
sensors

Article

Vehicle Trajectory Estimation Based on Fusion of Visual Motion
Features and Deep Learning

Lianen Qu 1,2,* and Matthew N. Dailey 1

����������
�������

Citation: Qu, L.; Dailey, M.N. Vehicle

Trajectory Estimation Based on

Fusion of Visual Motion Features and

Deep Learning. Sensors 2021, 21, 7969.

https://doi.org/10.3390/s21237969

Academic Editors: Javier Alonso Ruiz,

Angel Llamazares and Martin Lauer

Received: 27 September 2021

Accepted: 26 November 2021

Published: 29 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information and Communication Technologies, Asian Institute of Technology, Klong Luang,
Pathum Thani 12120, Thailand; mdailey@ait.ac.th

2 International College, Qingdao University of Science and Technology, Qingdao 266061, China
* Correspondence: lianen.qu@qust.edu.cn

Abstract: Driver situation awareness is critical for safety. In this paper, we propose a fast, accurate
method for obtaining real-time situation awareness using a single type of sensor: monocular cameras.
The system tracks the host vehicle’s trajectory using sparse optical flow and tracks vehicles in the
surrounding environment using convolutional neural networks. Optical flow is used to measure
the linear and angular velocity of the host vehicle. The convolutional neural networks are used to
measure target vehicles’ positions relative to the host vehicle using image-based detections. Finally,
the system fuses host and target vehicle trajectories in the world coordinate system using the velocity
of the host vehicle and the target vehicles’ relative positions with the aid of an Extended Kalman
Filter (EKF). We implement and test our model quantitatively in simulation and qualitatively on real-
world test video. The results show that the algorithm is superior to state-of-the-art sequential state
estimation methods such as visual SLAM in performing accurate global localization and trajectory
estimation for host and target vehicles.

Keywords: optical flow; trajectory estimation; Extended Kalman Filter; deep learning; situation
awareness; Intelligent Driver Assistance Systems

1. Introduction

Intelligent Driver Assistance Systems (IDASs) must predict and update a model of
the scene around the vehicle in order to anticipate possible future collisions. This requires
localization and trajectory estimation, in which we must turn sensor observations into a
record of a moving vehicle’s position with respect to the surroundings.

In this paper, we propose a collection of new methods that together enable accurate
localization and trajectory estimation for a host vehicle equipped with monocular cameras
and target vehicles that are visible around the host vehicle. Localization refers to the
sequential state prediction techniques used to turn sensor observations into a record of
a moving vehicle’s position with respect to the surroundings. Most approaches to the
localization problem combine odometry information with observations of landmarks;
examples include SLAM, visual tracking, and 3D reconstruction (structure from motion).
The Extended Kalman Filter, particle filter, and grid-based methods are popular state
estimation methods for localization. Our primary interest is to combine visual odometry
techniques with image-based object detection and target vehicle trajectory estimation, all
in a common reference frame, in order to give a driver or an autonomous vehicle accurate
situation awareness.

Until recently, image-based object detection was insufficiently accurate and too re-
source intensive for use in a practical IDAS. However, more recently, the field has greatly
improved accuracy and runtime performance, primarily due to better feature extraction,
large-scale machine learning models, and low cost high performance embedded Graphical
Processing Units (GPU). Early methods for object detection using feature engineering
and classical machine learning techniques [1–3] have been supplanted by Deep Neural

Sensors 2021, 21, 7969. https://doi.org/10.3390/s21237969 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4794-7624
https://orcid.org/0000-0002-7191-3558
https://doi.org/10.3390/s21237969
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21237969
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21237969?type=check_update&version=4

Sensors 2021, 21, 7969 2 of 21

Networks (DNNs) [4–6]. With fast, accurate methods such as YOLO [7] now available, it is
finally possible to include sophisticated object detectors in an IDAS. However, although
we can adopt YOLO for its vehicle detection capabilities, an object detector cannot alone
precisely localize a detected vehicle in 3D. We therefore require new algorithms for precise
3D localization of vehicles detected in 2D by YOLO or comparable 2D object detectors.

To accomplish these goals, we propose a new method for situation awareness in an
IDAS that tracks the host vehicle’s velocity and the relative positions of target vehicles
around the host vehicle. The overall framework is shown schematically in Figure 1. The
algorithm performs these localization and target vehicle trajectory estimation tasks in a
common reference frame using the noisy but simple and low cost monocular camera as the
only sensor. The contributions are as follows:

1. We introduce a new method for estimation of the host vehicle’s linear and angular
velocity that uses optical flow and RANSAC.

2. We introduce a new method for estimating the instantaneous positions of any visible
vehicles (target vehicles) relative to the host vehicle using YOLO, a camera calibration
model, and a nonlinear optimization procedure.

3. We introduce a new solution to the multiple target tracking (MTT) problem under
conditions in which target vehicles switch from one camera view to another.

4. We introduce a sensor fusion method utilizing an extended Kalman filter with novel
system and sensor models.

 R and T
Computation

Relative Position
 0ptimization

(θ,s)

Association matrix
 Computation

 Velocity
Computation

Optical Flow

Right

Left

Back

Cameras

Association
 Tracking

 YOLO
Detection

Left Back

BackRight

Right

Left

Back

Trajectory
generation

Right

Left

Back

(1)

(2)

(3)

(5)

(4)

(5)

(5) (6)

Figure 1. Framework of proposed model. Our experiments use three cameras, one oriented back-
wards and two oriented approximately 45◦ outward from the side-view mirrors. The framework
estimates the linear velocity and angular velocity of the host vehicle using optical flow (1) followed
by RANSAC (3). In parallel, it predicts the relative positions between the host vehicle and any visible
target vehicles (2). The method also solves the problem of MTT under conditions in which target
vehicles switch from one camera view to another (4). The last step of the method performs sensor
fusion using an extended Kalman filter utilizing novel system and sensor models (5). The resulting
trajectories are fused into a common world coordinate system (6), then visualized for situation
awareness. Note: the data in part (6) are from Experiment II.

2. Related Work

For localization of a host vehicle under mobility in IDASs, Schubert et al. [8] compare
different motion models and find that a method assuming a constant yaw rate and acceler-
ation gives the best results. Berthelot et al. [9] and Tamke et al. [10] implement a model for
vehicle trajectory estimation. They find that estimated trajectories are precise if the vehicle
has movement consistent with the motion estimation model. Huang et al. [11] explore
methodologies for vehicle trajectory estimation that rely on differential global positioning
systems. Liu et al. [12] describe a trajectory prediction approach that relies on driving

Sensors 2021, 21, 7969 3 of 21

behavior prediction and classification using hidden Markov models. Sorstedt et al. [13]
consider driver control input parameters to obtain better estimates.

For localization of the host vehicle as well as surrounding vehicles in IDASs,
Schreier et al. [14] describe an integrated approach that predicts trajectories based on a
maneuver estimation model. Driving maneuvers are inferred for each vehicle with a
Bayesian network. Ammoun et al. [15] explore a collision risk estimation model that
predicts trajectories of surrounding vehicles.

As input to an IDAS, various sensors could be considered. Morris et al. [16] use LIDAR,
which is probably the most useful and reliable sensor for intelligent vehicles, in their vehicle
tracking and trajectory estimation system. Dickmann et al. [17] and Clarke et al. [18] use
radar in their autonomous driving system and driver assistance systems to model the
environment around the vehicle.

For target tracking, those methods can be categorized as either Single Target Track-
ing (STT) or Multiple Target Tracking (MTT) methods. The simplest and probably the
most frequently considered tracking problem is STT. MTT requires locating target posi-
tions, maintaining target identities, and generating target trajectories given an input video.
Basit et al. [19] employ CAMSHIFT for tracking of a single target for trajectory estima-
tion. Wojke et al. [20] propose deepSORT, an approach rely on the tracking-by-detection
paradigm. DeepSORT, when combined with accurate detectors like YOLO, has recently
achieved MTT performance that is sufficient for an IDAS.

Additionally, several studies in recent years have analyzed potential applications of
trajectory analysis and optimization to improve traffic flow in different scenarios. One
example is prediction and planning of Connected Automated Vehicle (CAV) arrivals at
intersections followed by optimization of those CAVs’ trajectories through the intersection
by an intersection controller [21,22].

Several authors have considered localization of a host vehicle under mobility in
IDASs [8–13]. These methods require integration of information from multiple sensors.
We are interested in how to bypass this limitation by using just a single sensor, the monoc-
ular camera, to track the host vehicle’s velocity, and the relative positions of each target
vehicle surrounding the host vehicle based on camera data alone.

Various sensors are useful for an IDAS, such as LIDAR [16] and radar [17,18]. Cameras
provide better information about object identity than LIDAR or radar, but position accuracy
is a challenge.

Some researchers have explored traffic forecasting issues. The goal of traffic forecasting
is to predict traffic conditions (e.g., traffic speed, flow, and type of traffic) network-wide
based on feeds from real-time traffic sensors, considering spatial and temporal correlations
to provide accurate real-time predictions that could be used to guide automated vehicles
in real time or city planners over longer terms [23,24]. The work described in this paper,
besides informing drivers of the current real-time situation, could also inform centralized
real-time traffic forecasting systems.

Recent monocular Visual Odometry (VO) tracking methods [25–30] use deep learning
models with a monocular front-facing camera to estimate odometery from visual motion.
The limitation of these deep learning methods in performing the VO task is that their
knowledge of VO is embedded implicitly in the deep learning model, which as a black
box, lacks the explainability of the explicit knowledge represented by the mathematical
relationship between optical flow and vehicle motion. Critically, none of this work attempts
to track target vehicles along with ego motion, the main focus of our work.

Once objects around the host vehicle are detected, they must be tracked. IDASs
require Multiple Target Tracking (MTT). Early methods used classical computer vision
techniques [19,31]. DeepSORT has recently achieved MTT performance that is sufficient
for an IDAS. We shall see that DeepSORT’s resource utilization is currently prohibitively
high for embedded systems usable in an IDAS, and it is unable to process multiple cameras
or handle targets that switch between cameras in real time. As our focus is on vehicle
trajectory estimation for vehicles traveling on city streets alongside multiple other vehicles

Sensors 2021, 21, 7969 4 of 21

using MTT, we propose a new algorithm for tracking the 3D positions of vehicles based on
multiple streams of 2D detections that also handles camera switching.

We now describe the proposed algorithm for estimation of host and target vehicle
trajectories then present experimental results and conclude the paper.

3. Proposed Method

Our method includes four steps: (1) camera calibration, (2) video processing with
optical flow to obtain estimates of linear and angular velocity for the host vehicle, (3) target
vehicle detection, relative position estimation, and tracking, and (4) fused vehicle trajectory
estimation.

3.1. Camera Calibration

Points (X, Y, Z)T in camera coordinates are mapped to points (fxX/Z + ux, fyY/Z +
vy, 1)T on the image plane according to a linear mapping in homogeneous coordinates

(fxX + Zux, fyY + Zvy, 1)T = K[I|0]Xcam. (1)

We estimate camera parameters fx, fy, vx, and vy along with radial distortion parameters
k1, k2, k3 and tangential distortion parameters p1 and p2 through a standard procedure
with a checkerboard. The radial distortion is relatively strong in our lenses, while the
tangential distortion is less prevalent. Adding the rotation R and translation of the center
of the camera C by −RC, we obtain

x = KR[I| − C]X = K[R|t]X = PX, (2)

where X is an arbitrary 3D point in the vehicle coordinate frame. In order to obtain R

and t, we perform an on-vehicle calibration. Using eight manually identified points on
the ground and eight corresponding points in the image, R and t are estimated relative to
the vehicle frame via Levenberg Marquardt nonlinear least squares minimization of the
projection error as implemented by OpenCV’s SolvePnP routine. This gives us a projection
matrix P for each camera.

3.2. Linear and Angular Velocity Computation from Optical Flow

We use the Lucas-Kanade optical flow algorithm, which is efficient but generates false
matches (outliers). This means mismatched points should be removed prior to motion
estimation. We use a variant of the random sample consensus (RANSAC) algorithm [32] to
remove outliers.

Algorithm 1 repeatedly computes optical flow, linear velocity ṡ, and angular velocity θ̇,
accounting for outliers and noisy flows. The method can precisely calculate camera motion
without a scale ambiguity, as accurate 3D positions of ground points are known when P

is known. RANSAC attempts to find the largest consensus set. If a majority of the points
are on the ground, the largest consensus set will necessarily include those points, as their
motion will be consistent with just one correct homography that can be calculated from
any inlier sample. Neither points off the ground nor incorrect correspondences will have
motion consistent with ground plane motion, so they will not be included in the consensus
set. To ensure that a majority of optical flows are indeed on the ground, we use ROIs that
include mostly ground points in the majority of driving situations see Figure 7 for the
RoIs). We estimate host vehicle velocities using optical flows with outliers assumed to be
for ground points, so the ROIs should include mostly ground points in the majority of
driving situations. On each iteration, we sample two corresponding pairs then compute R

and t using the SVD method that follows. In order to compute the rotational and linear
velocity of the host vehicle from optical flow, two sets of corresponding inlier points,
namely PG and QG, are acquired by steps (b)− (e), from frame Ii and Ii+1, separately. Let
PG = {p1, p2, ..., pn} and QG = {q1, q2, ..., qn} be two sets of corresponding points on the
plane. The motion model of the host vehicle is shown in Figure 2. In order to acquire

Sensors 2021, 21, 7969 5 of 21

rotation matrix R2×2 and translation vector t2×1 that optimally align the two sets PG and
QG, corresponding points pi and qi (i ∈ 1, 2, . . . n) should be approximately related by
rigid planar motion, i.e., [

px
py

]
i
≈ R

[
qx
qy

]
i
+ t, i = 1, 2, . . . n. (3)

The optimization problem can be considered as

R∗ = argmin
R

||Y− RX||F, (4)

where X is the set QG arranged as a 2× n matrix and Y is the set PG arranged also as a 2× n
matrix. We solve this optimization problem using the SVD, UΣVT = XYT , R = VUT .

Algorithm 1: Velocity from Optical Flow.
Require: Video V1, V2, and V3 from right, left, and back cameras with regions of interest R1, R2, and R3.
Ensure: θ̇ (angular velocity), ṡ (linear velocity).

Procedure:

1. Let t = 1 and acquire the first frame Ii
1 of Vi in gray scale, i = 1, 2, 3;

2. For each subsequent frame Ii
t+1 of input video, i = 1, 2, 3:

(a) Acquire frame Ii
t+1 in gray scale.

(b) Detect sub-pixel accurate corners in Ri for frame Ii
t to obtain feature set Qi

I .
(c) Calculate optical flow for Ii

t , Qi
I , and Ii

t+1 to obtain corresponding sparse feature set Pi
I using

Lucas-Kanade.
(d) Remove keypoints without correspondences from Pi

I and Qi
I .

(e) Project Pi
I and Qi

I from the image plane to the ground plane to obtain Pi
G and Qi

G using the camera
calibration information (P matrix) determined according to the method described in Section 3.1.

(f) Combine point set Pi
G and Qi

G , i = 1, 2, 3, separately to obtain ground point sets PG and QG .
(g) Remove outliers from PG and QG using RANSAC to obtain consistent ground plane point sets P′G

and Q′G .
(h) Compute rotation matrix R and translation vector t using P′G and Q′G .
(i) Compute the rotational velocity θ̇ and linear velocity ṡ using R and t.

return θ̇ and ṡ.

Figure 2. Schematic of vehicle motion model. s is the distance traveled (arc length), θ is the angle
turned, [px, py]T is the representation of a world point [x, y]T at time t + 1, and [qx, qy]T is the
representation of [x, y]T at time t. [tx, ty]T is the origin of the vehicle coordinate system at time t + 1
represented in the vehicle coordinate system at time t.

Sensors 2021, 21, 7969 6 of 21

After acquiring R and t in step (h), the linear and angular velocity of the vehicle over
the interval can be calculated simply as

θ̇ =
tan−1 r12

r11
∆t

, (5)

ṡ =
rθ

∆t
, (6)

where r11 and r12 are the first two elements of the first row of R. r =
ty

sin θ
is the turning

radius. Note that in addition to arc motions, for the particular case of straight motion of

the vehicle, θ = 0, and the linear velocity can be computed more simply as ṡ =
ty

∆t
, where

ty is the second element of t.

3.3. Object Detection and Relative Position Estimation Based On Deep Learning

The goal here is to achieve accurate target vehicle detection and relative position
estimation by fusion of CNN-based detection, camera calibration, and optimization. A com-
plete trajectory can be obtained from the dynamic sequence of target vehicle observations
over time.

3.3.1. Target Vehicle Detection

In order to perform target vehicle detection in real time, we use the YOLOv3 CNN
detection model for detection and classification. YOLOv3 [33] is based on the Darknet 53
CNN and has 106 layers.

3.3.2. 3D Backprojection to Obtain Relative Position

We define two planes, the image plane and the ground plane, and compute a projective
transformation from one plane to the other plane. The homography from the image plane
to the ground plane is obtained from the projective camera matrix P by removing the third
column of P. The process implicitly takes into account the camera’s height, orientation,
and position relative to the vehicle frame, as the ground points are specified in the vehicle
frame in the on-vehicle calibration process. The relationship can be writtenu

v
1

 = λHGIXG, (7)

where λ is an arbitrary scale factor. We also utilize the reverse mapping

XG =
1
λ
(HGI)

−1

u
v
1

. (8)

To obtain the relative position of a target, we first guess the relative position of the
target based on Equation (8) with the backprojection of the bottom center [u, v, 1]T of the
bounding box detected by YOLOv3. As the actual position of the target vehicle relative
to the backprojection of the bottom center of the bounding box is variable depending on
position and orientation, we use the backprojection as an initial guess, but then we refine
the guess via optimization. We use Levenberg Marquardt (LM) nonlinear least squares
for this purpose. Suppose that the width, length, and height of the target are w, l, and h,
respectively. Let the relative position of the target (x, y) be the center of the target cuboid
on the ground plane. The eight corners of the cuboid are:

Sensors 2021, 21, 7969 7 of 21

(x +
w
2

, y +
l
2

, 0), (x− w
2

, y +
l
2

, 0), (x +
w
2

, y− l
2

, 0), (x− w
2

, y− l
2

, 0),

(x +
w
2

, y +
l
2

, h), (x− w
2

, y +
l
2

, h), (x +
w
2

, y− l
2

, h), (x− w
2

, y− l
2

, h).

We project these eight points in 3D to the 2D image. We then pick the four corners of
the minimal bounding box enclosing the eight points. The objective function to minimize is
the difference between the predicted bounding and the detected bounding boxes in image
coordinates, more precisely,

(x∗, y∗) = argmin
(x,y)

|| f (x, y)− z||2, (9)

where z contains the u, v coordinates of the four corners of the bounding box detected
by YOLOv3. f (x, y) reprojects the 3D points to 2D points in the image and calculates the
minimum enclosing bounding box.

3.4. Visual Tracking and Camera Switch Processing

Target detection and target observation were discussed in Section 3.3. In this section,
we describe how the tracker maintains vehicle identity and handles camera switches
for targets.

3.4.1. Visual Track Handling

The tracking method integrates the predicted state x̂t, the detected bounding box ai for
each detection i, and the predicted bounding box bj for each tracked target j. In the system
state, estimates of the host vehicle and target vehicles’ positions and velocities are recorded.
In order to determine whether to match YOLO detection aj with predicted bounding box
bj calculated from the system state for target aj, we compute the IoU (Intersection over
Union) cost for the two bounding boxes:

SIoU = 1−
A(ai) ∩ A(bj)

A(ai) ∪ A(bj)
, (10)

where A(a) gives the set of pixels included in bounding box a. We repeat the calculation
for all ai, i ∈ 1 . . . n and bj, j ∈ 1 . . . m. We use the Hungarian algorithm to find the
association minimizing the total cost. For predicted targets that are matched, we save
the new detection’s bounding box with the correct track data structure. For unmatched
boxes, we create new track data structures and associated Kalman filter state variables.
The Kalman filter will on subsequent observations update the target vehicle states using
the predicted bounding boxes. Tracks for vehicles unmatched for td frames are deleted
from the Kalman filter’s state vector and covariance matrix. We found empirically that
when a vehicle is missed for seven or more frames, it is rarely recovered by the tracker. We
therefore set td = 7.

3.4.2. Camera Switches

To ensure consistent detection of all nearby vehicles, the system should be designed
with overlapping fields of view between cameras. As target vehicles in overlapping fields
of view may be detected in multiple cameras, we ensure that the tracker only uses one of
the three cameras, based on a heuristic evaluation of which camera should be used to track.
The heuristic is the size of the detected bounding box in each camera. Each target vehicle
is tracked in the camera for which its predicted bounding box is largest in the image. An
example is shown in Figure 3.

Sensors 2021, 21, 7969 8 of 21

Figure 3. Example target tracking and camera switching. (A) Example image set It containing
one target in backward camera. (B) Example image set It′ , t′ > t containing the same target in the
backward and right cameras. The area of the bounding box in right camera is larger than that in the
backward camera. At that point, tracking switches from the backward to the right camera. (C) The
target has disappeared in the backward camera but is tracked in the right camera.

3.5. Vehicle Trajectory Estimation

We employ an extended Kalman filter to fuse the host vehicle’s linear and angular
velocity with measured relative positions of target vehicles.

3.5.1. Vehicle State

The vehicle state xt describes the host vehicle’s instantaneous position, linear velocity,
and angular velocity, as well as target vehicles’ positions and velocities in the world
coordinate system:

xt =
[
xh

t , yh
t , θh

t , θ̇h
t , ṡh

t , x1
t , y1

t , ẋ1
t , ẏ1

t , . . . , xn
t , yn

t , ẋn
t , ẏn

t
]T ,

where (xh
t , yh

t) is the host vehicle’s position, θh
t is the host vehicle’s rotation in the world

coordinate system, θ̇h
t is the host vehicle’s 2D rotational velocity, and ṡh

t is the host vehicle’s
linear velocity. (xi

t, yi
t) and (ẋi

t, ẏi
t) are the position and velocity of vehicle i. n is the number

of vehicles. Since the number of vehicles being tracked varies dynamically over time, the
state vector and associated covariance matrices are expanded or collapsed as needed when
new vehicle tracks are created or destroyed. The system model is assumed to be

xt+1 = f(xt) + vt, (11)

where xt and xt+1 are the state at times t and t + 1, and vt ∼ N (0, Qt) is a Gaussian random
vector modeling the randomness in the state transition. f(·) is the system transition
function.

To define f(·), θ̇t is the rotational velocity around the z axis in the host vehicle co-
ordinate system. The orientation θt+1 in the world coordinate system at time t + 1 must
therefore be

θt+1 = θt + θ̇t∆t. (12)

The actual steering angular and linear velocity are not measured, so we assume any
change in linear or rotational velocity to be noise. The host vehicle velocity parameters can
thus be expressed as

θ̇t+1 = θ̇t (13)

ṡt+1 = ṡt. (14)

Sensors 2021, 21, 7969 9 of 21

With finite r, the vehicle’s displacement in the vehicle coordinate system is de-
scribed by [

tx
ty

]
= r
[

1− cos θ̇∆t
sin θ̇∆t

]
. (15)

For the particular case of straight movement, we can obtain[
tx
ty

]
=

[
0

ṡ∆t

]
. (16)

The host vehicle’s position at time t + 1 can be described as[
xt+1
yt+1

]
=

[
xt
yt

]
+

[
cos θt − sin θt
sin θt cos θt

][
tx
ty

]
. (17)

For the other vehicles, we assume linear dynamics
xi

t+1
yi

t+1
ẋi

t+1
ẏi

t+1

 =

xi

t
yi

t
ẋi

t
ẏi

t

+

∆t ẋi

t
∆tẏi

t
0
0

. (18)

To approximate nonlinear function f(·), we linearize around an arbitrary point x̂t, i.e.,

f(xt) ≈ f(x̂t) + Jf(x̂t)(xt − x̂t). (19)

Here Jf(x̂t) is the Jacobian evaluated at x̂t.

Jf(x̂t) =

[
∂f

∂xt

∣∣∣∣
x̂

]
(20)

3.5.2. Observation Model

We incorporate optical flow tracking of points on the ground and the deep learning
model capable of producing a prediction of the position of neighboring vehicles’ projections
into the image plane at time t to obtain estimated observations

zt =
[
θ̇′t, ṡ′t, x′1t , y′1t , . . . , x′nt , y′nt

]
, i = 0, 1, . . . n,

where θ̇′t, and ṡ′t are the measured angular and linear velocity of the host vehicle, respec-
tively. [x′it , y′it] are the measured relative offsets between the host vehicle and vehicle i. We
define the observation with an equation h(·) mapping the vehicle state xt to the corre-
sponding observation zt:

zt = h(xt) + wt, (21)

where wt ∼ N (0, St).
The homogeneous representation of target i’s bottom center [xv

t , yv
t , 1]T in the vehicle

coordinate system, assuming a flat ground plane, is calculated as

xvi
t

yvi
t
1

 = Tw/v
t

xi
t

yi
t

1

. (22)

Here the rigid transformation Tw/v
t maps from the world coordinate system to the

vehicle coordinate system at time t. The calculation can be repeated for each vehicle

Sensors 2021, 21, 7969 10 of 21

i ∈ 1, . . . , n. In detail, if we obtain a rotation matrix Rt from the vehicle’s orientation θh
t at

time t, the transformation matrix Tw/v
t is

Tw/v
t =

Rt −Rt

[
xh

t
yh

t

]
0 1

. (23)

Similar to the transition model f(·), we linearize h(xt) around arbitrary point x̂t using
the Jacobian evaluated at x̂t:

Jh(x̂t) =

[
∂h
∂x

∣∣∣∣
x̂t

]
. (24)

3.5.3. Initialization

To initialize the system state, we assume the host vehicle’s initial trajectory is accurately
represented by the optical flow between two initial frames. We calculate the angular velocity
and linear velocity as discussed in Section 3.2. We construct the first observation z0 without
including other vehicles in the system state:

z0 =
[
θ̂0, ŝ0

]
.

The initial state is obtained from z0, considering the position of the host vehicle to be
the origin at time t = 0. The initial state vector is thus

x0 = [0, 0, 0, θ̂0, ŝ0]
T .

Whenever new vehicles are detected, the observation zt includes the optimized posi-
tion of the vehicle relative to the host vehicle. The world position and orientation of the
host vehicle are initialized to zero, while the velocities of the host vehicle are initialized
from zt at time t, written as

zt =
[
θ̂t, ŝt, x̂1

t , ŷ1
t , . . . , x̂n

t , ŷn
t
]
, n = 0, 1, . . . n.

We likewise augment the state estimate xt with new entries for the new vehicle’s
position and velocity. We initialize the velocity of each target vehicle using the first two
frames in which it is detected.

3.5.4. Noise Parameters

For the system and sensor noise, the Kalman filter imposes the assumption of Gaussian
noise. We parameterize these noise distributions assuming reasonable correlations between
the system state and the noise. We assume that the observation noise is a linear function of
linear velocity, turning angle rate, and the other vehicles’ relative positions in the vehicle
coordinate system. We assume Rt is diagonal. We let the entries of Rt corresponding to
the angular and linear velocity be (α1 + α2

ˆ̇θt)2 and (α3 + α4 ˆ̇st)2. We let the entries of Rt
corresponding to the relative position be (α5 + α6 x̂i

t)
2 and (α7 + α8ŷi

t)
2.

We also suppose for simplicity that Qt, the state transition noise covariance, is diagonal.
For the host vehicle, the Qt elements corresponding to the positions are ∆2

t (η1 ˆ̇s + η2) and
∆2

t (η1 ˆ̇s + η2). The Qt element corresponding to the rotation is ∆2
t (η3

ˆ̇θ + η4). The Qt element
corresponding to the angular velocity is ∆2

t (η5
ˆ̇θ + η6). The Qt element corresponding to

the linear velocity is ∆2
t (η7 ṡh

t + η8). For the other vehicles, the Qt elements corresponding
to the position are ∆2

t (η9 ẋt + η10) and ∆2
t (η11ẏt + η12). The Qt elements corresponding

to the velocity of target vehicles are ∆2
t (η13 ẋt + η14) and ∆2

t (η13ẏt + η14). These noise
distributions are simplistic and ignore many factors, but they suffice for the experiments in
this paper. The parameters’ values are determined through a combination of analytical and
empirical methods. We begin with reasonable values based on analysis of the underlying
noise source, then we validate the parameters first in simulation and then in the real world.

Sensors 2021, 21, 7969 11 of 21

The parameters used in the experiments are as follows: α1 = α2 = 0.01, α3 = α4 = 0.02,
α5 = α7 = 0.6, α6 = α8 = 1, η2

1 = η2
2 = 0.2, η2

3 = η2
4 = 0.01, η2

5 = η2
6 = 0.01, η2

7 = η2
8 = 0.05,

η2
9 = η2

10 = 0.2, η2
11 = η2

12 = 0.2 and η2
13 = η2

14 = 1. These specific values reflect some
tuning to obtain smooth trajectories in the simulation experiments, but no changes were
necessary to obtain the reported results for the real-world experiments.

P0 denotes the initial state error. We propagate the observation error for z0 through
h(x0) and take into account the initial uncertainty about the optical flow.

3.5.5. Update Algorithm

The system state model and observation model are described in Section 3.5, Equa-
tions (11) and (21). The main difference with an ordinary Kalman filter is that when
updating the system state, the prediction method of the Extended Kalman Filter can be
propagated without an observation correction to deal with cases in which optical flow
fails due to key point mismatches or features undetected in the field of view. Under such
conditions, we assume the observation zt is not available, so we estimate the system state
and allow propagation (diffusion) of the state covariance without an observation update.
This means only the prediction step is implemented, without a correction, when optical
flow is unavailable.

4. Results and Discussion

We evaluate the proposed model with five experiments. All simulations were im-
plemented in Python with synthetic data. First, we perform a simulation to estimate the
robustness of the proposed method for linear and angular velocity estimation for the host
vehicle. The simulation allows analysis with different noise levels and different outlier
ratios for synthetic optical flow. Our method is compared with a state of the art visual
odometry method, ORB-SLAM. Second, we perform a simulation to quantitatively evaluate
the accuracy of trajectory estimation for the host vehicle and target vehicles. Third, we
evaluate the target vehicle tracker module under real-world motion between cameras.
This experiment provides a quantitative assessment of the system’s ability to handle cam-
era switches for target vehicles. Fourth, we perform experiments that combine optical
flow, YOLOv3, Hungarian association, and the Extended Kalman Filter for estimating
the trajectories of the host vehicle and target vehicles in the real world. Since there is
no ground truth, the evaluation is qualitative, but integrated real-world runs do indicate
the effectiveness of the method. Finally, we compare estimated trajectories generated by
the proposed method with those of ORB-SLAM. This provides evidence of the proposed
method’s robustness compared to the predominant alternative method for ego-motion
estimation based on monocular cameras. All of the experiments were implemented using
C++, the OpenCV library, and Python. We tested the runtime performance of the proposed
model on a 2.50 GHz× 4 Intel Core i5 laptop running 64-bit Ubuntu Linux with an NVIDIA
GeForce MX150 as well as on an NVIDIA Jetson TX2.

In order to evaluate the proposed method, we prepared two video datasets for Ex-
periment V. We mounted three cameras, one oriented backwards at the top of the rear
windshield and two cameras oriented at approximately 45◦ from the side-view mirrors. The
first dataset was collected on a long, nearly straight road in a college campus. We recorded
from three cameras concurrently during driving time of approximately five minutes. Thirty
six target vehicles appeared in the field of view of one or more cameras during the run. The
second dataset was collected on a winding road comprising a straight segment of 100 m,
a left turn of 150 m, a straight segment of 150 m, and then a turn right of 100 m. Twenty
two target vehicles appeared in the field of view of one or more cameras during this run.
Although there were no sudden sharp turns, the winding curves were sharp enough to
disrupt monocular visual SLAM but did not disrupt optical flow.

Sensors 2021, 21, 7969 12 of 21

4.1. Experiment I (Velocity Estimate Comparison Using Simulation Data)

We conducted a simulation in which we compared the proposed method’s estimates
of host vehicle velocity to those of visual SLAM under various noise levels and outlier
ratios with synthetic optical flow feature point generation.

4.1.1. Results

The experimental conditions and outcomes we obtained are shown in Table 1. In each
simulation, we specify a hard-coded ground truth trajectory, then we use that trajectory
to synthesize optical flows for random points on the ground plane. We give ORB-SLAM
sufficiently clean initialization data that it can estimate an exact initial homography, thereby
addressing monocular SLAM’s inherent scale ambiguity. We add Gaussian noise and
outliers to the synthetic data in the synthetic image plane. Since we generally observe
real-world outlier ratios between 6% and 69%, in the simulation experiments, we perform
experiments with two levels of outlier ratio: 40% and 70%. We add Gaussian random noise
to each image point with σ = 1.0, 2.0, or 3.0.

Table 1. Experiment I (linear and angular velocity accuracy) results. L_RMSEpg (m/s) compares predicted values to ground
truth for linear velocity using the full system. L_RMSEmg (m/s) compares raw observations without Kalman filtering
to ground truth for linear velocity. A_RMSEpg (rad/s) compares predicted values to ground truth for angular velocity.
A_RMSEmg (rad/s) compares raw observations to ground truth for angular velocity. Values are means plus or minus
standard deviations over 10 runs. The simulation uses a constant host vehicle angular velocity of θ̇ = −0.01 rad/s and a
linear velocity of ṡ = 15 m/s. OR = Outlier Ratio, GN = Gaussian Noise, P = Proposed Model, O = ORB-SLAM

OR GN P L_RMSEpg P L_RMSEmg O L_RMSE6pg P A_RMSEpg P A_RMSEmg O A_RMSEpg

0 σ = 0 0 0 0.050 ± 0.003 0 0 0.008 ± 0.003

σ = 1.0 0.070 ± 0.003 0.197 ± 0.008 0.188 ± 0.004 0.020 ± 0.003 0.051 ± 0.002 0.030 ± 0.002
40% σ = 2.0 0.171 ± 0.006 0.466 ± 0.025 0.189 ± 0.002 0.032 ± 0.003 0.120 ± 0.006 0.035 ± 0.002

σ = 3.0 0.285 ± 0.009 1.400 ± 0.064 0.199 ± 0.003 0.088 ± 0.029 0.172 ± 0.005 0.051 ± 0.004

σ = 1.0 0.082±0.005 0.236 ± 0.010 0.176 ± 0.010 0.019 ± 0.002 0.062 ± 0.002 0.049 ± 0.002
70% σ = 2.0 0.204 ± 0.008 0.970 ± 0.010 0.220 ± 0.015 0.094 ± 0.002 0.148 ± 0.002 0.084 ± 0.003

σ = 3.0 0.336 ± 0.021 6.411 ± 0.032 0.231 ± 0.032 0.101 ± 0.003 0.215 ± 0.021 0.091 ± 0.001

4.1.2. Discussion

The results show that for Gaussian random noise with σ = 1.0 and σ = 2.0, our
proposed method is better than visual SLAM. When the noise levels are more substantial
(σ = 3.0), visual SLAM is better than the proposed method.

4.2. Experiment II (Trajectory Estimation in Simulation)

Besides instantaneous velocity estimation, to verify the correctness and effective-
ness of the overall trajectory estimation approach, we evaluated predicted trajectories
quantitatively in four simulations.

4.2.1. Results

The first two simulations were performed without target vehicles, and the last two sim-
ulations included target vehicles. A detailed list of experimental conditions and outcomes
is shown in Table 2.

In each simulation, we generated ground truth and noisy observation data for the
host vehicle and target vehicles. For the host vehicle, the data consist of synthetic optical
flow for the scene surrounding the host vehicle, from which the method must estimate
odometry (angular and linear velocity). For the target vehicles, the data are exact (run 3)
or noisy (run 4) observations of target vehicles’ simulated relative positions assuming
appropriate velocities. During the simulation, target vehicles are assumed to be correctly
detected inside each camera’s field of view until they exit the camera view.

Sensors 2021, 21, 7969 13 of 21

Table 2. Experiment II (trajectory estimation in simulation) results. RMSEpg compares predicted values to ground truth,
RMSEmg compares raw observations to ground truth.

Host Vehicle Target Vehicle(s) Performance

Noise: 0
Angular velocity: θ̇ = −0.01 rad/s.

Linear velocity: ṡ = 15 m/s.
No vehicle

Estimated host vehicle path tracks ground
truth path perfectly. Angular and linear

velocity track the ground truth. Host vehicle
position: RMSEpg= 0, RMSEmg= 15,613.221.

No vehicle
Host vehicle’s path is tracked smoothly.
Host vehicle position: RMSEpg = 25.236,

RMSEmg = 21,236.324.

Angular velocity: θ̇ = −0.01 rad/s.
Linear velocity: ṡ = 15 m/s.
Percentage of outliers: 10%.

Noise: Gaussian with Qt fixed.

Three vehicles are simulated.
Left vehicle: x = −5 m, y = −10 m;
Right vehicle: x = 5 m, y = −10 m;
Back vehicle: x = 0 m, y = −11 m.

Noise: 0.

Host vehicle path is tracked smoothly, and
target vehicles’ paths fit the host vehicle’s path.

Host vehicle position: RMSEpg = 64.231,
RMSEmg = 2,121,545.342. Target vehicle

relative position: RMSEpg = 3.341,
RMSEmg = 0.

Three vehicles are simulated as
above with noise: x: 40%, y: 50%.

Details are given in Section 3. Host vehicle
position: RMSEpg = 47.34, RMSEmg = 24,456.63.

Target vehicle relative position:
RMSEpg = 2.272, RMSEmg = 5.59.

In each simulation, to model the sensor observations, we first project the synthetic
data into the image plane. We use 10% outliers in the optical flow. We add Gaussian
random noise to each optical flow point in each image with σ = 2.0 and use the noisy
data to compute the velocity of the host vehicle. We reproject image points to the ground
plane to compute θ̇ and ṡ according to the method described in Section 3. In simulation 3
and 4, we add three target vehicles with three different speeds to the simulation. The speed
of the target vehicle on the left is slower than that of the host vehicle. The speed of the
target vehicle on the right is faster than the host vehicle. The speed of the target vehicle
behind the host vehicle matches the host vehicle. The estimated host vehicle velocities
in the first two simulations are shown in Figure 4. The estimated host vehicle and target
vehicle trajectories over the fourth simulation are shown in Figure 5. The estimated relative
positions of the three target vehicles over the fourth simulation are shown in Figure 6.

Figure 4. Experiment II (velocity estimation in simulation) results. Left: ṡ is the linear velocity of the host vehicle. Right: θ̇ is
the angular velocity of the host vehicle. Ground truth is a constant 15 m/s and −0.01 rad/s. Green lines show estimated
values from the proposed model. Orange lines are the noisy observations. The filter is effective at smoothing the velocity of
the host vehicle.

Sensors 2021, 21, 7969 14 of 21

Figure 5. Experiment II (trajectory estimation in simulation) results. Global location of the host vehicle and three
target vehicles with different speeds are shown. The host and three target vehicles followed the gray paths. Absolute
trajectory estimates are biased because of accumulated host vehicle positioning error. Noise was added to optical
flow and the detected relative positions of the target vehicles. The blue path shows the estimated host vehicle path.

Figure 6. Experiment II (trajectory estimation in simulation) results. Relative position of host vehicle and target vehicles
estimated by the proposed model. Relative position error with sensor-only observation is shown in orange, and relative
position error after correction by the model is shown in green. We observe that the filter is able to smooth the relative
positions of the target vehicles. The green, cyan, and orange paths show target vehicle paths with filtering. The red,
magenta, and yellow lines are the estimated paths of the target vehicles without filtering. The graphic on the right
magnifies the graphic on the left in the range: x ∈ [100. . . 300], y ∈ [500. . . 800]. Target vehicle paths are smoother under the
proposed method.

Sensors 2021, 21, 7969 15 of 21

4.2.2. Discussion

This experiment allows us to compare the performance of sensor-only estimation
and model-based correction under the same conditions, with the simulation of optical
flows proceeding the same as in Experiment I, except that we also simulate ground truth
trajectories and noisy YOLO detections for a set of target vehicles. Clearly, the estimated
relative positions are substantially smoother than the raw observations.

4.3. Experiment III (Visual Tracking Evaluation)

In this experiment, We tested the target vehicle tracker in a real world environment
with vehicles moving between camera views. As a point of comparison, one of the best
known state-of-the-art multiple object tracking methods is DeepSORT. To determine the
relative accuracy and resource utilization of our method compared to the state of the art,
we compare the proposed model to DeepSORT in terms of accuracy and frame rate, on
both an unconstrained system and a resource-constrained system.

4.3.1. Results

Results are shown in Table 3 and Figure 7. Table 3 lists the results of three separate
runs on different roads. Figure 7 shows image sets and tracking results for one run. In the
run shown in Figure 7 on the first frame, two vehicles are detected in the backward camera,
and tracking begins. Target No. 1 appears in the three cameras, one after another.

Table 3. Experiment III (tracking model) results. TFs = Total Frames, GT IDs = Number of Ground
Truth IDs, IDS = Number of ID Switches, P = Proposed Model, DS = DeepSORT, SSBC = Number of
Successful Switches Between Cameras.

Place Camera TFs GT IDs P IDS P SSBC DS IDS DS SSBC

left 2 0 0
I right 3245 17 2 19 2 0

back 35 6 4

left 0 0 0
II right 1493 11 3 11 3 0

back 25 4 2

left 0 0 0
III right 2236 6 2 6 2 0

back 16 4 3

4.3.2. Discussion

On the unconstrained system, an Intel i5 with GPU, DeepSORT’s tracking accuracy is
almost identical to our method’s accuracy, as they are both tracking by detection methods
using the same detector (YOLOv3). DeepSORT has a nearly negligible advantage in ID
switches, as its deep association metric is sometimes able to maintain track identity when
multiple vehicles cause a tracking error in our system. However, the processing speed of
the proposed model is substantially faster than DeepSORT on the Intel system. The mean
speed of our proposed method is approximately 30 fps, whereas the speed of DeepSORT is
about 21 fps. On the NVIDIA Jetson TX2, which we set up to concurrently process streams
from three cameras, the processing speed for our method was approximately 5 fps for
each of three concurrent video streams (15 fps total). But with DeepSORT as the tracker,
we found that the system cannot run alongside the detector and optical flow modules
concurrently, due to memory constraints. An additional limitation is that DeepSORT
cannot deal with target vehicle switching between cameras. In contrast, the proposed
system explicitly deals with parallel processing of three cameras with overlapping views
and seamlessly processes target switches between cameras. We conclude that our tracker
provides near state-of-the-art accuracy with far less resource utilization than DeepSORT.

Sensors 2021, 21, 7969 16 of 21

Figure 7. Experiment III (visual tracking evaluation) results. Row (A): example images in which a vehicle is detected and
tracked by the back-side camera. This target was also visible in the left-side view but was not detected. Row (B): example
images acquired when the vehicle exits the left-side camera view and enters the right-side and the back-side cameras views.
This target vehicle was tracked in the back-side camera. Row (C): example images acquired as the vehicle moves from the
back-side view to the right-side camera view. This vehicle was detected in frame 259 in the right-side view. Switching to the
right-side camera is successful. Row (D): example image set acquired after the target has exited the back-side view. This
vehicle continues to be tracked by the right-side camera. Row (E): example image set in which the target has exited the field
of view in the right camera. This vehicle was mis-detected in the backward camera at frames 234, 235, and 236. It was then
re-detected and tracked successfully.

4.4. Experiment IV (Velocity and Trajectory Estimation in Real World)

In comparisons between estimated target vehicle position and ground truth, we find
that the maximum error in relative position estimation is 5.3%. From these results, we
conclude that the accuracy of the camera calibration and the relative localization method
based on camera calibration is sufficient for our purposes.

4.4.1. Results

As it is difficult to obtain ground truth data under real world conditions, we perform
a qualitative evaluation of the integrated system’s ability to predict the host vehicle’s
velocity and host and target vehicle trajectories in real scenes. In Figures 8 and 9, we show
estimated velocities and trajectories for the host vehicle and some example targets in the
world coordinate system.

Sensors 2021, 21, 7969 17 of 21

Figure 8. Experiment IV (velocity and trajectory estimation in real world) results. The proposed
model was tested in a real-world environment. Host vehicle ran with three target vehicles on two
different roads. The left graphic shows a scenario in which the host vehicle was driven on a straight
road. The graphic shows the paths of the host vehicle and two example target vehicles. The green
line shows the host vehicle path on the road. The red and orange lines show the first and second
target vehicle paths, separately. The first target vehicle moves from the left side to the right side of
the host vehicle. Later, another target vehicle passes the host vehicle on its left side. The right graphic
shows one host vehicle and one target vehicle. The host vehicle was driven on a ‘S’ shaped curved
road. The green and red lines show the host vehicle and target vehicle path, separately. The target
vehicle follows the host vehicle for some time and then passes the host vehicle on the right.

Figure 9. Experiment IV (velocity and trajectory estimation in real world) results. The proposed
tracking algorithm was tested in a real-world environment with target vehicles on two roads. Upper
left: linear velocity on road 1. Upper right: angular velocity on road 1. Lower left: linear velocity on
road 2. Lower right: angular velocity on road 2. The velocity (linear and angular) with sensor-only
observations is shown in orange, and relative positions after correction by the model are shown in
green. We observe that the filter is able to smooth the linear and angular velocity of the host vehicle.

Sensors 2021, 21, 7969 18 of 21

In each run, the host vehicle starts parked. We record this initial position as (0, 0), and
we compute the velocity of the host vehicle starting from the second frame of optical flow.
Target vehicle positions are initialized from the second frame they are detected in. We use
YOLOv3 to detect target vehicles, we use the camera calibration model to measure relative
position, and we use the Hungarian algorithm to associate detections with tracks.

4.4.2. Discussion

The proposed approach provides less noisy, more smooth, and more stable estimates
of the vehicle’s trajectory than the raw observations. During tracking, some targets are
missed temporarily. This is due to partial occlusion. In order to deal with this problem, we
perform system state prediction without an update computation in the Kalman filter.

4.5. Experiment V (Comparison between Proposed Method and Visual-SLAM)

To compare the performance of the proposed approach with a state-of-the-art monoc-
ular visual odometry method, we carried out two tests.

4.5.1. Results

We compare the results of our model with a ROS-based monocular visual SLAM
method, ORB-SLAM [34]. For the ground truth, we manually traced the host vehicle’s
trajectories on satellite maps. We qualitatively compare results from the proposed method
to those of ORB-SLAM. ORB-SLAM generates a sparse feature point cloud as the map
then localizes the camera within that map for each keyframe. The sequence of keyframe
estimates give the estimated vehicle trajectory. The results of the experiment are displayed
in Figure 10.

V-SLAMProposed ModelSample Frame

Trajectory Trajectory and Point Cloud

Trajectory and Point CloudTrajectory

Figure 10. Experiment V (comparison between proposed method and visual SLAM) results. Row 1
shows results for a long straight road. Black dotted lines indicate the border of the road. Pink dotted
lines indicate the ground truth center of the road. Orange lines indicate estimated trajectories of the
host vehicle. ORB-SLAM was not able to detect features in frames 2790-3245. When ORB-SLAM
relocalizes the vehicle, it estimates an incorrect trajectory for the host vehicle. The proposed model,
on the other hand, is able to maintain a much more accurate trajectory. Row 2 shows results for a
winding road. In this condition, ORB-SLAM works for only a short period of time. After that, it
falls and cannot relocalize. The proposed model maintains a smooth trajectory until the host vehicle
parks. We conclude that the proposed model for trajectory estimation of the host vehicle is better
than ORB-SLAM in outdoor road environments.

4.5.2. Discussion

They show that our approach is more robust and provides a good approximation to
the vehicle’s trajectory in real world driving situations. ORB-SLAM, on the other hand, is
only able to generate an estimated trajectory for the host vehicle, not for target vehicles.

Sensors 2021, 21, 7969 19 of 21

5. Conclusions

This paper presents a new method for estimating vehicle trajectories from video
sequences captured by moving cameras without additional sensors. The host vehicle’s
instantaneous velocity is estimated using optical flow with RANSAC. Target vehicles in
the frame are detected by a deep learning model. Relative positions of target vehicles are
obtained using a perspective transformation and a new optimization method. We use an
extended Kalman filter to track host vehicle linear velocity, host vehicle angular velocity,
and relative positions of target vehicles, resulting in precise host and target vehicle trajectory
estimates in a common world coordinate system. In a series of experiments, we show that
the new method substantially reduces the trajectory errors, relative position estimation
errors, linear velocity errors, and angular velocity errors inherent in the use of a noisy
sensor. The new method also compares favorably against state of the art visual odometry
and tracking methods in terms of accuracy and resource utilization. We conclude that
the method is an extremely good candidate for the next phase of commercial exploitation,
given sufficient compute power.

The main limitation of the method is the assumption that the host vehicle and all target
vehicles move on a common flat ground plane. In the current version of the system, when
this assumption is violated, such as when the host vehicle goes over a speed bump, the
estimated velocity of the host vehicle will be erroneous, and estimated relative positions
of the vehicle will vary from the ground truth. In future work, we plan to eliminate
this limitation, further test the algorithm on a vehicle-based embedded camera system,
experiment with more sophisticated trackers, and develop a reasonably priced consumer
grade real time display for driving situation awareness.

Author Contributions: Methodology, M.N.D. and L.Q.; software, L.Q.; validation, L.Q.; writing-
original draft preparation, L.Q.; writing-review and editing, M.N.D.; visualization, L.Q.; supervision,
M.N.D.; All authors have read and agreed to the published version of the manuscript.

Funding: L.Q. was supported by a scholarship from the China Scholarship Council and a postgradu-
ate fellowship from the Asian Institute of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EKF Extended Kalman Filter
IDASs Intelligent Driver Assistance System
MTT Multiple Target Track
OR Outlier Ratio
GN Gaussian Noise
P Proposed Model
O ORB SLAM
L_RMSE RMSE of linear velocity
A_RMSE RMSE of angular velocity
pg Predicted values to ground truth
mg Measurement values to ground truth.
TFs Total Frames
GT IDs Number of GroundTruth IDs
IDS Number of ID Switches
DS DeepSORT
SSBC Number of Successful Switches Between Cameras

Sensors 2021, 21, 7969 20 of 21

References
1. Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained part-based models.

IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1627–1645. [CrossRef] [PubMed]
2. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001.
3. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005.
4. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In

Proceeding of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

5. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; pp. 1440–1448.

6. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances
in Neural Information Processing Systems 28 (NIPS 2015); Cortes, C., Lawrence, N., Lee, D., Sugiyamam, M., Garnett, R., Eds.;
Neural Information Processing Systems Foundation Inc.: San Diego, CA, USA, 2015; pp. 91–99.

7. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

8. Schubert, R.; Richter, E.; Wanielik, G. Comparison and evaluation of advanced motion models for vehicle tracking. In Proceedings
of the 2008 11th International Conference on Information Fusion, Cologne, Germany, 30 June–3 July 2008; pp. 1–6.

9. Berthelot, A.; Tamke, A.; Dang, T.; Breuel, G. Handling uncertainties in criticality assessment. In Proceedings of the 2011 IEEE
Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 571–576.

10. Tamke, A.; Dang, T.; Breuel, G. A flexible method for criticality assessment in driver assistance systems. In Proceedings of the
2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 697–702.

11. Huang, J.; Tan, H.-S. Vehicle future trajectory prediction with a DGPS/INS-based positioning system. In Proceedings of the 2006
American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; p. 6.

12. Liu, P.; Kurt, A.; Özgüner, Ü. Trajectory prediction of a lane changing vehicle based on driver behavior estimation and classifica-
tion. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China,
8–14 October 2014; pp. 942–947.

13. Sorstedt, J.; Svensson, L.; Sandblom, F.; Hammarstrand, L. A new vehicle motion model for improved predictions and situation
assessment. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1209–1219. [CrossRef]

14. Schreier, M. Bayesian environment representation, prediction, and criticality assessment for driver assistance systems.
at-Automatisierungstechnik 2017, 65, 151–152. [CrossRef]

15. Ammoun, S.; Nashashibi, F. Real time trajectory prediction for collision risk estimation between vehicles. In Proceedings of the
2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 27–29
August 2009; pp. 417–422.

16. Morris, D.; Haley, P.; Zachar, W.; McLean, S. Ladar-based vehicle tracking and trajectory estimation for urban driving. arXiv 2017,
arXiv:1709.08517

17. Dickmann, J.; Klappstein, J.; Hahn, M.; Appenrodt, N.; Bloecher, H.-L.; Werber, K.; Sailer, A. Automotive radar the key technology
for autonomous driving: From detection and ranging to environmental understanding. In Proceedings of the 2016 IEEE Radar
Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016; pp. 1–6.

18. Clarke, D.; Andre, D.; Zhang, F. Synthetic aperture radar for lane boundary detection in driver assistance systems. In Proceedings
of the 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden,
Germany, 19–21 September 2021; pp. 238–243.

19. Basit, A.; Qureshi, W.S.; Dailey, M.N.; Krajník, T. Joint localization of pursuit quadcopters and target using monocular cues. J.
Intell. Robot. Syst. 2015, 78, 613–630. [CrossRef]

20. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017
IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649.

21. Yao, Z.; Jiang, H.; Cheng, Y.; Jiang, Y.; Ran, B. Integrated Schedule and Trajectory Optimization for Connected Automated Vehicles
in a Conflict Zone. IEEE Trans. Intell. Transp. Syst. 2020, 1–11. [CrossRef]

22. Soleimaniamiri, S.; Ghiasi, A.; Li, X.; Hunag, Z. An analytical optimization approach to the joint trajectory and signal optimization
problem for connected automated vehicles. Transp. Res. Part C Emerg. Technol. 2020, 120, 102759. [CrossRef]

23. Zambrano-Martinez, J.L.; Calafate, C.T.; Soler, D.; Cano, J.-C.; Manzoni, P. Modeling and Characterization of Traffic Flows in
Urban Environments. Sensors 2018, 18, 2020. [CrossRef] [PubMed]

24. Min, W.; Wynter, L. Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C Emerg. Technol. 2011,
19, 606–616. [CrossRef]

25. Pandey, T.; Pena, D.; Byrne, J.; Moloney, D. Leveraging Deep Learning for Visual Odometry Using Optical Flow. Sensors 2021,
21, 1313. [CrossRef] [PubMed]

26. Zhai, G.; Liu, L.; Zhang, L.; Liu, Y.; Jiang, Y. PoseConvGRU: A Monocular Approach for Visual Ego-motion Estimation by
Learning. Pattern Recognit. 2020, 102, 107187. [CrossRef]

http://doi.org/10.1109/TPAMI.2009.167
http://www.ncbi.nlm.nih.gov/pubmed/20634557
http://dx.doi.org/10.1109/TITS.2011.2160342
http://dx.doi.org/10.1515/auto-2016-0129
http://dx.doi.org/10.1007/s10846-014-0081-2
http://dx.doi.org/10.1109/TITS.2020.3027731
http://dx.doi.org/10.1016/j.trc.2020.102759
http://dx.doi.org/10.3390/s18072020
http://www.ncbi.nlm.nih.gov/pubmed/29937507
http://dx.doi.org/10.1016/j.trc.2010.10.002
http://dx.doi.org/10.3390/s21041313
http://www.ncbi.nlm.nih.gov/pubmed/33673119
http://dx.doi.org/10.1016/j.patcog.2019.107187

Sensors 2021, 21, 7969 21 of 21

27. Bian, J.W.; Li, Z.; Wang, N.; Zhan, H.; Shen, C.; Cheng, M.M.; Reid, I. Unsupervised scale-consistent depth and ego-motion
learning from monocular video. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS
2019), Vancouver, BC, Canada, 8–14 December 2019.

28. Wang, S.; Clark, R.; Wen, H.; Trigoni, N. Deepvo: Towards end-to-end visual odometry with deep recurrent convolutional neural
networks. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3
June 2017.

29. Zhou, T.; Brown, M.; Snavely, N.; Lowe, D.G. Unsupervised Learning of Depth and Ego-Motion from Video. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6612–6619.

30. Li, R.; Wang, S.; Long, Z.; Gu, D. Undeepvo: Monocular visual odometry through unsupervised deep learning. In Proceedings of
the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018.

31. Munaro, M.; Basso, F.; Menegatti, E. Tracking people within groups with RGB-D data. In Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012.

32. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

33. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
34. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular slam system. IEEE Trans. Robot.

2015, 31, 1147–1163. [CrossRef]

http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1109/TRO.2015.2463671

	Introduction
	Related Work
	Proposed Method
	Camera Calibration
	Linear and Angular Velocity Computation from Optical Flow
	Object Detection and Relative Position Estimation Based On Deep Learning
	Target Vehicle Detection
	3D Backprojection to Obtain Relative Position

	Visual Tracking and Camera Switch Processing
	Visual Track Handling
	Camera Switches

	Vehicle Trajectory Estimation
	Vehicle State
	Observation Model
	Initialization
	Noise Parameters
	Update Algorithm

	Results and Discussion
	Experiment I (Velocity Estimate Comparison Using Simulation Data)
	Results
	Discussion

	Experiment II (Trajectory Estimation in Simulation)
	Results
	Discussion

	Experiment III (Visual Tracking Evaluation)
	Results
	Discussion

	Experiment IV (Velocity and Trajectory Estimation in Real World)
	Results
	Discussion

	Experiment V (Comparison between Proposed Method and Visual-SLAM)
	Results
	Discussion

	Conclusions
	References

