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Abstract: Human action recognition (HAR) has gained significant attention recently as it can be
adopted for a smart surveillance system in Multimedia. However, HAR is a challenging task because
of the variety of human actions in daily life. Various solutions based on computer vision (CV) have
been proposed in the literature which did not prove to be successful due to large video sequences
which need to be processed in surveillance systems. The problem exacerbates in the presence of multi-
view cameras. Recently, the development of deep learning (DL)-based systems has shown significant
success for HAR even for multi-view camera systems. In this research work, a DL-based design
is proposed for HAR. The proposed design consists of multiple steps including feature mapping,
feature fusion and feature selection. For the initial feature mapping step, two pre-trained models are
considered, such as DenseNet201 and InceptionV3. Later, the extracted deep features are fused using
the Serial based Extended (SbE) approach. Later on, the best features are selected using Kurtosis-
controlled Weighted KNN. The selected features are classified using several supervised learning
algorithms. To show the efficacy of the proposed design, we used several datasets, such as KTH,
IXMAS, WVU, and Hollywood. Experimental results showed that the proposed design achieved
accuracies of 99.3%, 97.4%, 99.8%, and 99.9%, respectively, on these datasets. Furthermore, the feature
selection step performed better in terms of computational time compared with the state-of-the-art.

Keywords: human action recognition; deep learning; features fusion; features selection; recognition

1. Introduction

Human action recognition (HAR) emerged as an active research area in the field of
computer vision (CV) in the last decade [1]. HAR has applications in various domains
including; surveillance [2], human-computer interaction (HCI) [3], video reclamation, and
understanding of visual information [4], etc. The most important application of action
recognition is video surveillance [5]. Governments use this application for intelligence
gathering, reducing crime rate, for security purposes [6], or even crime investigation [7].
The main motivation of growing research in HAR is due to its use in video surveillance
applications [8]. In visual surveillance, HAR plays a key role in recognizing the activities
of subjects in public places. Furthermore, these types of systems are also useful in smart
cities surveillance [9].

Human actions are of various types. These actions can be categorized into two broad
classes, namely voluntary actions and involuntary actions [10]. Manual recognition of
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these actions in real-time is a tedious and error-prone task; therefore, many CV techniques
are introduced in the literature [11,12] to serve this task. Most of the proposed solutions
are based on classical techniques such as shape features, texture features, point features,
and geometric features [13]. A few techniques are based on the temporal information of
the human [14], and a few of them extract human silhouettes before feature extraction [15].

Recently, deep learning has shown promising results in the field of computer vision
(CV) [16]. Deep learning makes learning and data representation at multiple levels by
mimicking the human brain processing [17] to create models. These models consist of
multiple processing layers such as convolutional, ReLu, pooling, fully connected, and
Softmax [18]. The functionality of a CNN model is to replicate the working of the human
brain as it preserves and makes sense of multidimensional information. There exist multiple
methods in deep learning, which include encompassing neural networks, hierarchical
probabilistic models, supervised learning, and unsupervised learning models [19].

The HAR process is a challenging task as there are a variety of human actions in daily
life. In order to tackle this challenge, deep learning models are utilized. The performance
of a deep learning model is always based on the number of training samples [20]. In the
action recognition tasks, several datasets are publicly available. These datasets include
several actions such as walking, running, leaving a car, waving, kicking, boxing, throwing,
falling, bending down, and many more.

Recently proposed systems mainly focus on the hybrid techniques; however, they do
not focus on minimizing the computational time [21]. This is an important factor as most
time surveillance is performed in real-time. Some of the other key challenges of HAR are as
follows: (i) Query video sequences resolution is imperative for the recognition of the focal
point in the most recent frame. The background complexity, shadows, lighting conditions,
and outfit conditions extract irrelevant information using classical techniques of human
action, which later results in inefficient action classification; (ii) with automatic activities
recognition under multi-view cameras it is difficult to classify the correct human activities.
Change in the motion variation captures the wrong activities under the multi-view cameras;
(iii) imbalanced datasets impact the learning of a CNN. A CNN model always needs a
massive number of training images for learning; and (iv) features extraction from the entire
video sequences includes several irrelevant features, affecting the classification accuracy.

These challenges are considered in this work to propose a fully automated design
using deep learning features fusion and best feature selection for HAR under the complex
video sequences. The major contributions of this work are summarized as follows:

• Selected two pre-trained deep learning models and removed the last three layers. The
new layers are added and trained on the target datasets (action recognition dataset).
In the training process, the first 80% of the layers are frozen instead of using all the
layers, whereas the training process was conducted using transfer learning.

• Proposed a Serial based Extended (SbE) approach for multiple deep learning features
fusion. This approach fused features in two phases for better performance and to
reduce redundancy.

• Proposed a feature selection technique named Kurtosis-controlled Weighted KNN
(KcWKNN). A threshold function is defined which is further analyzed using a fit-
ness function.

• Performed an ablation study to investigate the performance of each step in terms of
advantages and disadvantages.

The rest of the manuscript is organized as follows: Related work is presenting in
Section 2. The proposed design for HAR is presented in Section 3, which includes deep
learning models, transfer learning, the selection of best features and fusion. Results of
the proposed method are presented in Section 4 in terms of tables and confusion matrixes.
Finally, Section 5 concludes this work.
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2. Related Work

HAR has emerged as an impactful research area in CV from the last decade [22]. It is
based on important applications such as visual surveillance [23], robotics, biometrics [24,25],
and smart healthcare centers to name a few [26,27]. Several researchers of computer vision
developed techniques using machine learning [28] for HAR. Most of these researches
focused on deep learning due to its better performance and few of them used barometric
sensors for activity recognition [29]. Rasel et al. [30] extracted the spatial features using
acidometer sensors and classified using multiclass SVM for final activity recognition.
Zhao et al. [31] introduced a combined framework for activity recognition. They combined
short-term and long-term features for the final results. Khan et al. [32] combined the
attention-based LSTM network with dilated CNN model features for the action recognition.
Similarly, a skeleton based attention framework is presented by [33] for action recognition.
Maheshkumar et al. [13] presented an HAR framework using both the shape and the OFF
features [34]. The presented framework is the combination of Hidden Markov Model
(HMM) and SVM. The shape and OFF features are extracted and used for HAR through the
HMM classifier. The multi-frame averaging method was adopted for background extraction
of the image. A discrete Fourier transform (DFT) was performed to reduce the magnitude
on the length feature set from the middle to the body contour. In order to select features,
the principal component analysis was implied. The presented framework was tested on
videos recorded in real-time settings and achieved maximum accuracy. Weifeng et al. [35]
presented a generalized Laplacian Regularized Sparse Coding (LRSC) framework for HAR.
It was a nonlinear generalized version of graph Laplacian with a tighter isoperimetric
inequality. A fast-iterative shrinkage thresholding algorithm for the optimization of $-LRSC
was also presented in this work. The input of the sparse codes learned by the $-LRSC
algorithm were placed into the support vector machine (SVM) for final categorization.
The datasets used for the experimental process were unstructured social activity attribute
(USAA) and HMDB51. The experimental results demonstrated the competence of the
presented $-LRSC algorithm. Ahmed et al. [36] presented an HAR model using a depth
video analysis. HMM was employed to recognize regular activities of aged people living
without any attendant. The first step was to analyze the depth maps through the temporal
motion identification method using the segments of human silhouettes in a given scenario.
Robust features were selected and fused together to find the gradient orientation change,
intensity difference temporal and local movement of the body organs [37]. These fused
features were processed via embedded HMM. The experimental process was conducted
on three different datasets such as Online Self-Annotated [38], Smart Home, and Three
Healthcare, and achieved the accuracies 84.4, 87.3, and 95.97%, respectively. Muhammed
et al. [39] presented a smartphone inertial sensors-based framework for human activity
recognition. The presented framework was divided into three steps: (i) extract the efficient
features; (ii) the features were reduced using the kernel principal component analysis
(KPCA) and linear discriminant analysis (LDA) to make them resilient; (iii) resultant
features were trained via deep belief neural networks (DBN) to attain improved accuracy.
The presented approach was compared with traditional expression recognition approaches
such as typical multiclass SVM [40,41] and artificial neural network (ANN) and showed an
improved accuracy.

Lei et al. [42] presented a light weight action recognition framework based on DNN
using RGB video sequences. The presented framework was constructed using CNNs and
LTSM units that was a temporal attention model. The purpose of using CNNs was to
segment out the objects from the complex background. LTSM networks were used on
spatial feature maps of multiple CNN layers. Three datasets, such as UCF-11, UCF Sports,
and UCF-101, were used for experimental processes and achieved 98.45%, 91.89%, and
84.10%, respectively. Abdu et al. [43] presented an HAR framework based on deep learning.
They considered the problem of traditional techniques which are not useful for the better
accuracy of complex activities. The presented framework used a cross DBNN model that
unites the SRUs with GRUs of the neural network. The SRUs were used to execute the
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sequence multi-modal data input. Then GRUs were used to store and learn the amount of
information that can be transferred from past state to future state. Zan et al. [44] presented
an action recognition model that served the problem of multi-view HAR. The presented
algorithm was based on adaptive fusion and category-level dictionary learning (AFCDL).
In order to integrate dictionary learning, query sets were designed, and the regularization
scheme was constructed for the adaptive weights assignment. Muhammad et al. [45]
presented a new framework of 26-layered CNN for composite action classification. Two
layers, the global average pooling layer and fully connected layer (FC) were used for
feature extraction. The extracted features are classified using the extreme learning machine
(ELM) and Softmax for final action classification. Four datasets named HMDB51, UCF
Sports, KTH, and Weizmann were used for the experimentation process and showed better
performance. Muhammad et al. [4] presented a new fully automated structure for HAR
by fusing DNN and multi-view features. Initially, a pre-trained CNN named VGG19
was implied to take out DNN features. Horizontal and vertical gradients were used to
compute multi-view features and vertical directional attributes. Final recognition was
performed on the selected features via the Naive Bayes Classifier (NBC). Kun et al. [46]
introduced an HAR model based on DNN that combines the convolutional layer with
LSTM. The presented model was able to automatically extract the features and perform
their classification with the standard parameters.

Recently, the development of deep learning models for HAR using high dimensional
datasets has shown immense progress. Classical methods for HAR did not show satisfac-
tory performance, especially for large datasets. In contrast, the modern techniques such as
Long Short-Term Memory (LSTM), SV-GCN, and Convolution Neural Networks (CNNs)
are showing improved performance and can be considered for further research to obtain
an improvement in the accuracy.

3. Proposed Methodology

This section presents the proposed methodology for human action recognition in
complex video sequences. The proposed design consists of multiple steps, including
feature mapping, feature fusion, and feature selection. Figure 1 represents the proposed
design of HAR. In this design, features are extracted from the two pre-trained models
such as DenseNet201 and InceptionV3. The extracted deep features are fused using the
Serial based Extended (SbE) approach. In the later step, the best features are selected
using Kurtosis-controlled Weighted KNN. The selected features are classified using several
supervised learning algorithms. Detail of each step is provided below.

3.1. Convolutional Neural Network (CNN)

CNN is an innovative technique in deep learning that makes the classification process
fast and precise. CNN requires lesser parameters to train compared with the traditional
neural networks [47]. A CNN model contains multiple layers where the convolution layer
is an integral part. Few other layers contained in the CNN model are pooling layers (min,
max, average), the ReLU layer, and some fully connected (FC) layers. The internal structure
of a CNN has multiple layers as presented in Figure 2. This figure shows that video
sequences are provided as input to this network. In the network, the initially convolutional
layer is added to convolve input image features, which are later normalized in pooling and
hidden layers. After that, FC layers are added to convert image features into 1D feature
vector. The final 1D extracted features are classified in the last layer, which is known as the
output layer.
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3.2. Densenet201 Pre-Trained Deep Model

DenseNet is an advanced CNN model where every layer is directly connected with all
the layers in subsequent order. These connections help to improve the flow of information
in the network, as illustrated in Figure 3. This dense connectivity makes it a dense con-
volutional network commonly known as DenseNet [48]. Other than the improvement in
the information flow, it caters to the vanishing gradient problems as well as it strengthens
the feature prorogation process. DenseNet also allows for reusing the features and it
reduces required parameters, which eventually reduces the computational complexity of
the algorithm. Consider a CNN with φ number of layers and φl layer index has an input
stream that starts with x0. A nonlinear transformation function Fφ(.) is applied on each
layer and it can be a combination of multiple functions such as BN, pooling convolution or
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ReLU. In a densely connected network, each layer is connected to its subsequent layers.
Output of the φth layer is represented by xφ.

xφ = Fφ
(

x0, . . . . . . , xφ−1
)

(1)

where
(

x0, . . . . . . , xφ−1
)

states the concatenation of the feature maps generated in layers
0, . . . . . . ..,φ− 1.
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3.3. Inception V3 Pre-Trained Deep Model

InceptionV3 [49] is an already trained CNN model on the ImageNet dataset. It
consists of 316 layers which include convolution layers, pooling layers, fully connected
layers, dropout, and Softmax layers. The total number of connections in this model is 350.
Unlike a traditional CNN that allows a fixed filter size in a single layer, InceptionV3 has
the flexibility to use variable filter sizes and a number of parameters in a single layer which
results in better performance. An architecture of InceptionV3 is shown in Figure 4.
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3.4. Transfer Learning Based Learning

Transfer learning is a well-known technique in the field of deep learning that allows
the reusability of a pre-trained model on an advanced research problem [50]. A major
advantage of using TL is that it requires less data as input and provides remarkable results.
It aims to transfer knowledge from a source domain to a targeted domain, here the source
domain refers to a pre-trained model with a very large dataset and the targeted domain
is the proposed problem with limited labels [51]. In the source domain, usually a large
high-resolution image dataset known as ImageNet is used [52,53]. It contains more than
15 billion labels and 1000 image categories. Image labels in ImageNet are saved according
to the wordNet hierarchy, where each node leads to thousands of images belonging to that
category. Mathematically, TL is defined as follows:



Sensors 2021, 21, 7941 7 of 24

Given a source domain sd, defined as:

sd =
{(

xd
1 , yd

1

)
, . . . ,

(
xd

i , yd
i

)
, . . . ,

(
xd

n, yd
n

)}
The learning task is Ld,Ls,

(
xd

m, yd
m

)
∈ ϕ. The target domain is defined as:

st =
{(

xt
1, yt

1
)
, . . . ,

(
xt

i , yt
i
)
, . . . ,

(
xt

n, yt
n
)}

The learning task Lt,
(
xt

n, yt
n
)
∈ ϕ, (m, n) will be the size of training data, where n� m

and yd
i and yt

i are the training data labels. Using this definition, both pre-trained models
are trained on action datasets. During the training process, the learning rate was 0.01, the
mini batch size is 64, the maximum epochs is 100 and the learning method is the stochastic
gradient descent. After the fine-tuning process, the output of both models is the number of
action classes.

3.5. Features Extraction

Features are extracted from the newly learned models called target models as shown
in Figures 5 and 6. Figure 5 represents a DenseNet201 modified model. Using this model,
features are extracted using the avg-pool layer. In the output, an N × 1920 dimensional

feature vector was obtained, denoted by
→
C , where N represents number of images in the

target dataset.
Using the Inception V3 modified model (depicted in Figure 6), features are extracted

from the average pool layer. On this layer, the dimension of the extracted deep feature

vector is N × 2048 and it is represented by
→
D, where N is the number of images in the

target dataset.
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3.6. Serial Based Extended Fusion

The fusion of features is becoming a popular technique for improved classification
results. The main advantage of this step is to improve the image information in terms
of features. The improved feature space increases the classification performance. In the
proposed work, a Serial based Extended (SbE) approach is implemented. In this approach,
initially features are fused using a serial-based approach. The fused vectors are combined
in a single feature vector and to obtain a feature vector of dimension N×3968 and denoted

by Ò, considering two feature vectors
→
C and

→
D defined on the outline of sample space

→
Z. For an arbitrary sample
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can be defined as =

(
j
k

)
. If feature vector

→
C

has n dimensions and feature vector
→
D has m dimensions, then serial fused feature Òwill

have (n + m) dimensions. After obtaining a Òfeature vector, the features are sorted into
descending order and the mean value is computed. Based on the mean value, the feature
vector is extended in terms of the final fusion.

µ() =
1
N

N
∑
i=1

(i) (2)

Fsn =

{
Fusion(i) f or i ≥ µ
Discard, ElseWhere

(3)

Here, Fusion(i) is a final fused feature vector of dimension N×K, where the value of
K is always transformed according to the variation in the dataset. Later on, this fusion
vector is analyzed using the experimental process and further refined using a feature
selection approach.
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3.7. Serial Based Extended Fusion

Feature selection is the process of the selection of subset features from the input feature
vector [54]. It helps to improve the performance of the algorithm and also reduces the
training time. In the proposed design, a new feature selection algorithm is proposed,
Kurtosis-controlled Weighted KNN (KcWKNN). The proposed selection method works in
the following steps: (i) input fused feature vector; (ii) compute Kurtosis value; (iii) define a
threshold function; (iv) calculate fitness, and (v) select the feature vector.

The Kurtosis value is computed as follows:

Kr =
µ4

δ4 (4)

µ4 = E
[(︷︸︸︷

F i − E
[︷︸︸︷

F
])n]

,
︷︸︸︷

F i ∈ Fusion(i) and n = 4 (5)

δ4 =

√√√√E

[(︷︸︸︷
F i − µ

)2
]

(6)

where K is the Kurtosis function, µ4 is the fourth central moment, and δ is the standard
deviation. Kurtosis is a statistical measure that we investigate to find how much the tails of
the distribution deviate from the normal. Distributions with higher values are identified
in this process. In this work, the main purpose of using Kurtosis is to obtain the higher
tail values (outlier features) through the fourth moment that was later employed in the
threshold function for the initial feature selection. By using the Kurtosis value, a threshold
function is defined as follows:

Ts =
{

FS(i) f or Fusion(i) ≥ Kr
Ignore, Elsewhere

(7)

The selected feature vector FS(i) is passed into the fitness function WKNN for valida-
tion. Mathematically, WKNN is defined as follows:

Consider {(xi, yi)}N
i=1 ∈ P as the training set where xi is the p-dimensional training

vector and yi is its equivalent class labels set. To determine the label y of any x from the
test set (x, y), the following mathematics takes place.

(a) Compute the Euclidian distance e between x and each (x, y), formal given in Equation (8).

e(x, xi)= x− xi io (8)

(b) Arrange all values in ascending order
(c) Assign a weight ώi to the ith nearest neighbor using Equation (9).

ώi =
1

(e(x, xi))
2 (9)

(d) Assign ώi = 1 for the equally weighted KNN rule,
(e) The class label of x is assigned on the basis of majority votes from the neighbors by

Equation (10).
y = argmax ∑

(x,y)∈P
ώi, ï(x = yi) (10)

where x is the class label, yi is the class label for ith nearest neighbor and ï(.) is the
Dirac-Delta function that takes value = 1 if its argument is true and 0 otherwise.

(f) Compute error.

The error is used as a performance measure, where the number of iterations is initial-
ized as 50. This process is carried out until the error is minimized. Visually, the flow is
shown in Figure 7, where it can be seen that the best selected features are finally classified
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using supervised learning algorithms. Moreover, the complete work of the proposed design
is listed in Algorithm 1.
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Algorithm 1. The complete work of the proposed design.

Input: Action Recognition Datasets
Output: Predicted Action Class
Step 1: Input action datasets
Step 2: Load Pre-trained Deep Models;
- Densenet201
- Inception V3

Step 3: Fine Deep Models
Step 4: Trained Deep Models using TL
Step 5: Feature Extraction from Avg Pooling Layers
Step 6: SbE approach for Features Fusion
Step 7: Best Features Selection using Proposed KcWKNN
Step 8: Predict Action Label

4. Results and Analysis

The experimental process of the proposed method is presented in this section. Four
publically available datasets such as KTH [3], Hollywood [38], WVU [39], and IXMAS [40]
were used in this work for the experimental process. Each class of these datasets contains
10,000 video frames that are utilized for the experimental process. In the experimental
process, 50% of video sequences are used for the training purpose, while the remaining
50% is utilized for the testing purpose. The K-Fold cross validation is adopted, where
the value of K = 10. Results are computed on several supervised learning algorithms and
select the best one is selected based on the accuracy value. All simulations are conducted
on MATLAB2020a using a Personal Computer Corei7 with 16 GB of RAM and 8 GB
Graphics card.

4.1. Results

A total of four experiments were performed on each dataset to analyze the perfor-
mance of the middle step. These steps are: (i) performed classification using DenseNet201
deep features; (ii) performed classification using InceptionV3 deep model; (iii) performed
classification using the SbE deep features fusion, and (iv) performed classification using
KcWKNN-based feature selection.

Experiment 1: Table 1 presents the results of the specific DenseNet201 deep features
on selected datasets. In this table, it is noted that the Cubic SVM achieved a better accuracy
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of 99.3% on the KTH dataset. Other classifiers also achieved a better accuracy of above
94%. For the Hollywood action dataset, the best achieved accuracy is 99.9% for Fine KNN.
Similar to the KTH dataset, the rest of the classifiers also performed better on this dataset.
The best obtained accuracy for the WVU dataset is 99.8% for Cubic SVM. The rest of
the classifiers also performed better and achieved an average accuracy of 97%. The best
obtained accuracy of the IXAMAS dataset is 97.3% for Fine KNN.

Table 1. Classification accuracy on specific DenseNet201 deep model. The bold represents the best
obtained values.

Classifier
Datasets Accuracy on DenseNet201 Deep Model

KTH Hollywood WVU IXAMAS

Linear Discriminant 98.8 99.6 98.3 92.1

Linear SVM 98.0 98.3 97.1 86.6

Quadratic SVM 98.9 99.6 99.7 96.4

Cubic SVM 99.3 99.8 99.8 95.4

Medium Gaussian SVM 98.6 99.5 97.8 93.1

Fine KNN 98.7 99.9 99.3 97.3

Medium KNN 96.7 98.8 97.3 88.0

Cosine KNN 96.9 98.8 97.4 88.3

Weighted KNN 97.2 99.7 98.0 92.9

Ensemble Bagged Trees 89.6 98.2 94.5 82.9

Experiment 2: The results of InceptionV3 deep features are provided in Table 2. In
this table, it is noted that the best achieved accuracy on the KTH dataset is 98.1%, for the
Hollywood dataset it is 99.8%, for the WVU dataset it is 99.1%, and for the IXAMAS dataset
it is 96%. From this table, it is observed that the performance of specific DenseNet201
features are better. However, during the computation of results, time significantly increases.
Therefore, it is essential to handle this issue with consistent accuracy.

Table 2. Classification accuracy on specific InceptionV3 deep model. The bold represents the best
obtained values.

Classifier
Datasets Accuracy on DenseNet201 Deep Model

KTH Hollywood WVU IXAMAS

Linear Discriminant 96.6 98.8 96.5 87.3

Linear SVM 95.4 96.3 93.5 81.3

Quadratic SVM 97.6 99.3 99.0 92.1

Cubic SVM 98.1 99.5 99.1 93.6

Medium Gaussian SVM 97.0 99.3 97.7 91.2

Fine KNN 97.6 99.8 98.4 96.0

Medium KNN 95.00 98.1 94.8 83.8

Cosine KNN 95.6 98.5 95.1 84.7

Weighted KNN 95.9 99.1 95.8 90.0

Ensemble Bagged Trees 89.0 92.4 90.5 73.3

Experiment 3: After the experiments on specific feature sets, the SbE approach is
applied for deep features fusion. The KTH dataset results are provided in Table 3. In this
table, The highest performance is recorded for Cubic SVM with an accuracy of 99.3%. Recall
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and precision are 99.3% and 99.43% respectively. Moreover, the noted time during the
training process is 893.23 s. The second highest accuracy is achieved by a linear discriminant
classifier of 99.2%. The rest of the classifiers also performed better. Compared with specific
feature vectors, the fusion process results are more consistent. Figure 8 illustrates the true
positive rates (TPRs)-based confusion matrix of Cubic SVM that confirms the value of
the recall rate. In this figure, the highlighted diagonal values represent the true positive
predictions, whereas the values other than the diagonal represent false negative predictions.

Table 3. Achieved results on KTH dataset after fusion of deep features using SbE approach. The bold
represents the best obtained values.

Classifier Recall
Rate (%)

Precision
Rate (%) FNR Time

(s)
F1 Score

(%)
Accuracy

(%)

Linear Discriminant 99.200 99.300 0.80 424.10 99.249 99.2

Linear SVM 98.400 98.616 1.60 487.10 98.508 98.4

Quadratic SVM 99.150 98.283 0.85 706.56 98.714 99.2

Cubic SVM 99.300 99.433 0.70 893.23 99.366 99.3

Medium Gaussian SVM 98.916 99.083 1.08 1445.8 98.999 98.9

Fine KNN 99.083 99.216 0.91 450.55 99.149 99.1

Medium KNN 96.700 97.233 3.30 447.37 96.965 96.8

Cosine KNN 97.516 97.716 2.48 459.33 97.616 97.5

Weighted KNN 97.483 97.916 2.51 447.59 97.699 97.6

Ensemble Bagged Trees 94.233 94.733 5.76 192.96 94.482 94.3Sensors 2021, 21, x FOR PEER REVIEW 13 of 23 
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Table 4 represents the results of the Hollywood action dataset using the SbE approach.
In this table, it is noted that the best accuracy is 99.9%, obtained by Fine KNN. Other
performance measures such as recall rate, precision rate and F1 score values are 99.1825%,
99.8375%, and 99.5089%, respectively. The rest of the classifiers mentioned in this table
performed better and achieved an average accuracy above 98%. Figure 9 illustrates the
TPR-based confusion matrix of Fine KNN, where it is clear that each class prediction rate
is above 99%. Moreover, compared with the specific deep features experiment on the
Hollywood dataset, the fusion process shows more consistent results.
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Table 4. Achieved results on Hollywood dataset after fusion of deep features using SbE approach.
The bold represents the best obtained values.

Classifier Recall
Rate (%)

Precision
Rate (%) FNR Time

(s)
F1 Score

(%)
Accuracy

(%)

Linear Discriminant 99.775 99.825 0.22 469.75 99.800 99.9

Linear SVM 99.887 99.25 1.11 734.42 99.567 99.2

Quadratic SVM 99.550 99.725 0.45 1065.4 99.637 99.7

Cubic SVM 99.575 99.775 0.42 1337.4 99.674 99.8

Medium Gaussian SVM 99.287 99.675 0.71 2227.1 99.480 99.7

Fine KNN 99.182 99.837 0.18 447.76 99.508 99.9

Medium KNN 98.500 99.0125 1.50 437.47 98.755 99.1

Cosine KNN 99.037 98.975 0.96 449.13 99.006 99.3

Weighted KNN 99.250 99.45 0.75 439.29 99.349 99.6

Ensemble Bagged Trees 94.425 97.562 5.57 209.63 95.968 96.7
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Table 5 presents the results of the WVU dataset using the SbE fusion approach. The
highest accuracy is achieved through Linear Discriminant which is 99.8%, where the recall
rate, precision rate, and F1 score are 99.79%, 99.78%, and 99.78%, respectively. Quadratic
SVM and Cubic SVM performed second best and achieved an accuracy of 99.7% for each.
The rest of the classifiers also performed better and gained the average accuracy of above
99%. Figure 10 illustrated the TPR based confusion matrix of the WVU dataset for the
Linear Discriminant classifier. This figure showed that the correct prediction rate of each
classifier is more than 99%. Compared with this accuracy of WVU on specific features, it is
noticed that the fusion process provides consistent accuracy.
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Table 5. Achieved results on WVU dataset after fusion of deep features using SbE approach. The
bold represents the best obtained values.

Classifier Recall
Rate (%)

Precision
Rate (%)

FNR
(%)

Time
(s)

F1 Score
(%)

Accuracy
(%)

Linear Discriminant 99.79 99.78 0.21 2073.1 99.785 99.8

Linear SVM 97.74 97.77 2.26 2567.7 97.755 97.7

Quadratic SVM 99.56 99.56 0.44 2824.5 99.560 99.6

Cubic SVM 99.56 99.57 0.44 2267 99.565 99.6

Medium Gaussian SVM 98.56 98.34 1.66 2749 98.449 98.3

Fine KNN 97.0 97.03 3.00 3486 97.015 97.0

Medium KNN 87.15 88.34 12.8 3933.5 87.741 87.2

Cosine KNN 87.98 89.01 12.1 2825.4 88.492 88.0

Weighted KNN 90.89 91.51 9.11 2716.7 91.198 90.9

Ensemble Bagged Trees 94.08 94.12 5.92 965.78 94.100 94.1
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Table 6 presents the results of the IXMAS dataset after SbE features fusion. In this table,
it can be seen that the highest accuracy is achieved through Fine KNN of 97.4%, where
the recall rate, precision rate, and F1 score are 97.18%, 97.25%, and 97.21%, respectively.
Cubic SVM performed second best and achieved an accuracy of 97.3%. The rest of the
classifiers also performed better and attained an average accuracy above 93%. Figure 11
illustrates the TPR-based confusion matrix of the Fine KNN for the IXMAS dataset using
the SbE approach.

Overall, the results of the SbE approach are improved and are consistent compared
with the specific deep features (see results in Tables 1 and 2). However, it is observed that
the computational time increases during the fusion process. For a real-time system, this
time needs to be minimized. Therefore, a feature selection approach is proposed.
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Table 6. Achieved results on IXMAS dataset after fusion of deep features using SbE approach. The
bold represents the best obtained values.

Classifier Recall
Rate (%)

Precision
Rate (%)

FNR
(%)

Time
(s)

F1 Score
(%)

Accuracy
(%)

Linear Discriminant 96.460 96.310 3.54 508.35 96.384 96.5

Linear SVM 91.030 91.230 8.97 1428 91.129 91.3

Quadratic SVM 96.670 96.680 3.33 936.8 96.675 96.7

Cubic SVM 97.216 97.225 2.78 390.9 97.220 97.3

Medium Gaussian SVM 96.016 96.066 3.98 840.3 96.041 96.1

Fine KNN 97.180 97.250 2.82 570.56 97.215 97.4

Medium KNN 88.360 88.890 11.6 560.06 88.624 88.9

Cosine KNN 89.141 89.516 10.8 559.83 89.328 89.7

Weighted KNN 92.475 92.625 7.52 543.5 92.549 92.8

Ensemble Bagged Trees 80.291 81.550 19.7 284.31 80.915 81.4
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Experiment 4: In this experiment, the best features are selected using Kurtosis-
controlled WKNN and provided to the classifiers. Results are provided in Tables 7–10.
Table 7 presents the results of the proposed feature selection algorithm on the KTH dataset.
In this table, the highest obtained accuracy is 99%, achieved by Cubic SVM. Other perfor-
mance measures such as recall, precision and F1 score are 98.1666%, 99.1166% and 99.016%,
respectively. Figure 12 illustrates the TPR-based confusion matrix of the Cubic SVM for
the best feature selection process. In comparison with Table 3 results, it is noted that
the accuracy of Cubic SVM decreases (0.3%), while the computational time expressively
declines. The computational time of the Cubic SVM in the fusion process was 893.23 s,
which is reduced after the feature selection process to 451.40 s. This shows that the fea-
ture selection process not only maintains the recognition accuracy but also minimizes the
computational time.
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Table 7. Achieved results on KTH dataset after best feature selection using KcWKNN. The bold
represents the best obtained values.

Classifier Recall
Rate (%)

Precision
Rate (%)

FNR
(%)

Time
(s)

F1 Score
(%)

Accuracy
(%)

Linear Discriminant 98.080 98.516 1.92 87.805 98.297 98.1

Linear SVM 97.633 97.933 2.36 255.42 97.783 97.7

Quadratic SVM 98.600 98.866 1.40 360.10 98.733 98.7

Cubic SVM 98.916 99.116 1.09 451.40 99.016 99.0

Medium Gaussian SVM 98.2833 98.483 1.71 687.37 98.383 98.3

Fine KNN 98.616 98.833 1.38 237.93 98.724 98.7

Medium KNN 95.483 96.366 4.51 231.39 95.922 95.7

Cosine KNN 97.016 97.183 2.98 230.18 97.099 97.0

Weighted KNN 96.233 97.000 3.76 222.90 96.615 96.4

Ensemble Bagged Trees 94.150 93.716 5.8 140.57 93.632 94.2

Table 8. Achieved results on Hollywood dataset after best feature selection using KcWKNN. The
bold represents the best obtained values.

Classifier Recall
Rate (%)

Precision
Rate (%)

FNR
(%)

Time
(s)

F1 Score
(%)

Accuracy
(%)

Linear Discriminant 99.087 99.450 0.912 88.375 99.268 99.4

Linear SVM 97.937 98.687 2.062 323.99 98.311 98.6

Quadratic SVM 99.262 99.587 0.737 439.41 99.424 99.5

Cubic SVM 99.387 99.675 0.612 501.67 99.531 99.7

Medium Gaussian SVM 98.587 99.500 1.412 910.78 99.041 99.5

Fine KNN 99.812 99.837 0.187 213.33 99.825 99.8

Medium KNN 97.225 98.550 2.775 224.52 97.883 98.5

Cosine KNN 98.325 98.862 1.675 221.19 98.593 98.9

Weighted KNN 98.575 99.412 1.425 215.89 98.992 99.2

Ensemble Bagged Trees 87.050 94.287 12.95 126.72 90.524 97.7

Table 9. Achieved results on WVU dataset after best feature selection using KcWKNN. The bold
represents the best obtained values.

Classifier Recall
Rate (%)

Precision
Rate (%)

FNR
(%)

Time
(s)

F1 Score
(%)

Accuracy
(%)

Linear Discriminant 98.50 98.53 1.50 241.48 98.515 98.5

Linear SVM 96.51 96.57 3.49 293.2 96.539 96.5

Quadratic SVM 99.37 99.38 0.63 1064.6 99.375 99.4

Cubic SVM 99.43 99.44 0.57 1124.0 99.435 99.4

Medium Gaussian SVM 98.24 98.25 1.76 1363.7 98.245 98.2

Fine KNN 96.55 96.59 3.45 1365.1 96.570 96.5

Medium KNN 86.80 87.98 13.2 1322.0 87.386 86.8

Cosine KNN 87.61 88.73 12.39 1316.2 88.166 87.6

Weighted KNN 90.33 91.07 9.67 1236.8 90.698 90.3

Ensemble Bagged Trees 94.71 94.75 5.29 423.37 94.730 95.7
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Table 10. Achieved results on IXMAS dataset after best feature selection using KcWKNN. The bold
represents the best obtained values.

Classifier Recall
Rate (%)

Precision
Rate (%)

FNR
(%)

Time
(s)

F1 Score
(%)

Accuracy
(%)

Linear Discriminant 91.583 91.516 8.41 119.8 91.549 91.7

Linear SVM 88.050 88.400 11.95 714.13 88.224 88.5

Quadratic SVM 95.008 95.083 4.99 634.7 95.045 95.1

Cubic SVM 95.783 95.866 4.21 239.4 95.824 95.9

Medium Gaussian SVM 94.466 94.933 5.53 475.5 94.699 94.6

Fine KNN 97.075 96.991 2.92 290.69 97.033 97.1

Medium KNN 86.383 86.925 13.61 266.24 86.653 86.9

Cosine KNN 88.066 88.233 11.93 270.74 88.149 88.5

Weighted KNN 90.975 91.966 9.02 263.74 91.468 91.2

Ensemble Bagged Trees 83.433 85.108 16.5 175.78 84.261 84.8
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Table 8 presents the best feature selection results on the Hollywood Action dataset
and achieved best accuracy by Fine KNN of 99.8%. The other calculated measures such
as recall rate, precision rate, and F1 Score are 99.812%, 99.837%, and 99.82%, respectively.
For the rest of the classifiers, the average accuracy is above 98% (can be seen in this table).
Figure 13 illustrates the TPR-based confusion matrix of Fine KNN for this experiment. The
diagonal values in this experiment show the correct predicted values. Comparison with
Table 4 shows that the classification accuracy is still consistent, whereas the computational
time is significantly reduced. The computational time at the fusion process was 447.76 s,
whereas after the selection process, it is reduced to 213.33 s. This shows that the selection
of best features using KcWKNN performed significantly better.
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Figure 13. TPR based confusion matrix of Fine KNN after best feature selection using KcWKNN.

Table 9 presents the results of the WVU dataset after the best feature selection using
KcWKK. In this table, Quadratic SVM and Cubic SVM performed best with the accuracy
of 99.4%, where the recall rate is 99.37% and 99.43%, respectively, and the precision rate
is 99.38% and 99.44%, respectively and the F1 score is 99.375%, and 99.43%, respectively.
Figure 14 shows the TPR-based confusion matrix of the Cubic SVM for this experiment. This
figure shows that the prediction rate of each class is above 99%. Moreover, in comparison
with Table 5 (fusion results), the computational time of this experiment on the WVU dataset
is almost half and accuracy is still consistent. This shows that the KcWKNN selection
approach performed significantly well.
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Figure 14. TPR-based confusion matrix of Cubic SVM after best feature selection using KcWKNN.

The results of the KcWKNN-based best features selection on the IXMAS dataset are
provided in Table 10. In this table, it is noted that the Fine KNN attained best accuracy
of 97.1%, whereas the recall rate, precision rate, and F1 score are 97.075%, 96.9916%, and
97.033%, respectively. Figure 15 illustrates the TPR-based confusion matrix of the Fine
KNN for this experiment. The correct prediction value of each class is provided in the
diagonal of this figure. Compared with Table 6, this experiment reduces the computational
time while maintaining the recognition accuracy.
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Finally, a detailed analysis was conducted among all experiments in terms of accuracy
and time. From Tables 1–10, it is observed that the accuracy value is improved after the
proposed fusion process and the time is reduced. However, the noted time was still high
and must be reduced further; therefore, a feature selection technique is proposed and time
is significantly reduced compared with the original extracted deep features and fusion step
(plotted in Figures 16–19). In the selection process, a little change occurred in the accuracy
value, but on the other side, a high fall is noted in the computational time.
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4.2. Comparison with SOTA

Overall, the feature selection process maintains the classification accuracy while
significantly reducing the computational time. A comparison with some recent techniques
was also conducted as provided in Table 11. This table shows that the proposed design
results are significantly improved. The main strength of the proposed design is the fusion
of deep features using the SbE approach and best feature selection using KcWKNN.

Table 11. Comparison of the proposed design with existing techniques in terms of accuracy. The
bold represents the best obtained values.

Reference Dataset Accuracy (%)

Muhammad et al. [45], 2020 KTH 98.30

Proposed method KTH 99.00

Muhammad et al. [4], 2020 IXMAS 95.20

Amir et al. [55], 2021 IXMAS 87.48

Proposed method IXMAS 97.10

Muhammad et al. [56], 2020 WVU 99.10

Muhammad et al. [57], 2019 WVU 99.90

Proposed method WVU 99.40

Evan et al. [58], 2008 Hollywood 91.80

Proposed method Hollywood 99.20

5. Conclusions

HAR has gained a lot of popularity in recent years. Multiple techniques have been
used for the accurate recognition of human actions. The problem is to correctly identify
the action in real-time and from multiple perspectives. In this work, a design is proposed
where the key aim is to improve the accuracy of the HAR process in the complex video
sequences using advanced deep learning techniques. The proposed design consists of
four steps, namely feature mapping, feature fusion, feature selection, and classification.
Two modified deep learning models, DenseNet201 and InceptionV3 were used for feature
mapping. Fusion and selection were performed using the serial-based extended approach
and Kurtosis-controlled Weighted KNN approach, respectively. The results were obtained
after extensive experimentation on state-of-the-art action datasets. Based on the results, it
is concluded that the proposed design performed better than the existing techniques in
terms of accuracy as well as computational time. Cubic SVM and Fine KNN classifiers
were top performers on the proposed HAR method. The key limitation of this work is the
computational time that was noted during the original deep extracted features. This step
increases the computational time that is not suitable for the real-time applications. As a
future study, we intend to test the proposed design on relatively complex action datasets
such as HMDB51 and UCF101. Moreover, the recent deep learning models can also be
considered for feature extraction and will study the less complexity feature fusion and
selection algorithms.
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