
learning rate 1× 10−3 to train the physiological dataset in these models. The accuracy
results in the testing were slightly better than shallow ML approaches (see Figure 10).

Table 4. ES dataset performance with CNN-based ER models and four-class balancing methods.

Model Data Balancing
Method

Dataset Train Accuracy Test Accuracy

Labels HR Slices Better Average Better Average

DCNN [16] K-SMOTE HVHA,
HVLA, LVLA,
LVHA

1231,
1141, 200,
456

0.60 0.56 0.46 0.41
K-SMOTE +
TL 0.61 0.57 0.44 0.43

1D CNN, Flat-
ten, and FC

K-SMOTE HVHA,
HVLA, LVLA,
LVHA

1231,
1141, 200,
456

0.65 0.61 0.45 0.41
K-SMOTE +
TL 0.69 0.64 0.46 0.43

1D CNN, LSTM, and FC K-SMOTE HVHA,
HVLA, LVLA,
LVHA

1231,
1141, 200,
456

0.63 0.58 0.47 0.42
K-SMOTE +
TL 0.67 0.63 0.46 0.44

Combined sampling methods tend to improve accuracy results in both the training
and testing of DNN models. Although the AV classes in Table 4 showed an imbalance in
positive affective states (HVHA: excited and HVLA: calm) related to negative emotions
(LVLA: sad and LVHA: angry), accuracy results performed better with CNN models that
used the K-SMOTE and TL data balancing methods. This same trend was confirmed in
Table 5, where the emotional class with the lowest number of instances (LVLA: sad) was
eliminated. Therefore, the results during training and testing indicate that this dataset with
more ES instances may increase the accuracy.
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Table 5. ES dataset performance with CNN-based ER models and three-class balancing methods.

Model Data Balancing
Method

Dataset Train Accuracy Test Accuracy

Labels HR Slices Better Average Better Average

DCNN [16] K-SMOTE HVHA,
HVLA, LVHA

1231,
1141, 456

0.54 0.53 0.48 0.45
K-SMOTE + TL 0.58 0.58 0.46 0.46

1D CNN, Flat-
ten, and FC

K-SMOTE HVHA,
HVLA, LVHA

1231,
1141, 456

0.63 0.57 0.50 0.46
K-SMOTE + TL 0.67 0.62 0.50 0.47

1D CNN, LSTM, and FC K-SMOTE HVHA,
HVLA, LVHA

1231,
1141, 456

0.56 0.54 0.50 0.47
K-SMOTE + TL 0.56 0.54 0.51 0.47

The 1D CNN LSTM model showed better performance in detecting AV classes (see
Figure 11a,b). However, the efficiency of ER models could be affected by imbalanced
spontaneous emotion data and poor measurements of people’s HR. Hence, we defined the
dataset evaluation protocol by grouping emotions by VA classes due to the importance of
including all affective states during training and testing. Furthermore, we compared the
MIC between ES of 30 HR measures with different times between instances and showed
that the ES dataset of 5-second interval HR instances performed better. Likely, this ER
framework will enhance the accuracy outcomes obtained in a new controlled experiment
with more participants to consolidate a more robust dataset.

(a) (b)

Figure 11. Training and validation of the 1D CNN LSTM model in the Emotional Slices (ES) dataset. The accuracy outcomes
correspond to the classification of: (a) four emotional quadrants in Table 4; (b) three emotional quadrants in Table 5.

In this way, we got the prediction of the emotional quadrant. The analysis of the
distribution of emotions showed a high rate of participants who registered positive emotions
(happy: HAHV and calm: LAHV) instead of negative emotions (LALV: sad and HALV:
anger). Therefore, we show that people increasingly seek to improve their TE. Although
the imbalance of the emotional dataset limited the prediction results of the ER models, we
achieved a better performance of 44% accuracy in the 1D CNN LSTM approach in contrast
to the shallow ML algorithms of 41% (see the middle part of Figure 4).

5.2. Evaluation of the TERS-ER

The evaluation determined the effectiveness of the approaches proposed in the TERS-
ER architecture using the emotional and destinations datasets (see Table 3). The evaluation
was carried out with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)
metrics. These accuracy metrics estimate the average prediction error based on the closeness
of the predicted hotel ratings and the actual data (see Equations (3) and (4)). The best
performance tends to a zero value, while a result equal to or greater than one indicates a
high error rate in the estimation.

The first CBF model was implemented using the Surprise [21] framework. For
this reason, the performance tests were compared with the SVD and SVD++ matrix
factoring algorithms. The second CF-CNN model compared its performance with the



Sensors 2021, 21, 7854 20 of 28

CF-Net algorithm during the training and testing phases. Subsequently, we analyzed the
performance results of the proposed models in comparison with the base algorithms.

MAE =

∑
(i, j)∈TS

|ri j − r̂i j|

|TS|
(3)

RMSE =

√√√√ ∑
(i, j)∈TS

(ri j − r̂i j)
2

|TS|
(4)

where:
TS = represents the number of ratings of all users in the test set;
ri j = depicts the actual rating of a user ui for the hotel’s TE h j;
r̂i j = represents the estimated rating of a user ui for the hotel’s TE h j;

5.2.1. Validation of CBF and Model-Based Approaches

The results of the tourist datasets training had a positive effect on the performance of
the CBF model compared to the algorithms for reducing the dimensionality of latent factors
since the CBF algorithm, unlike matrix factorization, correlated the similarity of hotel
destinations through the features of TE, location, and description. Moreover, Figure 12
depicts a similar behavior in the five folds of the CV of the algorithms CBF, SVD [58],
and the model derived from the latter with the addition of implicit feedback information
SVD++ [59]. Further, it shows the distribution of performance measurements and the rising
rate according to the hotels’ TE dataset size.

Mean Absolute Error (MAE) with varying number of fold

(a)
Root Mean Square Error (RMSE) with varying number of fold

(b)

Figure 12. CBF evaluation: (a) MAE; (b) RMSE.
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5.2.2. Training and Testing of CF Models

The hotels’ TE datasets were used for evaluating the CF models during the training
and testing. The validation parameters of the models were defined by the batch size of 64,
a loss function MeanSquaredError (MSE), repetitions of 10 epochs, Adam optimizer, and
learning rate of 1× 10−3.

Figure 13 shows the iterations of the recommendation models during the training and
testing with their respective MSE losses. The MAE metric in training and testing shows our
CF-CNN model’s better performance than the CF-Net model.

(a) (b)

(c) (d)

Figure 13. Recommender system evaluation over (a) MAE of CF-CNN model; (b) MAE of CF-Net model; (c) RMSE of
CF-CNN model; (d) RMSE of CF-Net model.

Therefore, the CF-CNN capacity increased by reducing the regularized overfit by a
0.1 dropout. Furthermore, the loss of the model denotes a positive impact on the training
and testing data and is well below 0.1 (see Figure 14).

(a) (b)

Figure 14. Loss value of CF-CNN (a) MAE; (b) RMSE.
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Likewise, Figure 13 shows the RMSE variation of the epochs of the CF models during
the training and testing with their MSE losses. The behavior of the iterations is very similar
in both metrics. Also, the performance results of the CF-CNN model are better than those
of the CF-Net model.

5.2.3. Comparison of Performance Metrics

Unlike the CF-CNN model, the CBF model incorporated similarity metrics between
destinations to estimate the rating. Precisely, Figure 15 confirms that the proposed ap-
proaches outperform the MAE performance for the predicted rating of the recommendation
of tourist destinations concerning the matrix factoring algorithms. However, in the RMSE
metric, the model’s performance is better for the CF-CNN approach than the other models.

CBF Random SVD SVDpp CF_CNN CF_Net

0

Recommender models

MAE

RMSE

Algorithm

0.3

0.25

0.15

0.2

0.05

0.1

Figure 15. TERS-ER Evaluation.

Furthermore, Table 6 describes the performance of the proposed models and indicates
an outstanding improvement in the accuracy of the list of top-N TE. Since the evaluation
metrics in both MAE and RMSE were the lowest in the CF-CNN model. In addition, the
experimental results with the tourist datasets of the traditional recommendation models
had a slightly lower performance than the models based on DNN.

Table 6. Performance statistics with different TERS algorithms.

Algorithm MAE RMSE

CBF (This study) 0.152 0.237
Random [21] 0.172 0.256
SVD [21] 0.153 0.237
SVD++ [21] 0.153 0.237
CF-CNN (This study) 0.124 0.168
CF-Net [23] 0.128 0.175

The general outcomes show that the information of the TE, the geographic location,
and the attributes of the tourist destinations can affect the performance in the prediction.
Finally, the performance results show that the proposed CF-CNN and CBF algorithms
perform better in the TERS-ER architecture.
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6. Conclusions

The proposed architecture is a reference for developing recommendation systems based
on users’ emotional states in different contexts. Furthermore, this model allows adding
wearable devices with more accuracy physiological sensors [11,13,31,60]. However, when
cheap wearable devices become more popular in the market, manufacturers will probably
include more accuracy sensors for monitoring biosignals and physical activity [28,29,34–37].
For this research, we opted for massive and cheap devices that are probably the most used
by people in their daily lives. The disadvantage of these devices is the low accuracy of
measuring physiological signals that would be very sensitive in medical or specialized
applications but are tolerable precisions for tourism. For this reason, an accuracy of 44%
in the emotion detection is tolerable to maximize the user experience of these types of
devices. Also, it’s important to take into account that this accuracy can be improved with
new versions of the wearables used, as with a more robust ES dataset, through another
experiment with a more significant number of participants and controlled elicitations,
which serves as a cold start for the TERS. It could involve other physiological signals
different from HR, such as, for instance, electrodermal activity and temperature.

Regarding the related work represented in Table 2, the use of shallow ML classifiers
with an accuracy of around 0.7 can be seen. Our experiment used the 1D CNN-LSTM
hybrid classifier with an accuracy result of 0.44. This level of performance is tolerable
due to the significant differences in the conditions of the design of the experiments (see
Table 7). However, the conditions of this study were planned to meet the requirements
of the context, that is, anyone in their daily lives that uses a cheap wearable device. The
emotion detection performance of this system is acceptable for recognition, generating
an additional contextual factor to a recommender system to improve its accuracy. This
contextual factor is emotion, which is a new contribution to recommender systems for the
domain of tourism.

Table 7. Differences between emotion recognition studies.

Our Study Related Studies

Context Daily life Laboratory
Devices Cheap wearable Specialized sensors and wearables
Annotators Self-annotation (MEB app) Team of annotators (external and internal)
Participants 18 20 (average)
Stimuli Daily life–spontaneous Videos and images–controlled
Emotion duration Variable Constant (1–2 min)
Emotion annotation Voluntary Mandatory
Experiment duration 11 weeks 1 day
Signals HR (PPG) PPG, GSR, EEG, ECG (multi-channel)
Signal recording Sampling (third-party app) Continous
Domain Tourist Various

Regarding the analysis of RS-related works based on emotions, these works focused
mainly on analyzing sentiments of reviews. Their MAE and RMSE results are very close to
1 (see Table 3). On the contrary, in our study, the CF-CNN and CBF classifiers were used,
the similarity between users was determined, and the context, preferences, and profile were
taken into account. This way, optimal MAE and RMSE results were achieved compared to
the other studies (see Section 5.2).

Concerning MIC and following the comparison of results (see Section 5.1.1), it is
recommended to parameterize the number of sufficient physiological instances for each ES.
In the experiment, better results were obtained with 30 instances of HR for each ES, with a
distance between instances of five seconds.

It is necessary to deal with the imbalance of emotion classes in this ER system, which
is logical since human behavior predominates in certain emotional types, although the
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contextual stimulus differs. For instance, a happy person tends to feel more frequent
emotions from the happiness quadrant (HVHA). Then in the emotional register, an
imbalance of classes is created for the other quadrants. For this reason, combined K-SMOTE
and TL techniques were applied for balancing the minority emotional classes. It was also
experimented with the elimination of the instances of a minority class, in this case, sadness
(LVLA), to improve the performance of the classifier, although the performance improved
(see Tables 4 and 5). This procedure is not recommended because it biases the emotional
behavior and this can lead to overfitting of the model.

The main contributions of this research were:

• The TERS-ER model (see Section 4)
• An algorithm that synchronizes the emotional labeling of a physiological time series

in an adjustable and sliding window (see Section 4.5).
• An algorithm that creates emotional segments (see Section 4.6) according to the process

of an emotion formulated by Norman [14].
• The MEB app (see Section 4.4) replaces the paper recording of the emotional spectrum

that was done with SAM.
• An emotional dataset, heart rate recording, and emotion recording were created from

the data collection of the Xiaomi Mi Band wearable devices and the MEB app of 18
participants of the experiment (see Section 3).

• Source code for the implementation of the TERS-ER model (see Section 4.8).

Future research would focus on merging multimodal physiological datasets to the
TERS-ER architecture to optimize the affective detection of users. The system could
incorporate contextual information on the environment and travel routes to increase
user satisfaction.

Furthermore, this research is part of the second of five phases of a TE recommendation
macro-project. Future areas of research would involve the following:

• Definition of an emotion recognition model from a publicly available emotional dataset.
In this case, the AMIGOS dataset was used [16].

• Definition of the model: This corresponds to the results of this paper, where we defined
the TERS-ER architecture.

• Consolidation of the ES dataset for the cold start: Replicating the experiment on a
larger scale and in a controlled environment to consolidate a large ES dataset with
better performance indicators in emotional detection from HR data.

• TERS-ER production: users in the context of their daily life, months or weeks
before planning their TE, use low-cost wearable devices (Xiaomi mi band) and the
application (TE recommender) on their smartphone to collect in this period the HR
data. Subsequently, the HR data collected from the user will be labeled with the
emotions according to the ES dataset, and the remaining stages of the model are
applied to make the respective recommendation.

• Improvement of the TERS-ER: Defines the ability of the dataset to learn by itself
from the new instances generated by the production environment, using advanced
ML techniques such as, for instance, reinforcement learning or deep reinforcement
learning [19].
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CBF Content-Basic Filtering
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CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
ECG Electrocardiogram
EEG Electroencephalogram
ER Emotion Recognition
ES Emotional Slicing
FC Fully Connected
GSR Galvanic Skin Response
HR Heart Rate
HVHA High Valence High Arousal
HVLA High Valence Low Arousal
IBI Inter-Beat-Interval
IoT Internet of Things
KNN K-Nearest Neighbor
LSTM Long Short-Term Memory
LVHA Low Valence High Arousal
LVLA Low Valence Low Arousal
MAE Mean Absolute Error
MEB MyEmotionBand app
MFB Master For mi Band
MIC Multi-class Imbalanced Classification
ML Machine Learning
NLP Natural Language Processing
OntoTouTra Ontology for Tourist Traceability
OTA Online Travel Agency
POI Point of Interest
PPG Photoplethysmogram
RF Random Forest
RMSE Root Mean Square Error
RS Recommender System
SAM Self-Assessment Manikin
SMOTE Synthetic Minority Oversampling Technique
SPARQL SPARQL Protocol and RDF Query Language
SVM Support Vector Machine
TE Tourist Experiences
TERS Tourist Experiences Recommender System
TERS-ER Tourist Experiences Recommender System based on Emotion Recognition
TL TomekLinks
V Valence
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