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Abstract: Wireless networking using GHz or THz spectra has encouraged mobile service providers
to deploy small cells to improve link quality and cell capacity using mmWave backhaul links. As
green networking for less CO2 emission is mandatory to confront global climate change, we need
energy efficient network management for such denser small-cell heterogeneous networks (HetNets)
that already suffer from observable power consumption. We establish a dual-objective optimization
model that minimizes energy consumption by switching off unused small cells while maximizing
user throughput, which is a mixed integer linear problem (MILP). Recently, the deep reinforcement
learning (DRL) algorithm has been applied to many NP-hard problems of the wireless networking
field, such as radio resource allocation, association and power saving, which can induce a near-
optimal solution with fast inference time as an online solution. In this paper, we investigate the
feasibility of the DRL algorithm for a dual-objective problem, energy efficient routing and throughput
maximization, which has not been explored before. We propose a proximal policy (PPO)-based
multi-objective algorithm using the actor-critic model that is realized as an optimistic linear support
framework in which the PPO algorithm searches for feasible solutions iteratively. Experimental results
show that our algorithm can achieve throughput and energy savings comparable to the CPLEX.

Keywords: wireless heterogeneous network; energy saving; wireless backhaul mesh; deep
reinforcement learning

1. Introduction

Exponentially increasing mobile traffic accelerates the deployment of dense small
cells operating on the 3 GHz spectrum under legacy macro cells, called a heterogeneous
small cell network (HetNet), which offloads congested macro cells and eventually enhances
quality of user experience (QoE). User equipments (UEs) can have dual connectivity to the
macro eNB (MeNB) and small eNB (SeNB) for control/data bearer splitting or download
busting. Such SeNB deployment is costly when backhauling to a network gateway (a MeNB
in this paper). Millimeter-wave (mmWave)-based backhauling can reduce deployment
efforts and provide gigabit data rates to UEs using huge bandwidths, such as 9 and
10 GHz, available at the 60 GHz band and E-band. Many measurement campaigns and
demonstrations at 28, 38, 60 and 73 GHz have already shown the feasibility of mmWave
use for mobile communication [1–3].

To overcome the short communication range of the mmWave link due to its high
pathloss and low penetration, beam forming based on directional antennae and repeaters
for amplifying is necessarily considered. Figure 1 shows the HetNet equipped by a multi-
hop backhaul mesh network for long-range backhauling of the mmWave links, in which
an SeNB unreachable by the MeNB can access the Internet through multi-hop relays of
the SeNBs [4,5]. The mmWave-based backhaul mesh networks have several challenges,
such as efficient radio resource management (RRM) [5,6], interference management [7,8],
multi-hop routing [9], and energy saving [10].
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Figure 1. Heterogeneous cellular network architecture with mmWave backhaul mesh.

Due to increasing power consumption from excessively deployed SeNBs and mmWave
backhaul transmissions, various approaches to save energy in mobile networks have been
considered [11]; these include switching off small and macro cells [12–14] or adjusting cell
size dynamically [15,16], where users of switched-off SeNBs are supported by neighboring
SeNBs using remaining resources.

Especially for the HetNets with mmWave-based backhauls, Chen et al. [17] introduced
a user association and power allocation algorithm for energy harvesting and self-backhaul
SeNB to maximize energy efficiency. Additionally, Mesodiakaki et al. [18] studied an
energy- and spectrum-efficient user association problem considering mmWave backhauls.
Hao et al. [19] investigated the energy-efficient resource allocation in two-tier massive
multiple-input multiple-output (mMIMO) HetNets with wireless backhauls.

Most previous works focus on radio resource allocation to increase spectral and
energy efficiency in the HetNets. However, in the mmWave backhaul mesh, a multi-
hop routing mechanism determines energy saving, as SeNBs need to be switched on
for relaying regardless of the presence of associated users. We establish a fluid model
of user traffic in the mmWave-based backhaul mesh and solve the joint optimization
problem that minimizes energy consumption while guaranteeing the demanded data rate
of each UE [9]. This problem can be formulated in a non-convex mixed integer linear
problem (MILP), known as a NP-hard. When we used the branch-and-cut algorithm of
CPLEX to find an optimum in a given HetNet topology, it consumed more than 30 min
of calculation time, which is infeasible, as the HetNet topology changed dynamically due
to UE mobility. For the online algorithm, previous works [17–19] considered heuristic or
iterative algorithms, which cannot be guaranteed to find a near optimal solution or can
suffer from convergence delays. In this study, we consider a deep reinforcement learning
(DRL) algorithm to find a feasible solution of the MILP problem in real time.

Reinforcement learning (RL) [20] has received much attention for dynamic systems,
which can provide a long-term solution considering future rewards. Furthermore, the deep
learning technique has recently been applied to overcome the curse of dimensionality
as the size of the Markov decision process (MDP) increases in terms of state and action
space [21–25]. RL based on a deep neural network (DNN) can provide a feasible online
solution; feed-forward computation is simple for inference compared to backward com-
putation for training. Thus, many researchers now consider the DRL algorithm to solve
NP-hard problems of the wireless communication and networking field.

Recently, many studies about applying DRL to wireless communication problems
have been introduced, as in the related work section. Several works [26–37] used DRL to
allocate radio resources, transmission power and channels to increase spectral efficiency;
additionally, multiple access schemes were also exploited by DRL in [38–41]. For energy
saving, several studies developed a DRL algorithm for an energy-efficient multi-hop rout-
ing protocol or peer-to-peer connectivity in the ad hoc networks of satellites or UAVs [42,43],
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where individual mobile agents learn an optimal policy to maintain connectivity while
saving limited power. [44–46] introduced energy-saving mechanisms using DRL, wherein
an agent controls the transmission power, association and sleep mode of SeNBs in a HetNet
without multi-hop backhauls. To the best of our knowledge, this is the first work that in-
vestigates DRL to find the Pareto front of a multi-objective optimization problem of energy
saving and throughput maximization in the HetNet with an mmWave-based multi-hop
backhaul mesh.

Key motivations of this study are enumerated as below:

• There has not been notable research on an energy efficient multi-hop routing algorithm
using DRL for an mmWave backhaul mesh of a dense HetNet;

• The DRL-based algorithm can be considered to find a Pareto front solution for the dual-
objective optimization of energy saving and throughput maximization in the HetNet.

To solve our optimization problem, we adopt a proximal policy optimization (PPO)-
based DRL algorithm [24] which shows typically fast and reliable convergence in the
training phase as one of popular policy-based DRL algorithms. The PPO algorithm can
provide an online policy for controlling backhaul transmission and SeNB power in HetNets,
and it is simple to implement but comparable with the complicated trust region policy
optimization (TRPO) [23] in terms of performance. However, it is a challenge for the PPO
algorithm to find an optimum of the multi-objective problem if only the reward sum of
conflicting multi-objectives is given to an agent for training. Therefore, we consider a multi-
objective reinforcement learning (MORL) approach [47] to find the Pareto front solutions.

Optimistic linear support (OLS) is proposed for the MORL [48], in which an outer
loop iteratively calls a single-objective solver based on the deep Q-network as a subroutine.
In this paper, we propose PPO-based deep optimistic linear support (PDOLS), where the
PPO algorithm iteratively solves the scalarized objective problem by a specific weight vector
for rewards. In experiments, the proposed PDOLS searched optimal corner weights for
multi-objectives efficiently and resulted in similar outcomes to the optimal weights obtained
through repeated experiments. Additionally, the PDOLS achieved notable throughput and
energy saving compared to the CPLEX results [9]; the CPLEX achieves a 35% energy savings
and a 14 Mbps data rate without blockage, while the PDOLS achieves an almost 28% energy
savings and a 13.4 Mbps data rate. Such performance reduction is small, considering the
CPLEX execution time and DRL inference time are 30 min vs. 1 s. Furthermore, we improve
the PDOLS with a scaled reward (PDOLS-SR) that adjusts the reward values according to
the environment, which increases the probability of finding the optimal weight vector.

We highlight our key contributions of this study as below:

• We propose a PPO-based online algorithm for the bi-objective problem of energy
minimization and throughput maximization;

• We propose an integrated framework based on the PPO algorithm and OLS to find
the Pareto front of the two objectives;

• We demonstrate the feasibility of the proposed online solution based on DRL in a
HetNet environment.

The remainder of the paper is organized as follows. We introduce recent works on
DRL for wireless networking solutions in Section 2, and offer an overview of the DRL
background in Section 3. In Section 4, we establish the multi-objective optimization model
for energy saving and throughput maximization in HetNets. We propose the PPO and
PDOLS algorithm for the multi-objective optimization problem in Section 5. Section 6
shows our experimental results regarding performance of the learning algorithm and
HetNet throughput. Finally, we discuss and conclude our study in Section 7.

2. Related Works

Previously, most of the NP problems in the wireless communication and networking
area were solved by linear approximation or heuristic algorithms, such as simulated anneal-
ing (SA), generic algorithm (GA), particle swarm optimization (PSO), etc. Recent successes
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of the DNN technique in computer vision and speech recognition show the possibility
of applying large-scale feed-forward neural networks to wireless networking. Therefore,
the 1D or 2D convolution neural network (CNN) that is popular for computer vision and
image processing was used for wireless channel estimation with MIMO [49–51], automatic
modulation and coding schemes [52–54] and network intrusion detection [55–58].

In contrast to the above supervised deep learning, artificial intelligence for controlling
dynamics of the wireless networking system needs to be made naturally by past experience
in the system. Such dynamic systems can be modelled by the MDP; at each step, a network
agent acts based on the state and receives reward feedback for the action, such as successful
transmission, packet loss, collision, saving power, etc. Using the collected experience data,
the DRL algorithm can effectively find an optimal solution of the wireless networking
system. The following studies have demonstrated feasibility of using DRL algorithms
for wireless communication and networking during the last several years (refer to the
summary in Table 1).

Table 1. DRL-empowered wireless communication and networking research.

References Areas of DRL Studies on Wireless Communications

[26–32]
Cognitive radio and dynamic wireless channel selection increase spectral efficiency, which is typically a
combinatoric problem of matching channels to nodes. Using DRL, agents can learn the optimal policy from the
degree of interference as a reward for every action of channel selection.

[38–41]
The wireless link layer provides a media access scheme for multiple users which is realized in a MAC protocol.
Several studies design the wireless MAC protocol based on the DRL algorithm, in which DRL agents learn an
optimal transmission policy from the reward of contention resolution at a particular channel state.

[59–61] A user association or handover algorithm for a serving base station affects throughput and QoS of each user.
The DRL algorithm enables UEs to select an optimal base station based on past experience.

[33–37]

Wireless networks have various resources to be scheduled, such as radio block, channels, sequence codes,
power, time slots, etc. Many of the scheduling problems have non-convex feasible set and user mobility, which
makes the problems intractable. The DRL agents learn an optimal scheduling policy repeatedly from resource
utilization against a chosen allocation.

[42–44,62,63]
Energy and power consumption is critical, especially for green wireless networking, mobile edge cloud
networks and UAV networks. The DRL algorithm explores possible policies based on the reward of energy
saving while guaranteeing throughput constraint.

Wang et al. [26] proposed a dynamic multi-channel access mechanism based on deep
Q-learning. A node selects one multi-channel that has low interference, which returns the
maximum reward for the action. Zhong et al. [27,28] used the actor-critic algorithm to
explore the sensing policy for dynamic channel access and considered a multi-agent model
for distributed sensors in a partially observable environment. Naparstek et al. [29,30] also
proposed DQN-based multi-agents which act based on Q-value independently. Li et al. [31]
applied the DQN for channel sensing, and Liu et al. [32] proposed a hierarchical deep
Q-network (h-DQN) model for cooperative channel sensing, which divides the original
problem into separate sub-problems for multi-DRL agents.

Ali et al. [38] introduced a Q-learning-based MAC protocol in dense WLANs which
learns the optimal policy based on channel state and transmission action experience.
Yu et al. [39] investigated a DRL-based MAC protocol for heterogeneous wireless network-
ing which was called deep-reinforcement learning multiple access (DLMA). They estab-
lished a new multi-dimensional RL framework based on the Q-learning that maximizes
sum throughput and provides proportional fairness, even co-existing with TDMA-like
ALOHA protocols. Al et al. [40] studied radio resource scheduling (RRS) in the cellu-
lar MAC layer using the DQN. Nisioti et al. [41] presented a MAC solution for sensor
networks based on coordinated reinforcement learning by considering the dependencies
among sensors to find the optimal actions.



Sensors 2021, 21, 7925 5 of 25

Zhao et al. [59] studied user association and radio resource allocation in a HetNet.
For a large action space, they considered a multi-agent RL approach and a dueling double
deep Q-network (D3QN) to obtain an optimal policy with little computation complexity.
Zhang et al. [60] proposed a DRL algorithm for the association between each IoT device and
a cellular user to maximize the sum rate of all the IoT devices in symbiotic radio networks
(SRNs). Ding et al. [61] introduced the user association and power control scheme using
the multi-agent DQN to ensure the UE’s quality of service (QoS) requirements.

He et al. [33] proposed an orchestration framework in vehicular networks with a
novel DRL algorithm for the resource allocation of networking, caching and computing
resources. Shi et al. [34] modelled a hierarchical DRL-based multi-DC (drone cell) trajectory
planning and resource allocation scheme for high-mobility users. In [35,36], the authors
also conducted resource allocation for uplink nonorthogonal multiple access (NOMA)
systems using a DRL-based algorithm to solve the nonconvex optimization problem.
Rahimi et al. [37] also tried to increase scalability with a hierarchical DRL for joint user
association and resource allocation in the NOMA system.

Liu et al. [43] introduced a novel DRL-based energy-efficient routing protocol called
DRL-ER, which avoids the battery energy imbalance of constellations and guarantees a
required end-to-end delay bound. Liu et al. [42] adopted a DRL-based energy-efficient
control for coverage and connectivity in UAV communication systems. Du et al. [62]
reviewed and analyzed how to achieve green DRL for radio resource management (RRM).
Dai et al. [63] utilized DRL to design an optimal computation offloading and resource
allocation strategy for minimizing energy consumption. El et al. [44] solved the energy-
delay-trade-off (EDT) problem in a HetNet where small cells can switch to different sleep
mode levels to save energy while maintaining QoS using the DRL.

To the best of our knowledge, our study is first to develop a PPO-based multi-
objective algorithm that controls multi-hop routing and switching on/off SeNBs in Het-
Nets, even though many previous works have applied the DRL algorithm for other
optimization problems.

3. Deep Reinforcement Learning (DRL)

This section provides a brief overview of reinforcement learning (RL) and DRL. RL
is a popular machine learning algorithm which allows agents to learn optimal behavior
through trial-and-error interactions with a dynamic environment. A key strategy of the
RL is utilizing statistics to obtain an optimal control decision (policy) in the form of the
MDP. The MDP is modelled by (S, A, Pa

ss, Ra), wherein the state space is represented by S,
the action space is represented by A, the state transition probability is Pss′ at a taken action
a and a corresponding reward R, and in which the policy as a function π(s) specifies an
action a in each state s. Therefore, an optimal policy, π∗, maximizes the expected reward for
future T steps, E[∑T

t=0 γtrt], where γ is a discount factor (0 ≤ γ < 1) for the infinite-horizon
discounted model.

For effective agent learning, the estimation of a state-value function for a state s

is critical; Vπ(s) = Eπ

[
∞

∑
k=0

γtR(st+k+1)

∣∣∣∣St = s

]
at a time step t. Additionally, suppose

that a certain action, a, is taken in the state s; then, an action-value Q-function can be

defined as qπ(s, a) = Eπ

[
∞

∑
k=0

γtRa(st+k+1)

∣∣∣∣St = s, At = a

]
. According to the Bellman

optimality equation, the optimal value function, V∗(s), can be decomposed recursively as
V∗(s) = maxa E[Rt+1 + γV∗(st+1)|St = s, At = a], which tells us that the expected return
from the best action is the same as the state value of an optimal policy.

3.1. Deep Q-Learning

As the state and action spaces become larger and continuous, function approximation
is mandatory for Q-learning instead of using a legacy tabular form of actions and Q-values.
Although the combination of RL and neural networks was considered a long time ago,
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it is only very recently that DRL algorithms based on deep neural networks (DNNs) has
received much attention instead of the linear function approximation [20,64]. DNNs repre-
sent a function with higher complexity by employing a deep hierarchical layer architecture
that constitutes a non-linear information processing unit. Deep learning approximates such
a mapping function for statistical curve fitting with labeled training datasets.

The DRL utilizes the training process of the DNN based on datasets which can improve
learning speed and performance without the MDP model information (the R and Pss′ are
unknown). The DRL induces a policy based on a value function, Vπ(s), approximated by
the DNN, which is trained using the batch of samples (S, A, R, S′) that an agent collects
by interacting with the environment. In a sequence of discrete time, {t = 0, 1, 2, . . .},
the agent selects an ε-greedy action for the maximum reward given by Vπ(s); the ε provides
randomness to explore and avoid the local minimum.

Mnih et al. introduced the deep Q-network (DQN) in [22], which is a seminal work
for Q-function approximation based on DNNs. In particular, they addressed and solved
two challenges in the DRL; first, the deep learning assumes that the data samples are
iid (independent identically distributed), but actually the next state, s′, is correlated with
the current state, s, in the MDP. Second, the target model for training is non-stationary,
as the model parameters θ are updated at every iteration. For this, the DQN adopts an
experience-replay buffer for the training and separation of the main and target networks.
The DQN updates θ of the main network by minimizing temporal-difference errors, L(θ) =
Yt−Q(st, at; θ) , where Yt = rt +γ ·maxa′ Q̂(st+1, a′; θ−) and the state-action value function,
Q(s, a; θ) are given by the target and main network, respectively. The target network is
periodically updated by the main network.

3.2. Policy Gradient and Actor-Critic

The DQN is limited to high dimensional and continuous action spaces that demand
iterative optimization processes at every step. Additionally, discretizing the continuous
action values cannot avoid the curse of dimensionality due to a large number of actions, or,
probably, loses important information of the action space from quantization.

Therefore, the policy gradient (PG) algorithm is used mostly for high dimensional and
continuous actions [65,66], which adjusts the model parameter, θ, of a policy function in
the direction of the stochastic policy gradient (SPG), ∇θ J(πθ).

∇θ J(πθ) =
∫

S
ρπ(s)

∫
A
∇θπθ(a|s)Qπ(s, a) dads

= Es∼ρπ ,a ∼πθ
[∇θπθ(a|s)Qπ(s, a)] (1)

The PG algorithm [21] can be implemented by the actor-critic architecture, in which
the actor stochastically updates the θ of the policy function while the critic evaluates the
policy and updates the action-value function approximator, Qw(s, a), in such a direction as
to minimize error, ε2(w) = Es∼ρπ ,a ∼πθ

[(Qw(s, a)−Qπ(s, a))2]. As the dimension of action
spaces increases, deterministic policy gradient (DPG) as a special case of the SPG is efficient
to derive only the mean of the state spaces compared to the SPG, limσ↓0∇θ J(πµθ ,σ) =
∇θ J(µθ).

4. System Model

In this section, we establish a mathematical system model of the HetNet with a
mmWave backhaul mesh among SeNBs and MeNBs in which energy consumption and
user traffic for the mmWave backhaul links and access links are formulated. In this model,
we present dual objectives to minimize the energy while maximizing the user throughput.
The symbols used in this model are described in Table 2.
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Table 2. Parameters (P) and variables (V) used in the model.

Symbol Description

BRB Bandwidth for a RB P
cij Maximum capacity of link (i,j) P

Cmax
i

Maximum AN capacity of
eNB i P

ei
Total energy consumption at

node i V

f u
ij Flow of UE u on link (i,j) V

xu
ij Indicator if UE u uses link (i,j) V
I Set of interference links P
L Set of links P
LAN Set of AN links P
LBH Set of BH links P
N Set of eNB P
M Set of Macro eNB (MeNB) P
S Set of Small eNB (SeNB) P
U Set of UE P

Naiu

Number of antennas (MIMO)
for UE u at eNB i P

NRBi Number of RBs at node i P
P0i Static power at node i P
Ru User demand data rate u V

4.1. Energy Consumption Model

The energy consumption of eNB i is composed of two folds: energy consumption from
access links toward UEs and backhaul links toward other eNBs,

ei = eAN
i + eBN

i , (2)

where energy consumption in the access network (AN) and backhaul network (BN) are
eAN

i and eBN
i , respectively.

4.1.1. AN Energy Consumption

According to the linear approximation [67] between relative RF output power and the
power consumption of an eNB, energy consumption for the access links can be derived as

eAN
i =PAN

0i
+ ∆p · PAN

outi
∀i ∈ N (3)

where ∆p is a multiplier for load-dependent power consumption, which is different from
the type of antenna (refer to Table 3) [67].

PAN
outi

= PAN
maxi
· FAN

i = PAN
maxi
· (4)

1
NRBi

∑
u∈U

⌈
f u
iuxu

iu
NAN

aiu
· BRB · log2(1 + SINRiu)

⌉

where the SINR is the signal-to-noise and interference ratio, PAN
outi

is the power consumption
of the transceiver for the access links for all associated UEs, and 0 < PAN

outi
≤ PAN

maxi
. PAN

maxi
is

the maximum transmission power for the AN transceiver at the eNB i. The PAN
outi

can be
scaled by the aggregated flow rate FAN

i against the link capacity, which is the same as the
ratio of radio resource blocks (RB) used by all associated UEs to the total available RBs
(NRBi ); the number of used RBs can be calculated by dividing the sum of user data rate by
the rate of a single RB (bandwidth BRB Hz). NAN

aiu
is the number of antenna for MIMO and

f u
iu is the data rate for each UE. xu

iu is an integer value {0, 1} to indicate the UE association
with the eNB i.



Sensors 2021, 21, 7925 8 of 25

Table 3. Parameters used for evaluation.

MeNB-AN SeNB-AN BH Link

Frequency band (GHz) 2 2.6 60

Available BW (MHz) 20 (BWPRB= 0.18 ) 20 (BWPRB= 0.18 ) 1000 (10 × 100 MHz)

Antenna gain (dBi) (GTx, GRx) <15 <15 36

NAN
anti

4 (MIMO 4 × 4) 4 (MIMO 4 × 4) 1 for each active BH link

P0i (W) 130 6.8 3.9

Pout
MAX (W) 20 0.13 0.224

∆p 4.7 4.0 not used

Distance-dep. Path Loss 128.1 + 37.6 · log10(r) [68] 140.7 + 36.7 · log10(r) [68] Equations (6)–(11) in [69]

As shown in Equation (3), the eNB has a statically minimum non-zero output power of
the transceiver, PAN

0i
, although there is no associated UE. Accordingly, switching off unused

eNBs is critical to save energy. Table 3 shows experimental values for the aforementioned
parameters in this study, such as PAN

maxi
and PAN

0i
.

4.1.2. BN Energy Consumption

The energy consumption of a BH link can be formulated similarly to the AN link:
(i) static power (PBH

0i
) of a transceiver for each backhaul link toward a next-hop eNB j,

and (ii) dynamic power by the amount of aggregated user data rate that travels over
that link:

eBH
ij = PBH

0i
+ P

BHj
outi

(5)

where PBH
0i

represents the minimum non-zero static power of each BH transceiver at eNB i.
The dynamic power PBH

outi
of a mmWave backhaul link is derived by the multiplication

of the band-wide transmission power P
BHj
ti

and bandwidth efficiency, as below:

P
BHj
outi

= P
BHj
ti
· FBHj

i = P
BHj
ti
·

∑
u∈U

f u
ij xu

ij

Bmax
ij

(6)

where Bmax
ij is the maximum data rate for a backhaul link ij. The integer value xu

ij indicates
routing information if a data flow of a user u uses the backhaul link ij or not.

P
BHj
ti

= SNR + Nth + NF + PL + Lt

+Lr − Gt − Gr + Lm, (7)

where SNR is the signal-to-noise ratio satisfying Bmax
ij , Nth stands for the thermal noise,

NF stands for the noise figure and PL represents the free-space path loss. The parameters
Lt and Lr represent the transmitter and receiver losses, respectively, while Gt and Gr are
the transmitter/receiver antenna gains and Lm is the link margin.

The maximum transmitted power of a transceiver operating at frequency fBH may be
given by

Pmaxi,BH (dBm) = EIRPmax(dBm) + Txloss (dB) − GTx(dBi), (8)

where EIRPmax denotes the maximum equivalent isotropically radiated power, and PBH
maxi

is configured as 224 mW according to specifications in [70], as shown in Table 3.
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Total energy consumption of the BN is the sum of the energy consumption of the
available backhaul links, as below.

eBN
i = ∑

j∈N
eBH

ij (9)

As a consequence, the energy consumption of each eNB depends on user data flows
and the static power consumption. Control message unicast or broadcast in the cell can
consume extra energy in addition to the user traffic. In this study, we ignore energy
consumption from the control overhead that is relatively less than the bearer. In the
following section, therefore, we define several constraints to switch on or off the SeNBs
based on the presence of the data flows.

4.2. Switch On and Off Model

We introduce two binary variables, sAN
i and sBN

i , that indicate whether the AN link
and the BH link, respectively, is powered on or off at node i; that is:

sAN
i =

{
1 when AN at i is powered on, ∀i ∈ N
0 when AN at i is powered off, ∀i ∈ N

(10)

sBN
i =

{
1 when all BH at i are powered on, ∀i ∈ N
0 when all BH at i are powered off, ∀i ∈ N

(11)

The power status of the AN and BN, sAN
i and sBN

i , is decided by the use of access
or backhaul links. Accordingly, switch variables for AN and BN are configured by the
presence of data flows, as below:

sAN
i ≤ ∑

u∈U
f u
ij ∀i ∈ S , ∀(i, j) ∈ LAN i (12)

sBN
i ≤ ∑

u∈U
f u
ij ∀i ∈ S , ∀(i, j) ∈ LBH i (13)

For the multi-hop routing path of the user flows, a link (i, j) of power-off eNB i cannot
be used as xu

ij = 0:

∑
u∈U

xu
ij ≤ sAN

i · ς, ∀(i, j) ∈ LAN i

∑
u∈U

xu
ij ≤ sBN

i · ς, ∀(i, j) ∈ LBH i
(14)

where ς is a big number (i.e., 108).

4.3. Multi-Hop Routing Model

In this section, routing constraints are given for user data flows in the mmWave
backhaul mesh network. First, a user data flow should satisfy the flow conservation rule in
Equation (15). Second, a user data flow travels along a single path rather than multiple
paths in Equation (16); in this study, we only consider single connectivity rather than dual
connectivity. Third, an UE therefore has to associate with only one eNB in Equation (17).

∑
j∈N

f u
ij − ∑

j∈N
f u
ji =


Ru, if i = source
−Ru, if i = sink
0 otherwise

(15)

∀u ∈ U , ∀i ∈ N ,
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where Ru represents the demanded data rate of each UE u.

∑
j∈N

xu
ij − ∑

j∈N
xu

ji =


1, if i = source
−1, if i = sink
0 otherwise

(16)

∀u ∈ U , ∀i ∈ N ,

where xu
ij = {0, 1} indicates the routing information of a user data flow, f u.

∑
(iu)∈LAN

xu
iu = 1, ∀u ∈ U (17)

4.4. Link Capacity and Scheduling Model

For capacity constraint, the data rate of each user flow and aggregated flows must
be less than the access and backhaul link capacity. For instance, when more than one UE
connects to the same eNB, they have to share the capacity on that access link.

Therefore, the AN capacity constraint is given as follows:

∑
u∈U

∑
(i,u)∈LAN

f u
iu ≤ Cmax

i , ∀i ∈ N , (18)

where Cmax
i is the maximum capacity of eNB i as the access link capacity.

Additionally, the sum of the user flows on a given BH link is limited by the maximum
capacity of the BH link:

∑
u∈U

f u
ij ≤ cij, ∀(i, j) ∈ LBH (19)

where LBH represents a set of BH links.
In the mmWave backhaul mesh network, we have to schedule transmissions among

all links in the set of interference links, (i, j) ∈ I . For duplex, first we adopt time division
duplex (TDD), which is used to separate transmission and reception on a BH link (i.e.,
different time slots are assigned for the transmission from eNB i to j and for the transmis-
sion from eNB j to i). Similarly, time division multiplexing (TDM) is used to schedule
transmissions among adjacent BH links. The following constraint ensures that the capacity
of each BH link is shared among adjacent interferenced BH links:

∑
u∈U

 f u
ij xij

bij
+ ∑

(kl)∈I((ij))

f u
kl xkl

bkl

 ≤ 1, ∀i and j ∈ N (20)

The flow rate on the link (i, j) can increase at the given link capacity as the interference
is reduced by switching off SeNBs with the interfering BH links (i, j) ∈ I .

4.5. Dual Objective Function

In this study, we have dual objectives, which are minimizing the total energy con-
sumption of the HetNets while maximizing the sum of data rate Ru of each user u with the
aforementioned constraints:

min ω1 ∑
i∈N

ei −ω2 ∑
u∈U

Ru (21)

s.t. Equations (2)− (20)

where {ω1, ω2} is a scaling vector that is used to impose weight for each objective; ω1 and
ω2 are for energy consumption and throughput, respectively.
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5. Deep Multi-Objective Reinforcement Learning in mmWave HetNet

In this section, we solve the optimization problem in Equation (21), which is not only
non-convex, but contains dual objectives that are conflicting to each other. We introduce
the PPO and PDOLS algorithms to effectively search for efficient solutions in the Pareto
front of the dual objectives.

5.1. Proximal Policy Optimization

The TRPO is a stochastic policy-based optimization technique that can guarantee up-
dates in the direction of increasing performance within a trust region. Schulman et al. [23]
proposed a new policy optimization algorithm following the TRPO, called the PPO algo-
rithm [24]. After then, several algorithms such as TD3 [71] and soft actor critic (SAC) [25]
have been proposed, but the PPO is still a popular algorithm with some advantages of
the TRPO. The PPO is easy to implement, using only first-order optimization, and is
able to solve the data efficiency problem while achieving a similar performance as the
complicated TRPO.

In the TRPO, updates are conducted by a policy that maximizes the objective function
(“surrogate” objective) within a specific constraint as below,

max
θ

Et

[
πθ(at|st)

πθold(at|st)
At

]
(22)

subject to Et
[
KL[πθold(·|st), πθ(·|st)]

]
≤ δ (23)

By applying the Kullback–Leibler divergence (KL) constraint between the old policy
πθold(at|st) and the current policy πθ(at|st) in Equation (23), the TRPO can provide mono-
tonical improvement to the πθ(at|st) at each iteration and prevent excessive updates by
limiting the range δ. However, it demands intensive computation for a rough solution
that is infeasible to analyze. Instead, the constraint is relaxed by penalty with coefficient β
in Equation (24), in which the surrogate objective forms a lower bound to guarantee the
performance of the policy π.

max
θ

Et

[
πθ(at|st)

πθold(at|st)
At − β KL[πθold(·|st), πθ(·|st)]

]
(24)

However, it is difficult to choose a constant value of β that performs well across
various problems. For this, a new surrogate object function of the PPO is proposed to
emulate monotonous improvement of the TRPO. The new surrogate objective function is
presented in Equation (25),

L(θ) = Et

[
min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)

]
(25)

Using the clip function, the PPO enables the surrogate objective function to avoid
excessive policy updates while achieving similar performance to the TRPO. In addition,
the PPO collects fixed-length T trajectory segments as a mini-batch and performs learning
based on them repeatedly, which increases sample efficiency and learning stability.

For calculating At, a truncated version of generalized advantage estimation (GAE)
is used,

Ât = δt + (γλ)δt+1 + · · ·+ · · ·+ (γλ)T−t+1δT−1, (26)

δt = rt + γV(st+1)−V(st). (27)

Due to the high sample complexity (i.e., the number of training samples required for
successfully learning) of our HetNet model that probably increases the number of necessary
samples and their variance, we apply the truncated version of GAE, which provides stable
and steady learning in the PPO algorithm [72]. GAE can enable monotonous increments in
reward by reducing the sample variance through discount vector γ and λ like the TD(λ).
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5.2. MDP of mmWave-Backhaul HetNets

In this section, we define a MDP model (S, A, Ra, Pa
ss) for our multi-objective optimiza-

tion problem in the HetNets.

• State S: the state in the HetNet MDP is denoted by a traffic matrix that represents
traffic load ve = [0, 1] at access and backhaul links, which eventually determines
throughput and energy consumption. In particular, we define a single representative
state for all access links of a certain eNB instead of the individual state to reduce state
information, since the AN energy consumption from transmission power, PAN

outi
, is

calculated by aggregated RBs of all associated users as shown in Equation (4). Accord-
ingly, the vector size of the state space is |LBH|+ |N |. We define the environment
state, st = {v1, v2, . . . , v|LBH |, v|LBH |+1, . . . , v|LBH |+|N |}, with ve, as below:

ve =
1
cij

∑
u∈U

f u
ij , (i, j) ∈ LBH, e = [1, |LBH|] (28)

=
1

Cmax
i

∑
u∈U

f u
ij , (i, j) ∈ LAN , e = [|LBH|+ 1, |LBH|+ |N |] (29)

where the index e of each link (i, j) is given by the environment at the beginning of
the learning phase;

• Action A: the agent action is routing and association of user flows, which actually
decides a set of xij binary variables, as discussed in Equations (16) and (17). However,
such discrete action space grows exponentially by the number of the links, in which
convergence of the learning algorithm is rarely guaranteed and large memory is
required for computation. Instead, we consider a weight matrix (at ∈ R|L|) of all
links for all user flows, with which each flow finds a path using a link-state routing
algorithm (e.g., the Dijikstra algorithm). Accordingly, the space complexity decreases
from O(2|L|) to O(|L|). All actions for the links can be defined as below:

at = {wij|wij ∈ R, (i, j) ∈ L} (30)

Unfortunately, such a shortest path algorithm leads most of users to select a MeNB’s
AN link as a single-hop path; cumulative weights along a multi-hop path are mostly
higher than for a single hop. This prevents the DRL algorithm from exploring actions
of multi-hop routing that may offer reward gain by increasing user throughput,
∑u∈U Ru, more than the cost of energy consumption,∑i∈N ei.
Therefore, we limit the number of user flows for the MeNB in the routing algo-
rithm that admits the user flows to the MeNB only if the MeNB has available RBs,
∑ f u

ij ≤ Cmax
i , i ∈ M, j ∈ U . Otherwise, users find multi-hop paths through SeNBs in

the algorithm;
• Reward R: the reward is given by the objective function of Equation (21). Thus, we

change the minimization objective to maximization by multiplying Equation (21) by
−1. For normalization, the sum rate of all UE flows and corresponding eNB energy
consumption are divided by the sum of the maximum data rate and maximum energy
consumption. Subsequently, the reward can be written in Equation (31) as

rt = −ω1 · re + ω2 · rd, (31)

where re and rd represent ∑i∈N
ei

emax
and 1

|N| ·∑u∈U
Ru

du
, respectively.

5.3. PPO-Based DRL for HetNet Optimization

The aforementioned MDP model of our HetNet optimization has continuous state and
action spaces; thus, the PPO can effectively perform the exploration of solutions without
the excessive updates in Equation (25). We implement the PPO-based DRL algorithm in
Algorithm 1, which is based on the actor-critic architecture.
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Algorithm 1 Proposed PPO Solution for mmWave HetNet

Input:

πθ , Vφ, {ω1, ω2}, Env

Instruction:

1: for iteration=1,2, ...., do

2: for iteration=1,2, ...., T do

3: for iteration=1,2, ...., |LBH |+ |N | do

4: st = st ∪ ve

5: end for

6: at = πθold(st)

7: [rt
e, rt

d], st+1 = Env(at)

8: rt = −ω1 · re + ω2 · rd

9: M = M ∪ {st, at, rt, st+1}
10: Ât = compute advantage estimate from Equation (26)

11: end for

12: for iteration=1,2, ...., K do

13: update πθ using Equation (32)

14: update Vφ using Equation (33)

15: end for

16: θold = θ, φold = φ

17: Drop M

18: end for

In the input of Algorithm 1, the actor network πθ parametrized by θ provides a policy
(at) according to the environmental state (st). Meanwhile the critic network presents the
reward value (Vφ(st)), which is parametrized by φ. At the beginning, the PPO collects
total T trajectory tuples (S, A, R, S′) (line 2–11), and subsequently, πθ and Vφ are trained
multiple K times with the T collected tuples (line 12–15). The parameters of πθ and Vφ(st)
are updated by Equations (32) and (33).

θ = arg max
θ

Et[L(At, θold)] (32)

where L(At, θold) is derived by Equation (25) at the given old parameter θold.

φ = SmoothL1(|Vφ(st)− V̂t
GAE(γ,λ)|) (33)

where the V̂t
GAE(γ,λ)

is a target value derived by Equation (26); that is, V̂t
GAE(γ,λ)

=
Vφold(st) + Ât.

Since we implement both an actor network and a critic network, πθ and Vφ(st) using
multi-layer perceptrons(MLP), in the gradient update process, backward propagation is
conducted; in this paper, we adopt SmoothL1 as an optimizer among Adagrad, Adam,
SmoothL1, etc. Although the surrogate objective function of the PPO in Equation (25) is
applied only to πθ , Vφ(st) is affected interactively within the actor-critic loop.Thereby,
both policy and value can avoid excessive updates. The update process of the algorithm
continues until the reward increases and converges to a certain level.
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5.4. Multi-Objective Deep Reinforcement Learning

The PPO-based DRL algorithm can suffer from finding Pareto fronts in the multi-
objective MDP (MOMDP) problem since it just learns a policy with a scalarized single
objective which is unclear to evaluate each contribution of different objectives. As the
reward of the MOMDP is a vector of n rewards of multi-objectives, R(st, at) = rt ∈ Rn [47],
for the reward scalarization, simple linearization such as F (Vπ , ω) = ω ·Vπ can be used
(i.e., convex combination of the policy values, Vπ), where Vπ is a value vector for a policy,
π, and ω is a weight vector for the importance of the objectives [48].

Therefore, we propose the PDOLS algorithm to find an optimal solution for the
MOMDP problem. Figure 2 depicts how the PPO and the OLS cooperate for the multi-
objective HetNet problem. The OLS part provides a framework of the outer loop to handle
possible weight vectors, while the PPO part provides actor-critic networks to update
the policy and value. The outer loop incrementally constructs the convex coverage set
(CCS) that is an intermediate approximated coverage set, S, by solving a series of single-
objective MDPs scalarized by possible weight vectors, which eventually contains at least
one optimal policy.

To reduce training efforts for all cases of weight vectors, the OLS manages corner
weights that indicate break points in the piecewise linear CCS as a lower bound in addition
to the S. Thus, the OLS selects the weight vector for training only among the corner
weights. When a new corner weight, ω′, is discovered from the PPO learning, that is,
∃v,F (Vπ , ω′) > v, v ∈ VS(ω) = {w ·Vπ |Vπ ∈ S}, all scalarized values below F (Vπ , ω′)
are removed from S. Afterwards, the OLS selects the next corner weight in a priority queue
for learning, as shown in Figure 2. The detailed procedures of the PDOLS are described in
Algorithm 2.

Environment

Action

Actor New	state

Memory	
(𝑠, 𝑎, [𝑟!, 𝑟"], 𝑠’	)

.

.

.

.

.
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. . . .

. . . .

. . . .
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𝑁𝑒𝑤	𝑉'	[𝑣1 , 𝑣"]	

OLSPPO

Figure 2. System architecture of the PPO-based deep OLS learning in mmWave HetNet.

The discovered corner weight ω1 and ω2 of energy consumption and throughput
is used back for the PPO-based DRL to find a new lower bound of Vπ and its π in the
Algorithm 2 (line 5–18). At that time, the reward value re and rd of energy consumption
and throughput can affect the creation of a set of V∗S (ω). For instance, a new corner weight
to be used for further learning and finding a new Vπ is rarely found if the reward gap
between two objectives is large. Therefore, we scale down the reward value instead of the
original value from environment in order to increase the probability of finding the new
corner weights (line 10). Ât is calculated through Equation (26) and Ât ∈ A2 as rt ∈ R2

(line 12–13). To reflect the corner weight from the OLS in Ât, Ât is updated by multiplying
[At

e, At
d] and [ω1, ω2] (line 13). When the convergence is achieved in the PPO learning

process, the PPO sends a new Vt[ve, vd] to the OLS (line 18).
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Algorithm 2 PPO-Based Deep Optimistic Linear Support

1: Initialization:

2: S = partial CSS, which is composed of Vt obtained after the PPO learning.

3: W = corner weights, which is obtained from S.

4: Q = priority queue of weights for the multi-objective, where the weights form a tuple

along with their importance (i.e., ([ωt
1, ωt

2], I)).

Instruction:

5: ωt = Q.pop()

6: for iteration=1,2, ...., do

7: for iteration=1,2, ...., T do

8: at = πθold(st)

9: [rt
e, rt

d], st+1 = Env(at)

10: Reduce scaling of [rt
e, rt

d]

11: M = M ∪ {st, at, [rt
e, rt

d], st+1}
12: [At

e, At
d] = compute advantage estimate from Equation (26)

13: Ât = Ât ∪ {[At
e, At

d]× [ωt
1, ωt

2]}
14: end for

15: Optimize surrogate L and wrt θ from Ât, with K epochs

16: Optimize Vφ and wrt φ from V̂t
GAE(γ,λ)

, with K epochs

17: θold = θ, φold = φ

18: end for when convergence

19: Vt = Vφ(s)

20: W = W∪ωt

21: if ωt ·Vt > ∑U∈S ωt ·U then

22: S = remove obsolete Vdel due to new Vt

23: ωc = new corner weight from S
24: S = S∪Vt

25: Q = remove obsolete ωdel due to new ωc

26: for iteration=1,2, ...., ωc do

27: if estimate improvement of (ω′,W,S) > τ then

28: Q = Q∪ω′

29: end if

30: end for

31: end if

32: if Q is not empty then

33: go back to line 1

34: end if

The priority queue of the weights, Q, is initially configured with extreme weights
(i.e., [0, 1], [1, 0]) and updated whenever a new corner weight is found. The priority is
determined according to the distance between F (Vπ , ω′) of the new corner weight ω′ and
a line made by values of two adjacent corner weights on both sides of the new corner
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weight. In other words, the priority is proportional to the degree of convexity downward
in V∗S (ω).

The OLS removes obsolete Vdel and ωdel when creating a new V∗S (ω) (line 22, 25).
Depending on the improvement of the new corner weight, the OLS decides whether to add
it to the Q by comparing to a threshold τ (line 26–28). We set the τ to 0 to train aggressively
for all discovered corner weights to find optimal values. Finally, the PPO and OLS stop
processing if no new corner weight is found and Q is empty (line 32-33).

6. Experiment

In this section, we evaluate the performance in terms of energy saving and user
throughput, comparing algorithms proposed in the previous section. We establish an
experimental environment with 1 MeNB and 25 SeNBs that form a backhaul mesh network
as depicted in Figure 3, where the mmWave BH links (i.e., gray dashed lines in Figure 3)
connect the SeNBs to each other or to the MeNB for Internet access. There are only 4 SeNBs
reachable to the MeNB, which thus limits the sum rate of all data flows below the sum
of their BH link capacity. Therefore, we assume that each UE, u, demands a maximum
14 Mbps data rate (du) in this experiment with the 100 UEs and last mile 4 SeNBs since
those bottleneck BH links (i.e., the purple dot line in Figure 3) allow 14 Mbps per UE.
To support a greater UE data rate, we can increase the BH link bandwidth or place more
SeNBs reachable to the MeNB gateway.

A total of 100 UEs are randomly dropped over the MeNB and SeNB coverage area,
where the SeNBs are apart by 100 meters and their cell coverage is more than 80 meters.
Accordingly, the UEs have more than one SeNB to associate with, in addition to the univer-
sal MeNB, depending on their location. Both the MeNB and SeNBs provide microwave
link access, denoted by AN links in Figure 3. The access and BH link is configured as in
Table 3 for our experiment. In our study, the training and model update are performed
interactively with the network simulator environment based on parameters specified in
3GPP standard and related works [68,69].

We build actor-critic networks using a DNN with 2 hidden layers (64× 64 perceptrons)
of a fully-connected neural network to estimate the policy and value, respectively. The actor
network for policy receives the input of the state field and returns the action field as output
as defined in Section 5.2. On the other hand, the critic network for value is designed
differently according to the PPO and PDOLS algorithm. Both algorithms receive the same
input for the state field, but the PPO-based critic returns only one value, while the PDOLS-
based critic returns two values of the dual objectives. Detailed parameters for the DRL are
introduced in Table 4. For this experiment, we used the pyTorch library on a Linux 20.04
server equipped with Intel CPU i7-9700KF, GPU GeForce RTX 2080 and 32 GB RAM.

MeNB

SeNB

UE

MeNB coverage

SeNB coverage

Bottleneck

BH links

AN links

Figure 3. Experimental HetNet topology.
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Table 4. Training hyperparameters.

Parameter Value Parameter Value

γ 0.8 λ 0.8

Trajectory size 1024 Batch size 32

K epoch 10 Clipping range ε 0.2

Learning rate of actor 1 × 10−4 Learning rate of critic 1 × 10−4

Network initialization HE Optimization method SmoothL1

First, we evaluate the performance of the PPO-based DRL algorithm in the HetNet
environment in terms of learning speed and convergence. For this, we configure the
weight vector of energy consumption and data rate as ω1 = 0.5 and ω2 = 0.5, respectively,
and the UE demand rate as 14 Mbps. Figure 4a shows the performance with varying
learning rates from 1 × 10−5 to 3 × 10−4. The PPO algorithm shows good convergence of
reward as training iterations continue, regardless of learning rate. The reward increases
exponentially during the initial training iterations and becomes saturated after 40 K training
iterations. The higher learning rate accelerates the reward convergence, but it skips over
the better local minimum and is trapped in another; when the learning rate increases from
1 × 10−4 to 3 × 10−4, the converged reward decreases from 0.104 to 0.0899. The loss for
the value and policy can be seen in Figures 4b,c, respectively. The loss of value and policy
decreases drastically as the training iterations continue. Policy learning can avoid excessive
learning owing to clipping of the PPO, which leads the policy loss to be comparable
regardless of the learning rate. Additionally, the value loss follows the policy loss through
the actor-critic interactions.
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Figure 4. Performance evaluation of PPO according to learning rate. (a) Reward convergence.
(b) Value loss. (c) Policy loss.

Figure 5 shows evaluations on learning performance with varying reward weights
(ω1, ω2). For this experiment, we configure the learning rate as 1 × 10−4, which shows
the fastest convergence with the highest reward. In Figure 5a, rewards from energy
consumption and user throughput converge at 50 K training iterations with reward weight
(ω1 = 0.5, ω2 = 0.5).
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Figure 5. Performance evaluation of PPO according to reward weight (ω2 = 1−ω1). (a) Scalarized
reward. (b) Energy savings. (c) Average data rate per UE.

Figures 5b,c show that the energy saving (i.e., 1-consumed energy/maximum energy)
and mean data rate converge at different iterations according to the reward weight; the
reward convergence is achieved at an average of 80 K training iterations, about 21.5 min
on our server for each weight value. To find the optimal solutions, iterative learning for
all possible weight vectors is needed. Therefore, the computation delay depends on the
granularity of the weight values to explore; this experiment demands a total of 80 K ·
7 iterations.

System performance varies with ω1 of the energy consumption from 0.2 to 0.8 and ω2
of the UE’s data rate, 1−ω1. When ω1 is set to 0.8, the maximum energy saving is achieved
by 0.419, while the UE’s data rate is only 4.89 Mbps as a minimum value, because of their
trade-off relationship. Contrarily, the minimum energy saving, 0.134, allows the maximum
data rate, 13.7 Mbps, with ω1 = 0.2. Consequently, the optimal weight for maximum
reward is found to be ω1 = 0.6 and ω2 = 0.4, which results in an energy savings of 0.272
and a UE data rate of 13.39 Mbps.

Next, we evaluate the PDOLS algorithm to find the optimal value and weight in
a HetNet environment with a varying demand rate and number of UEs. In Figure 6a,
the mean data rate satisfies most of all demand rates except for 14 Mbps: 6, 8, 10, 12,
and 13.39 Mbps. The energy savings of the HetNet is inversely proportional to the demand
rate: 0.42, 0.37, 0.31, 0.30, and 0.23. For these values, the ω1 of the optimal weight is 0.79,
0.72, 0.65, 0.64 and 0.57, with respect to each data rate.
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Figure 6. Performance evaluation of PDOLS according to UE’s demand rate. (a) Average data rate
per UE. (b) Number of active SeNBs.

Figure 6b shows the change of the active SeNBs during the learning procedure. Most
of the 25 SeNBs are turned on at the beginning of learning, but after 80K iterations, almost
10–12 SeNBs are switched off according to the UE’s demand rate. For the higher demand
rate, more SeNBs are active to support the user traffic. Although the number of active
SeNBs is the same for 10, 12, and 14 Mbps, energy consumption increases, especially for the
14 Mbps in Figure 6a, as power consumption of the active links increases proportionally by
user traffic.

We evaluate the performance of the PDOLS again with different numbers of UEs such
as 40, 70 and 100, where the demand data rate is configured to be 14 Mbps. Figure 7a
shows that both energy savings and the sum of the data rate increase as the number
of UEs decreases. Accordingly, the user demand rate is mostly satisfied, except for 100
UEs. The energy saving is 0.46, 0.38, and 0.2, respectively, for each number of UEs.
The corresponding active SeNBs are 6, 10, and 15, as shown in Figure 7b. Here, ω1 of the
optimal weight is found to be 0.8, 0.66, and 0.57 for each case. For 40 UEs, the number
of active SeNBs is around 18 initially and decreases to up to 6 SeNBs, as data flows of
many UEs use the same multi-hop paths provided by the active SeNBs. Otherwise, isolated
UEs that have no path through the SeNBs directly access to the MeNB. Comparing the
result of 100 UEs with 6 Mbps, we can conjecture that a higher number of UEs induces
network-wide deployment, which consumes more RBs of the MeNB and transmission
power for a smaller number of serving UEs.

Figure 8a compares the performance of the proposed algorithms discussed in Section 5,
where the number of UEs and the demand rate are configured as 100 and 14 Mbps. A heuris-
tic algorithm leads the UEs to associate with a less-loaded SeNB and use the shortest path
to the MeNB gateway, which performs worse with energy savings of 0.16 and a data rate of
9.14 Mbps than others. Meanwhile, the PPO and PDOLS show comparable results of 0.27,
13.39 Mbps for the PPO and 0.23, 13.79 Mbps for the PDOLS, where the optimal weight for
the PPO is selected manually after iterative executions with different weight vectors, while
the PDOLS algorithm automatically searches for the optimal weight values. The PDOLS-SR
outperforms other algorithms with 0.27 and 13.79 Mbps when the reward is scaled by 1/5.
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Figure 7. Performance evaluation of PDOLS according to the number of distributed UEs. (a) Average
data rate per UE. (b) Number of active SeNBs.
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Figure 8b shows the variation of corner weight in the OLS framework of the PDOLS.
In our experiment, the PDOLS-SR conducts the training process 11 times (11 steps in
the figure) to find the optimal weight, while the PDOLS does this only 7 times (7 steps).
The PDOLS-SR can scavenge and explore more corner weights to find a near-optimal
weight close to the PPO weight, 0.6 (the red solid line). The optimal ω1 of the PDOLS-
SR is 0.5872, while the ω1 of the PDOLS is 0.5683. Further adjustment for downscal-
ing of the reward, such as 1/10 or 1/15, only increases training time without notable
performance enhancement.

7. Conclusions

In this paper, we solve a multi-objective optimization problem of throughput maxi-
mization and energy consumption minimization in a HetNet with a mmWave-backhaul
mesh. For this, we implement a PPO-based DRL algorithm based on actor-critic archi-
tecture. However, the conventional PPO algorithm has limitations in its ability to cope
with the multi-objective problem. Therefore, we propose PDOLS, which allows the PPO
algorithm to interoperate with OLS as an outer loop to search for an optimal weight vector
for the dual objectives. Experimental results show that the PPO-based DRL algorithm con-
verges successfully with increasing rewards as training is iterated. Additionally, the learned
solution of energy saving and user throughput is comparable to the CPLEX result. PDOLS
can find a feasible weight vector for the dual objectives which is similar to the optimal
weight that is identified manually using all possible combinations of the weight values.
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