
sensors

Article

A Smart Contract-Based Dynamic Consent Management System
for Personal Data Usage under GDPR

Mpyana Mwamba Merlec 1 , Youn Kyu Lee 2,* , Seng-Phil Hong 3 and Hoh Peter In 1,*

����������
�������

Citation: Merlec, M.M.; Lee, Y.K.;

Hong, S.-P.; In, H.P. A Smart

Contract-Based Dynamic Consent

Management System for Personal

Data Usage under GDPR. Sensors

2021, 21, 7994. https://doi.org/

10.3390/s21237994

Academic Editor:

Joaquin Ordieres Meré

Received: 26 October 2021

Accepted: 25 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea; mlecjm@korea.ac.kr
2 Department of Computer Engineering, Hongik University, Seoul 04066, Korea
3 Management Support Division, Hancom WITH, Inc., Pangyo 13493, Korea; sengphil@hancom.com
* Correspondence: younkyul@hongik.ac.kr (Y.K.L.); hoh_in@korea.ac.kr (H.P.I.)

Abstract: A massive amount of sensitive personal data is being collected and used by scientists,
businesses, and governments. This has led to unprecedented threats to privacy rights and the security
of personal data. There are few solutions that empower individuals to provide systematic consent
agreements on distinct personal information and control who can collect, access, and use their data
for specific purposes and periods. Individuals should be able to delegate consent rights, access
consent-related information, and withdraw their given consent at any time. We propose a smart-
contract-based dynamic consent management system, backed by blockchain technology, targeting
personal data usage under the general data protection regulation. Our user-centric dynamic consent
management system allows users to control their personal data collection and consent to its usage
throughout the data lifecycle. Transaction history and logs are recorded in a blockchain that provides
trusted tamper-proof data provenance, accountability, and traceability. A prototype of our system
was designed and implemented to demonstrate its feasibility. The acceptability and reliability of
the system were assessed by experimental testing and validation processes. We also analyzed the
security and privacy of the system and evaluated its performance.

Keywords: blockchain; data privacy and security; dynamic consent management; general data
protection regulation (GDPR); smart contract

1. Introduction

An enormous amount of sensitive personal data is being collected and used by sci-
entists, businesses, and governments. This has led to unprecedented threats to personal
privacy rights and the security of personal data [1,2]. Furthermore, owing to a lack of
sufficient transparency, accountability, and user control on personal data usage in tradi-
tional centralized systems, personal data has lately been reused for mass surveillance
and censorship purposes [3,4]. Data protection authorities are obliged to elucidate the
requirements of lawful personal data uses. The European Union (EU) data protection board
has published a bill on the need to safeguard personal information [4]. The General Data
Protection Regulation (GDPR) mandates institutions, regardless of their location, to have
a legal basis to collect and use personal data of EU members’ citizens and residents [5].
Consent is seen as one of the legal foundations for collecting and processing data under the
GDPR. However, consent is judged valid only when it is freely given, specific, informed,
and unambiguous. Legal guardians must consent on behalf of minors. Individuals are also
given the right to change, withdraw, or revoke consent at any time.

1.1. Dynamic Consent Management

Dynamic consent management (DCM) is a novel means of engaging individuals in
the use of their personal information [6–14]. It aims to address the limitations of paper-
based and static consent methods, which afford fewer possibilities and less flexibility for
people to systematically define and manage their consent preferences. The basic concept

Sensors 2021, 21, 7994. https://doi.org/10.3390/s21237994 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8458-4706
https://orcid.org/0000-0002-4569-2640
https://orcid.org/0000-0003-4391-7313
https://orcid.org/0000-0003-4192-4122
https://doi.org/10.3390/s21237994
https://doi.org/10.3390/s21237994
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21237994
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21237994?type=check_update&version=3

Sensors 2021, 21, 7994 2 of 24

of DCM is to give control back to the users to dynamically manage their consent on
personal data collection and usage [7–9]. However, transparency, accountability, security,
and privacy, which are difficult to achieve with traditional dynamic consent management
systems (DCMSs) that rely on trusted third parties (TTP), should be sufficiently guaranteed.
Information technologies are used to satisfy legal and regulatory requirements for consent
agreements and provide personalized interfaces for user interactions. DCMSs have the
potential to address inter-sector, cross-border, and large-scale data-sharing challenges to
unlock economic benefits and create new business opportunities [10].

A flexible and dynamic consent management approach is required to achieve specific,
informed, and engaged consent agreements for legal personal data usage with guarantees
of transparency, security, and privacy. However, there are few solutions that systematically
empower individuals to (1) provide tailored consent agreements on distinct personal data,
and (2) to take control and decide who will collect, access, and/or use their data for specific
purposes and periods. In addition, users should be able to delegate consent rights (if
necessary or in emergencies when users are unable to provide consent directly), access
consent-related information, and withdraw previously given consent at any time. A few
recent research works [11–17] have tried to address some of the aforementioned challenges.
However, they are mostly domain-specific and centralized systems that lack trusted data
provenance, transparency, and accountability features.

To design a dynamic consent management system for the legal use of personal data
under GDPR, the subsequent design requirements (DRs) have to be satisfied:

• DR1: Key stakeholders and roles identification–Who are the key stakeholders and what
are their legitimate roles and responsibilities?

• DR2: User-centric dynamic consent management–How should data subjects be systemati-
cally empowered to control their personal data collection and usage consent?

• DR3: Consent and rights expression–How can individual consent and rights be explicitly
and systematically expressed in a human/machine-readable format?

• DR4: Consent and data usage activity history accessibility–How should data subjects be
given access to their personal data collection and usage activity history?

• DR5: Consent violation notification–How should data subjects be notified, and regulators
be informed, about the consent agreement violation?

• DR6: Consent agreement withdrawal–What should be done when the consent agreement
clauses are violated or the purpose of the acquired consent is no longer valid?

1.2. Our Contributions

The key contributions made by this study are summarized as follows:

• We propose a smart-contract-based dynamic consent management system architecture
backed by blockchain technology for legal personal data usage based on GDPR.

• We propose user-centric dynamic consent management schemes that leverage smart
contracts to enable users to take control of their consent on the personal data collection
and usage throughout the data lifecycle. Consent rights can be delegated and audited
by users by tracking the log events on the blockchain. Users get notified about any
consent agreement clause violation and can withdraw the related consent.

• We integrate decentralized IPFS [18] nodes with our system to store data off-chain.
The transactions history and access log data are recorded on the blockchain to enforce
trust and provide tamper-proof data provenance, accountability, and traceability.

• A prototype of our system was designed and implemented on top of the Quorum
blockchain platform [19] to determine its feasibility. The acceptability and reliability
of the system were assessed by experimental testing and validation processes. The
implemented code and artifacts have been made publicly available (https://github.com/
mlecjm/sc-dcms, accessed on 25 November 2021).

• We present the security and privacy analysis of the system and evaluate its perfor-
mance in terms of smart contract algorithm complexity, transaction throughput and
latency, computing resource usage, and storage network bandwidth utilization.

https://github.com/mlecjm/sc-dcms
https://github.com/mlecjm/sc-dcms

Sensors 2021, 21, 7994 3 of 24

The rest of this paper is organized as follows. Section 2 elaborates on the background
and related work. Section 3 describes the proposed system. Section 4 provides the im-
plementation and experiment details. The system security and privacy analysis, design
requirements assessment, and performance evaluation are provided in Section 5. Section 6
discusses the limitations and open challenges. Section 7 concludes the paper and presents
the scope for future work.

2. Background and Related Work

This section provides background information and describes the state-of-the-art ap-
proaches towards dynamic consent management using blockchain technology.

2.1. Blockchain and Smart Contract

Blockchain is a type of Distributed Ledger Technology (DLT) initially introduced
as a technology underpinning Bitcoin [20]. It records a list of transactions in a chain of
blocks that are cryptographically linked and secured. The transaction records in a block
are impossible to be modified without retroactively modifying all subsequent blocks in the
chain and without the consensus of a majority of network participants. To unlock the poten-
tial of blockchain technology, smart contracts (SCs) have been featured by Ethereum [21],
which is an open-source, Turing-complete, and general-purpose blockchain platform. SCs
are self-sufficient computer programs, which once started, execute automatically and
mandatorily the conditions already set (i.e., the agreement or negotiation of a contract) [21].
SCs run accurately as programmed with no possibility of interruption, censorship, fraud,
or third-party interference. The blockchain can be divided into two main categories:
permissionless and permissioned blockchain. Permissioned blockchains require prior
authorization, whereas permissionless blockchains allow anyone to join and participate in
the system operations [22]. Based on governance approaches, blockchain networks can be
classified into three types of networks: public, private, and consortium networks [22].

• Public blockchain networks are permissionless blockchain networks that enable parties
to transact securely in trustless environments. In public blockchain networks such as
Bitcoin [20] and Ethereum [21], everyone can join the network anonymously, and all
participants having a copy of the ledger can create, verify, and validate transactions.

• Private blockchain networks are permissioned blockchain networks restricted to well-
known and previously registered participants of an organization, which are authorized
to access and use the network. Compared to public blockchain networks, private
blockchain networks are more scalable and take less time for the network to reach
a consensus, resulting in faster transactions. However, it is argued that they are not
truly decentralized.

• Consortium blockchain networks, also known as hybrid or federated blockchain
networks, are semi-decentralized blockchain networks, which combine public and
private blockchain features. A consortium blockchain network is open only to a
selected group of organizations or individuals that have decided to share the ledger
among themselves for transactions. Some examples are R3 Corda and Quorum.

Table 1 presents a comparison of five popular blockchain platforms [19,21–23] con-
sidering their key features, which include targeted industry, mode of operation, ledger
permission, consortium network, decentralization, transaction and SC privacy, consensus
protocols, transaction throughput, blockchain oracle, and cryptocurrency support.

Sensors 2021, 21, 7994 4 of 24

Table 1. Comparison of the five popular blockchain platforms: Ethereum, Hyperledger, R3 Corda, Ripple, and Quorum.

Features Ethereum 1 Hyperledger
Fabric 2 R3 Corda 3 Ripple 4 Quorum 5

Targeted industry Cross-industry Cross-industry Financial Financial Cross-industry
Mode of operation

(ledger)
Permissionless

(public)
Permissioned

(private)
Permissioned

(private)
Permissionless

(public)
Permissioned

(public/private)
Consortium

network support X
√ √

X
√

Decentralization Decentralized Partially Partially Decentralized Decentralized
Transaction/smart

contract privacy X/X
√

/
√ √

/
√

X/X
√

/
√

Consensus
protocols PoW/PoS Pluggable Notary-based Probabilistic

voting Pluggable

Transaction
throughput ~20 tps >2000 tps ~170 tps ~1500 tps ~1000 tps

Smart contract
support

√ √ √ √ √

Blockchain oracle
√ √ √ √ √

Cryptocurrency ETH N/A N/A XRP ETH
1 https://ethereum.org/ (accessed on 25 November 2021); 2 https://github.com/hyperledger/fabric (accessed on 25 November 2021);
3 https://www.corda.net/ (accessed on 25 November 2021); 4 https://ripple.com/; 5 https://consensys.net/quorum/ (accessed on
25 November 2021).

2.2. Blockchain-Enabled Dynamic Consent Management

Research on DCMSs remains in its preliminary phase, and very few schemes have
been proposed for allowing users to be in control of their data. A flexible and dynamic
approach has been developed [11] to capture consent and preserve digital evidence for legal
purposes. Emergency cases are considered when users cannot directly provide consent.
A framework for evaluating and reporting dynamic consent effectiveness is introduced
in [12] to maximize the quality, replicability, and pertinence of decisional autonomy of
researcher–participant communication. The EnCoRe project [13] developed schemes to pro-
vide reliable and enforceable privacy through dynamic consent capabilities, which enabled
data subjects to give and revoke their consent and organizations to enforce it. However,
these projects focused on users’ data and privacy enforcement only within an organization.
A GDPR-based formal design framework for consent management, using a high-level
modeling language to model distributed service-oriented systems was presented in [14].
Most of the previous approaches are centralized solutions, which continue to raise con-
cerns regarding the lack of trusted proof of data provenance, accountability, transparency,
security, and privacy. In addition, the opaque nature of such systems provides very limited
rights to the users. Furthermore, admins have the authority to manipulate or misuse the
granted consents and data without users’ knowledge, making it challenging for users to
detect tampering with the consent data. Thus, the TTP remains the single point of failure
targeted by attackers to compromise the system. However, blockchain technology enables
a decentralized and tamper-resistant trusted data source, and transparency, accountability,
and traceability features that can be used to leverage DCMSs.

Genestier et al. [15] discussed the possibilities of using blockchain to manage consent
and address privacy and security challenges in the eHealth area. A model of consent
management for personal data using blockchain for GDPR compliance is proposed in [16].
Rupasinghe et al. [17] described a privacy-preserving consent model architecture using
blockchain to facilitate patient-data acquisition for clinical data analysis. Blockchain-
enabled data-sharing consent schemes have been proposed [24–27] for controlling access
to individual health data, where smart contracts are used to denote individual consent and
allow requesters to seek and access health data. Table 2 reviews the schemes available in
the literature, which are compared with our proposed solution. However, most schemes
proposed earlier are domain- and application-dependent, and they do not meet all the
requirements previously mentioned.

https://ethereum.org/
https://github.com/hyperledger/fabric
https://www.corda.net/
https://ripple.com/
https://consensys.net/quorum/

Sensors 2021, 21, 7994 5 of 24

Table 2. Comparison of the proposed system with related works.

Paper Legal Basis User-Centric
Consent

Agreement/Del-
egation

Auditability/
Withdrawal

Privacy/
Security

SC
Language

Blockchain
Platform

Type of
Network Use of IPFS 3 Implementation Performance

Evaluation

[11] DPD 1 √ √
/
√

X/
√

X/X X X X X X X
[12] -

√ √
/X - - X X X X X X

[13] -
√ √

/X X/
√ √

/
√

X X X X
√

X
[14] GDPR

√ √
/X

√
/X

√
/
√

X X X X X X
[15] -

√ √
/X X/

√
- - HLF 2 Private X Prototype X

[16] GDPR
√ √

/X - X X - - X X X
[17] GDPR

√ √
/X

√
/X - - - - X X X

[24] -
√ √

/X
√

/X X/
√

Solidity Ethereum Public X Prototype
√

[25,26] -
√ √

/X
√

/X
√

/
√

Solidity Ethereum Public
√

Prototype
√

[27] GDPR
√ √

/X
√

/
√

X/
√

JavaScript HLF Private X
√

X
[28] GDPR

√ √
/X

√
/
√ √

/
√

JavaScript HLF Private X Prototype X
[29] -

√ √
/X

√
/
√ √

/
√

Go HLF Private X Prototype X
[30,31] GDPR

√ √
/X

√
/X X/

√
Solidity Ethereum Public X Prototype X

[32] GDPR
√ √

/X
√

/
√

X/
√

Go HLF Private X Prototype
√

[33] X X X/X X/X X/
√

Solidity Ethereum Public X Prototype
√

Our
work GDPR

√ √
/
√ √

/
√ √

/
√

Solidity Quorum Consortium
√

Prototype
√

1 The EU Data Protection Directive (DPD); 2 HLF: Hyperledger Fabric; 3 IPFS: InterPlanetary File System.

Sensors 2021, 21, 7994 6 of 24

Our work is different from the schemes previously proposed in the literature. This
study is focused on the design and implementation of a dynamic consent management so-
lution using smart contracts to achieve specific, informed, and engaged consent agreements
for the legal use of personal data based on GDPR, wherein accountability, transparency,
privacy, and security are guaranteed. The permissioned blockchain consortium network
is adopted to meet the previously mentioned requirements. These requirements also in-
clude secure, confidential, and privacy-preserving interactions and data exchanges among
several stakeholders from diverse organizations governed under various policies.

3. Proposed System Model

Personal data (GDPR, Article 4) refers to any information related to an identifiable
person known as the data subject, whereas data usage refers to any processing operation
or set of operations performed on data. These operations include searching, collecting,
organizing, adapting, storing, consulting, sharing, and erasing. It is assumed that explicit
consent from the data subject is required before collecting and using personal data.

3.1. Key Stakeholders and Roles Identification

Based on the GDPR specifications [5], the key stakeholders identified along with their
legitimate roles and responsibilities are described as follows:

• Data subject (DS) is a natural or legal person who owns and shares the data while defining
privacy and security preferences, and dynamically manages consents (i.e., agree/deny,
view, update, and withdraw) to collect and use personal data. Data subjects can also
delegate consent rights and audit data collection and usage activity history, so they
can withdraw given consent at any time if needed.

• Data controller (DC) is a natural or legal person, public authority, or agency that
determines why and how the personal data should be collected and/or used. DC safe-
guards shared personal data while providing tools for users to dynamically manage
consent agreements and control access to their data.

• Data processor (DP) refers to a party (i.e., a natural or legal person, public authority,
or agency) that processes personal data on behalf of data controllers. A DP requests
for consent and access rights before collecting and/or processing personal data, while
recording processing activity history on the blockchain.

• Regulator (RG) denotes the supervisory authorities (i.e., the Office of the Data Protec-
tion Commissioner in the European Union) who regulate and control data protection
regulations compliance and audit the transaction history to resolve conflicts. The
regulator can assign, approve, and revoke membership profile roles.

Each participant’s user role has a set of rights and responsibilities that are well defined
and documented.

3.2. Consent Requirements and Model Definition

Under GDPR (Article 4.11), valid consent should be freely given, specific, informed,
and an unambiguous indication that the data subject has consented through a clear agree-
ment statement to the collection and use of his/her data. The core concepts of con-
sent are illustrated in Figure 1 using ontology representation [34]. These include data
subject, personal data details, consent requester identity, agreement evidence, context
description (i.e., purposes, time, operations, and territory), and consent status, which can
be valid or invalid. The consent is granted by the data subject directly or through dele-
gation to a natural person or legal representative. These are essential attributes for legal
consent. When personal data collection and use is based on consent, the data controller
should be able to prove that the data subject has consented. The consent agreement must
specifically contain the consent requester and data controller’s identities, data collection,
and usage purposes, as well as the processing activities or operations to be performed. The
data subject should have the right to withdraw his or her consent at any time if required

Sensors 2021, 21, 7994 7 of 24

(Article 7). Thus, the consent agreement withdrawal should not affect the lawfulness of
collecting and using data based on consent before its withdrawal.

Figure 1. Consent concepts representation using ontology.

Figure 2 gives an overview of use cases of the proposed dynamic consent agreement
management system for collecting and using personal data under GDPR. Table 3 summarizes
the notations used in this paper. Consider a data processor DPj with DP = [DP1 . . . DPn],
{j | 1 ≤ j ≥ n}, which might be a data-driven organization (e.g., healthcare organization,
research institute, or business company) that wants to obtain consent from a European
citizen, that is, data subject DSi or a set of data subjects formerly registered on a list of
members DS = [DS1 . . . DSn], {i | 1 ≤ i ≥ n}. The consent request (CR) is defined in
Equation (1) as a record which consists of a set of the following attributes. CRid is the
consent request identification number. CAtype refers to the type of consent request, which
can be classified into three types as defined in Equation (2). Where 0—default is for general
purpose use cases, 1—delegated corresponds to consent delegation cases, and 2—emergency
denotes the emergency situations when individuals are unable to directly consent on
their own.

CR = {CRid, CAtype, PTid, RS, CXT, CST, OP, AG, CRstatus, RCtstamp} (1)

CAtype =

0, default

1, delegated
2, emergency

(2)

Table 3. Notation description.

Notation Description

DS, DC, DP, RG data subject, data controller, data processor, regulator
RQT, PT requester, participants

CC, CR, RC consent contract, consent request, request creation
RS, PD, OP resource, personal data, operation

CXT, Legalb, Prd context, legal basis, period of usage
CST, Territory constraint, territory of use
A, a, AG, CA account, address, agreement, consent agreement

CW, CWR, SC, v consent withdrawal, consent withdrawal request, smart contract, version
id, dsign, status, purp, rsn identifier, digital signature, status, purpose of use, reason
tstamp, startTime, endTime timestamp, starting time, ending time

OS, IPFS, EVM operating system, interplanetary file system, Ethereum virtual machine

Sensors 2021, 21, 7994 8 of 24

Figure 2. Use cases of the proposed smart-contract-based dynamic consent management system (SC-DCMS) for collecting
and using personal data under GDPR.

PTid represents the requested consent agreement participants’ identifiers, which in-
clude the data subject, data processor, and data controller identifiers.

PTid ← {DataSubject (DSi), DataProcessor (DPj), DataController (DCk)} (3)

RS denotes the resource or targeted personal dataset identified by PDid from the
relevant DSi data subject’s personal datasets PD, as given in Equation (4).

RS← {DSi, PDid}, where PDid ∈ PD = {PD1,PD2, . . . ,PDn} (4)

CXT is the consent context specification for collecting and using personal data, which
includes the purpose and legal basis of requesting the consent, and the requested time.

CXT← {Purpose (CRid,CRpurp), LegalBasis (CRid,Legalb), RequestedTime (CRid,t)} (5)

CST specifies the constraints or conditions under which the consent will be granted.
These constraints include the usage period with a specific starting and ending time, and
the territory or list of countries to be authorized, as given in Equations (6) and (7).

CST← {Usage (CRid,Prd), Territory (country_list)} (6)

Prd = {startTime, endTime} (7)

OP indicates the data-processing operations to be performed that are identified by
OPid, which belongs to a set of supported operations. These operations include data
searching, collection, storage, processing, disclosing, sharing, and copying.

OP← OPid ∈ OP = {OP1,OP2, . . . ,OPn} (8)

AG denotes the agreement status attribute that is defined in Equation (9).

AG =

0, requested

1, agreed
2, denied

(9)

Sensors 2021, 21, 7994 9 of 24

CRstatus denotes the consent request status from the set of attributes specified below.

CRstatus = {Created,Confirmed,Submitted,Agreed,Rejected,Withdran,Closed} (10)

CA refers to the consent agreement that is defined in Equation (11) as a record contain-
ing a set of the following attributes. CAid is the consent agreement identification number.
CRid is the corresponding consent request identifier. PTid refers to the participants’ iden-
tifiers, and PTdsign to the digital signature of the participants. RS indicates the agreed
personal dataset list, while AG provides the agreement status. CA status is the consent
agreement contract status that can be valid or invalid as given in Equation (11). CAtstamp is
the consent agreement timestamp, and CRstatus is the latest consent request status.

CA = {CAid, CRid, PTid, PTdsign, RS, AG, CAstatus, CAtstamp, CRstatus} (11)

CAstatus =

{
0, invalid
1, valid

(12)

Finally, the consent withdrawal (CW) is defined in Equation (13). It is a recording of a
set of the following attributes. CAid is the corresponding consent agreement identifier, and
CWRid is the approved consent withdrawal request identifier. PTid and PTdsign refers to the
participants’ identifiers and digital signatures, respectively. CWrsn indicates the consent
withdrawal reason, while CWRtstamp is the withdrawal requested timestamp. CWRstatus is
the latest status of the consent withdrawal request from the list defined in Equation (14).
CRstatus indicates the latest status of its corresponding consent request contract.

CW = {CAid, CWRid, PTid, PTdsign, CWrsn, CWRtstamp, CWRstatus, CAstatus, CRstatus} (13)

CWRstatus = {Created,Confirmed,Submitted,Approved,Rejected,Closed} (14)

3.3. System Architecture

The architecture of our proposed system is given in Figure 3. For modularity purposes,
the system is divided into three layers: personal data layer, dynamic consent management
layer, and DLT and secure storage layer, as described below:

• Personal Data Layer provides SC-enabled decentralized applications (Dapps) and
services for personnel data management, such as data searching, provisioning, and
processing features used to perform data analysis. To enable end users to interact with
lower layers, Dapps rely on standard Application Program Interfaces (APIs).

• Dynamic Consent Management Layer is a middleware layer to feature dynamic
consent management using SCs on top of the blockchain. It consists of the following
components:

(1) User profile management is in charge of managing the identities, profiles, and
roles of participant users. It comprises two sub-components: (a) identity and
profile manager, which is in charge of managing the identity and membership
profile of participant users; and (b) profile role manager, which manages user
role requests, approval, and revocation processes, while mapping user profiles
to corresponding roles.

(2) Consent agreement management manages data subjects’ consents throughout the
data life cycle. It consists of the following: (a) consent requester, which man-
ages consent requests to collect and use personal data; (b) consent agreement,
which allows data subjects to systematically provide and manage varied types
of consent agreements on each requested personal dataset; (c) consent tracker,
which traces and tracks the consent transaction logs stored on the blockchain
ledger, making all stakeholders accountable for their activities; (d) consent up-
dater, which enables data subjects to update and adapt their consent agreement
preferences (i.e., withdraw or revoke consent) based on the evolving context.

Sensors 2021, 21, 7994 10 of 24

(3) Smart contract code generator produces SCs based on predefined contract
templates and consent agreement policies. It is composed of the follow-
ing: (a) data/transaction format checks for provisioned data and transaction
formats’ mutual compatibility; (b) source code generator creates the consent-
agreements-related SCs to ensure contractual reliability in a machine-readable
source code; (c) code verifier and validator checks for compatibility, correct-
ness, and validity of the generated SCs to ensure that they can operate without
errors and security vulnerabilities; and (d) compliance checker verifies privacy
and security policies against legal compliance before the SC is published and
deployed on the blockchain.

(4) Security and privacy management comprises: (a) security manager, which pro-
vides data security-related features, like authentication, authorization, and
confidentiality; (b) access control manager, which authorizes or denies access
to personal data depending on access control policies and rules embedded in
consent agreement contracts; (c) privacy manager, which helps users define and
manage their privacy preferences; and (d) audit manager, which enables users
to audit the history in terms of who requested (and granted) access to their
data, when the data were used, and by whom. The user profile, security, and
privacy management components extend the generic permissioned features
provided by the lower layer.

• Distributed Ledger Technology and secure storage layer provides (1) a Quorum-
blockchain-based [16] immutable transaction shared ledger and state database, main-
tained by a consensus of peer nodes in a consortium blockchain network, and (2) a
P2P secure data storage system. This layer provides an operating environment for
running SCs that enforces the consent agreement requirements.

(1) Quorum blockchain [16] comprises two core sub-components: (a) a Quorum
node, which is a lightweight forked version of the go-Ethereum client (known
as geth) that was modified for supporting contract and transaction privacy,
and (b) a private transaction manager (PTM) module that is divided into
two sub-modules, namely the transaction manager (TM) and enclave. The
TM manages private transactions by allowing access to encrypted transaction
data and exchanging encrypted payloads between participant nodes. The
enclave is a distributed ledger protocol that provides cryptographic methods
for participants’ authentication, transaction authenticity, and historical data
security. It works with the TM to leverage privacy by managing the symmetric
key generation, data encryption, and decryption independently.

(2) Secure data storage (SDS) orchestrates the data storage and access in a distributed
storage system. SDS nodes store off-chain all the shared personal data and
consent agreement forms in a peer-to-peer data storage network using IPFS
protocol [15]. The hashed indexes of the data are recorded on a blockchain
ledger and access is controlled using SCs. These nodes ensure the reliability,
accessibility, and integrity of the data.

This layer also provides a blockchain oracle service (BOS) that leverages SCs embedded
within Dapps to enable secure data exchange between the blockchain and the outside
world (off-chain). SC-DCMS relies on the Quorum TM to guarantee a trusted on-chain and
off-chain data exchange between the stakeholders.

3.4. User Profile and Personal Data Management

In this subsection, we describe the approach used to create and approve user profiles.
Then, we look at how personal data is managed using the proposed system.

Sensors 2021, 21, 7994 11 of 24

Figure 3. Smart-contract-based dynamic consent management system layered architecture.

3.4.1. User Profile Creation and Role Approval

A given user profile may be assigned one or multiple roles. For instance, a user profile
may have controller and processor roles if the organization has both roles. The membership
user profile creation, role request, and approval steps are as follows:

(1) Sign up for a membership user account of the consortium blockchain network, which
results in the creation of a user profile;

(2) Use the user-profile-associated information to request approval for the specific role(s)
in the system;

(3) The role approval requests are approved by the regulator(s) after verifying the identi-
ties of the requesters and the regulatory compliance requirements;

(4) Upon receiving the role approval, the user profile status becomes active to use and
manage in the system.

3.4.2. Personal Data Management

The personal data used includes medical facility visit records, vital signs, labo-
ratory test results, contact location, movement based on the Global Positioning Sys-
tem (GPS), and financial transaction records [3]. These data are generated by several
organizations (e.g., banks, hospitals, telecom companies, public service offices, and re-
search institutes) and can be exchanged securely among involved entities using a per-
missioned blockchain network. The proposed system provides a mechanism for creating
and sharing personal dataset profiles on the blockchain. First, data subjects or third-party
organizations create the dataset profiles. The dataset profiles contain hashed indexes con-
nected to the data. Second, the dataset profile publication requests are sent to be approved
by peer data controllers. Later, the dataset profiles are published to the blockchain, and,
upon successful execution, their details are sent to the data subjects. For privacy and

Sensors 2021, 21, 7994 12 of 24

confidentiality purposes, personal data are assumed to be anonymized and encrypted
before being shared on blockchain using hashed indexes of the datasets stored off-chain in
SDS nodes.

3.5. Smart-Contract-Based Dynamic Consent Management

This subsection provides details related to the SC-DCM operations that comprise
consent expression, consent request, and agreement, as well as consent withdrawal.

3.5.1. Consent Expression

Users can express their consent in a variety of ways, such as by filling in a form or
ticking a box on a web page. The consent and rights expression model is defined using the
eXtensible Access Control Markup Language (XACML) [35]. Box 1 provides an example of
consent expression and rights definition. To standardize and simplify integration with the
Policy Enforcement Points (PEP) and Policy Decision Points (PDP), consent and rights are
defined using a JSON profile of XACML [36]. This is then converted into XACML policies
used by role-based access control systems [35]. The security and privacy management
module functions as the policy enforcement point of SC-DCMS.

Listing 1. Consent expression and rights definition example in JSON.

1. Consent_Agreements {
2. Consent_Agreement [
3. { ”AgreementNum”: ”202102-0001021410”,
4. ”Type”: ”0”, // 0-Default, 1-Delegated, 2-Emergency
5. ”Participants”: [
6. {”by”: ”DataSubjectID”,”to”: ”DataProcessorID”, ”controller”:”DataControllerID”}],
7. ”Resource”: [”https://cid.ipfs.io/#QmTwK...PQ8f”, ” https://cid.ipfs.io/#QmS....6Nt”],
8. ”Context”: [
9. { ”for”: ”Public Health Emergency”,
10. ”at”: ”2021-02-10 T13:30:10”,
11. ”legal”: ”GDPR, Article 4.11” }],
12. ”Constraints”: [
13. { ”from”:”2021-02-10”,”until”: ”2021-03-30”,
14. ”in”: [”EU”, ”South Korea”] }],
15. ”Operations”: [”COLLECT”,”STORE”,”PROCESS”,”DISCLOSE”,”COPY”,”SHARE”],
16. ”Agreement”: ”ALLOWED”,
17. ”Status”: ”VALID”
18. }]
19. }

3.5.2. Consent Request and Agreement

Figure 4 describes the consent request and agreement processes between two par-
ticipants of the SC-DCMS. A data processor as consent requester is seeking consent on a
particular personal information dataset by sending a consent request, which is processed by
the SC-DCMS and recorded on the blockchain, after which the data subject is notified upon
successful execution. The consent request includes the data subject and consent requester
identifiers, purposes, period, and legal basis to collect and/or use personal data. Upon
receiving the consent request, the data subject freely decides to agree or disagree by sending
a request-response to the requester. The consent agreement process ends with the creation
of a consent agreement contract published on blockchain upon successful execution of
the transaction. The detailed consent request algorithm is given in Algorithm 1, whereas
Algorithm 2 describes the proposed consent agreement algorithm.

https://cid.ipfs.io/#QmTwK...PQ8f
https://cid.ipfs.io/#QmS....6Nt

Sensors 2021, 21, 7994 13 of 24

Algorithm 1 Consent agreement request

Sensors 2021, 21, x FOR PEER REVIEW 14 of 25

Figure 4. Consent request and agreement between participating entities of the SC-DCMS.

Algorithm 1: Consent agreement request

Initialization parameters: {SCa, Aa,CCv}
Input: {CRid,CAtype,RQTid,DSid,DCid,RS,CXT,CST,OP,CRstatus}
Output: ExecutionState
1. Function newConsentRequest():
2. if (msg.sender ∉ AuthorizedUsers) then
3. break exit ()
4. else
5. CC[CRid] ← sc.newConsentRequest(CAtype,RQTid,DSid,DCid,RS,CXT,CST,OP, CRstatus, RCtstamp)
6. sc.ConsentRequestList.push(CC[CRid])
7. if (err != NULL) then
8. emitEvent sc.consentRequested(CRid,RQTid,DSid,DCid,RS, RCtstamp)
9. return (success = true)
10. else
11. return (success = false, errorMessage)

Algorithm 2: Consent agreement

Initialization parameters: {SCa, Aa,CCv}
Input: {CAid,CRid,RQTid,RQTdsign,DSid,DSdsign,RS,AG,CRstatus}
Output: ExecutionState
1. Function newConsentAgreement():
2. if (msg.sender ∉ AuthorizedUsers) then
3. break exit()
4. else
5. if (CRid ∄ ConsentRequestList) then
6. break exit()
7. else
8. if (sc.getRequestStatus(CC[CRid]) == ‘CONFIRMED’) then
9. if (RQTdsign != NULL) ∧ (DSdsign != NULL) then
10. if (CAtstamp ≤ RCtstamp) ∧ (CAendTime ≥ CAtstamp) then
11. CA[CAid] ← sc.ConsentAgreement(CRid,RQTid,RQTdsign,DSid,DSdsign,RS,AG,CAtstamp,
 CRstatus)
12. sc.ConsentAgreements.isSigned(CA[CAid] ← true)
13. sc.ConsentAgreements.isValid(CA[CAid] ← true)
14. sc.ConsentAgreements.isExpired(CA[CAid] ← false)
15. sc.ConsentAgreements.push(CA[CAid])
16. sc.ConsentRequestList.set(CC[CRid, CRstatus] ←‘AGREED’)
17. if (err != NULL) then
18. emitEvent sc.ConsentAgeed(CAid,CRid,RQTid,DSid,CAtstamp, CAstatus)
19. return (success = true)
20. else
21. return (success = false, errorMessage)

3.5.3. Consent Withdrawal
The data subject can withdraw given consent at any time, for example, when the

reason for which the consent was collected is no longer valid or when the agreement
clauses are violated. Figure 5 illustrates the consent withdrawal mechanism processes of
the SC-DCMS. The data subject starts by selecting the consent to be withdrawn and
submits a withdrawal request for approval to the corresponding data controller(s). After

Algorithm 2 Consent agreement

Sensors 2021, 21, x FOR PEER REVIEW 14 of 25

Figure 4. Consent request and agreement between participating entities of the SC-DCMS.

Algorithm 1: Consent agreement request

Initialization parameters: {SCa, Aa,CCv}
Input: {CRid,CAtype,RQTid,DSid,DCid,RS,CXT,CST,OP,CRstatus}
Output: ExecutionState
1. Function newConsentRequest():
2. if (msg.sender ∉ AuthorizedUsers) then
3. break exit ()
4. else
5. CC[CRid] ← sc.newConsentRequest(CAtype,RQTid,DSid,DCid,RS,CXT,CST,OP, CRstatus, RCtstamp)
6. sc.ConsentRequestList.push(CC[CRid])
7. if (err != NULL) then
8. emitEvent sc.consentRequested(CRid,RQTid,DSid,DCid,RS, RCtstamp)
9. return (success = true)
10. else
11. return (success = false, errorMessage)

Algorithm 2: Consent agreement

Initialization parameters: {SCa, Aa,CCv}
Input: {CAid,CRid,RQTid,RQTdsign,DSid,DSdsign,RS,AG,CRstatus}
Output: ExecutionState
1. Function newConsentAgreement():
2. if (msg.sender ∉ AuthorizedUsers) then
3. break exit()
4. else
5. if (CRid ∄ ConsentRequestList) then
6. break exit()
7. else
8. if (sc.getRequestStatus(CC[CRid]) == ‘CONFIRMED’) then
9. if (RQTdsign != NULL) ∧ (DSdsign != NULL) then
10. if (CAtstamp ≤ RCtstamp) ∧ (CAendTime ≥ CAtstamp) then
11. CA[CAid] ← sc.ConsentAgreement(CRid,RQTid,RQTdsign,DSid,DSdsign,RS,AG,CAtstamp,
 CRstatus)
12. sc.ConsentAgreements.isSigned(CA[CAid] ← true)
13. sc.ConsentAgreements.isValid(CA[CAid] ← true)
14. sc.ConsentAgreements.isExpired(CA[CAid] ← false)
15. sc.ConsentAgreements.push(CA[CAid])
16. sc.ConsentRequestList.set(CC[CRid, CRstatus] ←‘AGREED’)
17. if (err != NULL) then
18. emitEvent sc.ConsentAgeed(CAid,CRid,RQTid,DSid,CAtstamp, CAstatus)
19. return (success = true)
20. else
21. return (success = false, errorMessage)

3.5.3. Consent Withdrawal
The data subject can withdraw given consent at any time, for example, when the

reason for which the consent was collected is no longer valid or when the agreement
clauses are violated. Figure 5 illustrates the consent withdrawal mechanism processes of
the SC-DCMS. The data subject starts by selecting the consent to be withdrawn and
submits a withdrawal request for approval to the corresponding data controller(s). After

Sensors 2021, 21, 7994 14 of 24

Figure 4. Consent request and agreement between participating entities of the SC-DCMS.

3.5.3. Consent Withdrawal

The data subject can withdraw given consent at any time, for example, when the
reason for which the consent was collected is no longer valid or when the agreement
clauses are violated. Figure 5 illustrates the consent withdrawal mechanism processes of
the SC-DCMS. The data subject starts by selecting the consent to be withdrawn and submits
a withdrawal request for approval to the corresponding data controller(s). After getting
approved, the targeted consent agreement contract is withdrawn by changing its status as
invalid upon successful execution of the transaction. To exercise their rights to be forgotten,
using smart contracts, users can request deletion of their data stored off-chain, but the
record of these transactions is retained in the blockchain ledger. The detailed consent
agreement withdrawal algorithm is given in Algorithm 3.

Figure 5. Consent withdrawal sequence diagram of the SC-DCMS.

Sensors 2021, 21, 7994 15 of 24

Algorithm 3 Consent withdrawal

Sensors 2021, 21, x FOR PEER REVIEW 15 of 25

getting approved, the targeted consent agreement contract is withdrawn by changing its
status as invalid upon successful execution of the transaction. To exercise their rights to
be forgotten, using smart contracts, users can request deletion of their data stored off-
chain, but the record of these transactions is retained in the blockchain ledger. The detailed
consent agreement withdrawal algorithm is given in Algorithm 3.

Figure 5. Consent withdrawal sequence diagram of the SC-DCMS.

Algorithm 3: Consent withdrawal

Initialization parameters: {SCa, Aa,CCv}
Input: {CAid,CWRid,DSid,DSdsign,DCid,DCdsign,CWrsn,CWRtstamp,CWRstatus}
Output: ExecutionState
1. Function consentWithdrawalReqest():
2. if (msg.sender ∉ AuthorizedUsers) then
3. break exit()
4. else
5. if (CAid ∄ ConsentAgreements) then
6. break exit()
7. else
8. if (sc.isValidConsent (CA[CAid] != true) ∧
 (sc.getRequestStatus(CWR[CWRid, CWRstatus]) == ‘APPROVED’) then
9. if (DSdsign != NULL) ∧ (DCdsign != NULL) then
10. sc.ConsentAgreements.isValid(CA[CAid] ← false)
11. sc.ConsentAgreements.isExpired(CA[CAid] ← true)
12. sc.ConsentAgreements.set(CA[CAid, ACstatus] ←‘INVALID’)
13. sc.ConsentAgreements.set(CC[CRid, CRstatus] ←‘WITHDRAWN’)
14. sc.ConsentWithdrawal.set(CWR[CWRid, CWRstatus]) ←‘CLOSED’)
15. CWR[CWRid] ← sc.ConsentWithdrawal(CAid,DSid,DSdsign,DCid,DCdsign,CWrsn, CWRtstamp,
 CWRstatus,CAstatus, CRstatus)
16. sc.WithdranConsents.push(CWR[CWRid])
17. if (err != NULL) then
18. emitEvent sc.ConsentWithdrawn(CWRid ,CAid,DSid,DCid,CWRtstamp)
19. return (success = true)
20. else
21. return (success = false, errorMessage)

Events are transaction receipts that contain log entries providing information about
actions taking place during the execution of transactions. Emitted events are used to store
the arguments passed in transaction logs stored on the blockchain. Thus, the consent and
data usage activity history can be easily traced and tracked using event logs.

Events are transaction receipts that contain log entries providing information about
actions taking place during the execution of transactions. Emitted events are used to store
the arguments passed in transaction logs stored on the blockchain. Thus, the consent and
data usage activity history can be easily traced and tracked using event logs.

4. Implementation and Experiments

This section elaborates on the consent contract generation mechanism, its implemen-
tation, and experimental details of our proposed system.

4.1. Consent Contract Generation

The consent agreement SC source code is generated by the SC-DCMS from a consent
agreement form presented in a human/machine-readable format using XML/XHTML-
like forms. The current implementation of SC-DCMS provides support for SCs written
in Solidity. To guarantee that the generated SCs are secure and trusted, the SC-DCMS
checks first for compatibility, correctness, and validity to ensure that they will run without
errors and security vulnerabilities. The privacy and security policies are verified against
predefined legal compliance rules before SCs are deployed on the blockchain.

4.2. Implementation Details

For the implementation of the prototype of our system, we have adopted GoQuo-
rum blockchain [16], which is an Ethereum-based permissioned blockchain platform with
advanced enterprise-grade features enabling contract and transaction privacy, pluggable
consensus protocols, and scalable performance. Cakeshop sandbox [37], an integrated

Sensors 2021, 21, 7994 16 of 24

development environment and software development kit, was used to develop, compile,
and deploy our SCs written in Solidity language. JSON-RPC, Web3, and REST APIs are
used to interact with the SCs and blockchain. To test and validate the correctness of our
SC-DCMS, the blockchain infrastructure was deployed on premise in a Docker container
environment. The experimental setup environment is described in Table 4. Docker Com-
pose configuration files were used to generate a consortium blockchain network, composed
of seven peer nodes with their respective transaction managers and ethloggers. Each node
had a digital wallet that contained the user’s credentials, keys, account addresses, and
balances. Tessera [38] was integrated as a transaction manager to encrypt, decrypt, and
distribute private transactions in the Quorum blockchain network using Constellation [39],
a self-managing and peer-to-peer communication system for secure messaging with clients
and other nodes. IBFT [40] and RAFT [41] consensus protocols were adopted for faster
consensus and immediate transaction finality. Cakeshop [37] was used to explore, monitor,
and manage all the nodes and resources of the consortium blockchain network, as shown
in Figure 6. Cadvisor [42] was set up to monitor containers’ resource usage and perfor-
mance metrics. A Quorum reporting server [43] collected the blockchain network metrics,
whereas a Splunk App for Quorum [44] monitored in real time the health of our deployed
blockchain infrastructure. IPFS [15] nodes were used as secure decentralized storage to
store the consent agreement forms, contract templates, and personal datasets off-chain.

Table 4. Experiment environment setup.

Hardware Description

CPU AMD® Ryzen 7 1700-8 Core
GPU/RAM/SSD NV132/64 GB/2 TB
Network interface I211 Gigabit Network

Software Description

OS Ubuntu 20.04.2 LTS, 64bit
Network generation Docker-compose v1.25.0

Quorum version Quorum 20.10.0
Consensus protocol IBFT, RAFT
Number of nodes 7

Splunk Enterprise Server v8.0.4
Splunk App for Quorum v1.0.9

Client Geth/node-raft/v1.9.7(quorum-
v20.10.0)/linux-amd64/go1.13.15

Nodejs/Npm/Cakeshop v10.19.0/v6.14.4/v0.11.0
Solidity compiler EVM Constantinople

IPFS go-ipfs v0.7.0

Figure 6. SC-DCMS consortium blockchain network management dashboard using Cakeshop.

Sensors 2021, 21, 7994 17 of 24

5. Evaluation

In this section, we analyze the security and privacy of our SC-DCMS and assess its
features to ensure that it meets the design requirements for acceptability and reliability.
Finally, we evaluate the performance of the system.

5.1. Security and Privacy Analysis

The security and privacy of SC-DCMS rely on and extend advanced features of the
underlying Quorum permissioned blockchain. The implemented code was successfully
analyzed and verified using highly precise vulnerability verification tools for Solidity
SCs, namely VeriSmart [45] and SmartCheck [46]. These SCs are secure against currently
well-known vulnerabilities [45,46], such as reentrancy, integer underflows, and overflows,
access control, denial of service (DoS), and timestamp manipulation.

As Quorum has removed the transaction gas fees paid in the Ethereum public
blockchain for the computational effort needed to complete transactions [47], issues of
running out of gas while using our system no longer occur, because in Quorum, a set of
validator nodes is defined to secure the network. All members of the consortium network
are assumed to behave in a trustworthy manner. Each organization has a set of roles and
nodes defined with a set of network access control permissions. The RAFT consensus
protocol provides a crash fault tolerance support for system and network availability. RAFT
requires 2f + 1 nodes to be set up in a network to tolerate f faulty nodes [41], whereas IBFT
offers a Byzantine fault tolerance mechanism and can tolerate f number of faulty nodes in
a network of n = 3f + 1 nodes [40]. Data integrity protection is achieved via the blockchain,
which has all transaction data hashed and timestamped. To ensure that our system design
satisfies fundamental data protection regulatory requirements, a GDPR-based framework
was used for data protection impact assessment (DPAI) [48].

Private contracts and transactions are supported by Quorum through a separation
of public and private states while using P2P encrypted message exchanges to directly
transfer private data between network participants [16]. Furthermore, to preserve privacy
and ensure that participants’ identities remain hidden, the transaction data are replaced
by encrypted hashes. Personal data are anonymized and encrypted before being shared
on the blockchain by using hashed indexes of the datasets stored off-chain in SDS nodes.
In the interests of confidentiality, user profiles of the participants have separate roles to
enable role-based access control management. The participants are required to sign up
for a membership profile and get authorized before joining and using the system. They
can define custom consent security and privacy policies on their data and control who
can collect, access, and use their data shared on blockchain. All data-related transaction
records are preserved on the blockchain as tamper-proof evidence to guarantee trusted data
provenance, transparency, and accountability. Thus, SC-DCMS enables data controllers to
easily perform privacy impact assessments (PIAs) [49] and/or DPAIs [48] and document
them before starting any data-processing activity for legal compliance under the GDPR.

5.2. Satisfying Design Requirements

After performing several validation tests for system acceptability and reliability, we
have confirmed that the features of the proposed system fulfill the aforesaid DR1–DR6
derived from GDPR specifications (Section 1.1), as summarized below:

• Key stakeholders and roles identification: Four key stakeholder participants were iden-
tified to fulfill DR1. Their legitimate roles and responsibilities are described in
Section 3.1. Each participant user must sign up for a membership user profile and get
authorized before joining the network and using the system.

• User-centric dynamic consent management: DR2 is satisfied by our proposed user-centric
and paperless consent management system enabled by smart contracts. It enables
data subjects to dynamically control their consent on the personal data collection and
usage over its lifecycle.

Sensors 2021, 21, 7994 18 of 24

• Consents and rights expression: Individual consents, and related rights are systemati-
cally and explicitly expressed in a human/machine-readable format to satisfy DR3.
Furthermore, it allows users to delegate their consent rights if required.

• Consent and data usage activity history accessibility: The blockchain-based shared im-
mutable leger is used for traceability and accountability of consents and data usage
transaction records. Thus, data subjects can easily view and audit data collection and
usage activity history to satisfy DR4.

• Consent violation notification: To fulfil DR5, our system provides consent agreement
terms violation detection, notification, and reporting mechanisms using SCs.

• Consent agreement withdrawal: The proposed consent withdrawal mechanism satisfies
DR6 (Article 7.3) by providing users the possibility to withdraw a given consent
agreement when the purpose for which the personal data was collected is no longer
valid or the consent agreement terms are violated.

Consequently, data controllers can rely on SC-DCMS to provide trusted and reliable
consent management services enabling users to manage consent over their data.

5.3. Performance Evaluation

The system performance is evaluated in terms of complexity of algorithms, transaction
throughput and latency, computing resource consumption, and storage network bandwidth
utilization. The experiments were conducted to investigate how the transaction workload
variations could affect the system performance with RAFT and IBFT consensus algorithms.

(1) Computation time and space complexity: The complexity of our proposed algorithms
is assessed to determine their efficiency in terms of computation time and space
consumption. Considering Table 5, the complexity of a newUserProfile creation
and roleApproval transaction is O(1), which means only a single read-write oper-
ation is required to verify if a given record does not exist before writing it to the
blockchain. The computation complexity of addNewData and newConsentRequest
transactions is also O(1), whereas the complexity of newConsentAgreement, new-
ConsentWithdrawalRequest, and consentWithdrawal transaction is O(2), indicating
that two read-write operations are required. In general, the first read operation is
to check if the given record already exists in the ledger to avoid duplication, and
the second is to collect required information to perform the transaction. For write
operations, the first is to write the pushed transaction output data to the blockchain
and the second is to update the status of related records in the ledger. The complexity
of a smart contract algorithm affects the transaction execution time and latency. The
evaluation has revealed that our proposed algorithms have a linear time complexity,
which increases linearly with the size of input transactions. Table 6 provides the time
and space complexity of a transaction and block in average values. For simplicity, the
number of transactions per block is set by default to one. The space complexity of
major SCs of our system is given in Table 7.

(2) Effect of input transaction rate variation on the transaction throughput and latency: The
transaction throughput refers to the number of transactions processed per second
(TPS) by the blockchain network [47,50], which is computed using Equation (1):

Txthroughput =
Σ n

i=1Txsucc

Σ n
j=1(Comp t− EXt)

(15)

where Txsucc denotes successfully executed transactions, n is the number of input
transactions, EXt refers to the transaction execution time, and Compt is the transaction
completion time. The transaction latency is the time elapsed between the transaction
submission and the response reception—after the transaction is successfully included

Sensors 2021, 21, 7994 19 of 24

in a block, committed, and confirmed on the blockchain [47,50]. Equation (2) is used
to calculate the transaction latency.

Txlatency =
Σ n

j=1Compt

Σ n
i=1Txsucc

(16)

To understand the impact of the input transaction rate variation on the transac-
tion throughput and latency, in our experiment, we generated a variable workload
ranging from 50 to 2000 tx/s input transaction rates to stress-test the system. As read
operations do not change the state of the ledger, our focus was on write transaction
workloads that randomly update a selected key-value store of the deployed private
contracts. The private transaction event generator scripts were launched from a client
console to be broadcast to all the peer nodes. The experiment was repeated for three
rounds for the Quorum blockchain network running with IBFT and RAFT consensus
protocols. Later, we calculated the average transaction throughput and latencies. The
plots in Figure 7a,b respectively depict the comparison between the IBFT and RAFT
transaction throughput and latency. We observed that the throughput was scaling
linearly for low transaction submission rates up to 802 and 980 tx/s for the IBFT and
RAFT consensus, respectively. Beyond this, the throughput did not increase much
until it reached a maximum point of 834 tx/s for IBFT and 1000 tx/s for RAFT, and
then started to generate a lot of errors. In contrast, both consensus algorithms showed
that the latency scaled linearly for all the input transaction rates. As can be seen,
RAFT slightly over-performs IBFT.

(3) Effect of input transaction rate variation on the computing resource consumption: We moni-
tored in real time the system performance to evaluate the impact of input transaction
rate variations on the CPU and memory of the system utilization by the containers
deployed in our infrastructure, as shown in Figure 8a,b. It can be seen that the system
has a moderate resource consumption, requiring less than 500 MB of memory and
10% of CPU utilization on average to keep the nodes running. However, the Splunk
server container (SSC) used more resources as compared to the others. This is because
it was monitoring and reporting the health state and metrics of the deployed infras-
tructure every 3 to 5 s continuously. We observed that the resource usage scaled with
the variations in the transaction workload. SSC reached a peak of 87% and 1525 MB
whereas one of the remaining nodes went up by 23% and 512 MB of the average CPU
and memory usage, respectively.

(4) Effect of input transaction rate variation on the storage network bandwidth consumption:
The bandwidth utilization was monitored for the IPFS storage network traffic to
investigate the impact of the transaction workload variations on the bandwidth usage.
Figure 9 gives a summary of the input and output network bandwidth utilization of
the IPFS-based storage system.

Table 5. Computation complexity of essential transactions interacting with the blockchain.

Type of Transaction R 1 W 2

newUserProfile O(1) O(1)
roleApproval O(1) O(1)
addNewData O(1) O(1)

newConsentRequest O(1) O(1)
newConsentAgreement O(2) O(2)

newConsentWithdrawalRequest O(2) O(2)
consentWithdrawal O(2) O(2)

1 R: read operation, 2 W: write operation.

Sensors 2021, 21, 7994 20 of 24

Table 6. Time and space complexity of a transaction and block.

Parameter IBFT RAFT

Transaction latency (sec) 0.0018 0.0015
Transaction size (KB) 2.380 2.378

Block size (KB) 4.247 4.245
Number of transactions per block 1 1

Default block time (sec) 1 0.05

Table 7. Space complexity of core smart contracts.

Smart Contract Value

PersonalDataMgr (KB) 10.149
UserProfileMgr (KB) 12.438

ConsentAgreementMgr (KB) 18.117

Figure 7. (a) Transaction throughput evaluation of IBFT vs. RAFT and (b) transaction latency
evaluation of IBFT vs. RAFT.

Sensors 2021, 21, x FOR PEER REVIEW 21 of 25

memory and 10% of CPU utilization on average to keep the nodes running. However,
the Splunk server container (SSC) used more resources as compared to the others.
This is because it was monitoring and reporting the health state and metrics of the
deployed infrastructure every 3 to 5 s continuously. We observed that the resource
usage scaled with the variations in the transaction workload. SSC reached a peak of
87% and 1525 MB whereas one of the remaining nodes went up by 23% and 512 MB
of the average CPU and memory usage, respectively.

Figure 8. System computing resource usage: (a) container system CPU usage (%) and (b)
container memory usage (MB).

(4) Effect of input transaction rate variation on the storage network bandwidth consumption: The
bandwidth utilization was monitored for the IPFS storage network traffic to
investigate the impact of the transaction workload variations on the bandwidth usage.
Figure 9 gives a summary of the input and output network bandwidth utilization of
the IPFS-based storage system.

Figure 9. Network bandwidth utilization of the IPFS storage system.

The results of our experiment revealed that a minimum of 409.6 Kb/s of bandwidth
was required on average to keep the IPFS nodes running. This has optimized the overall
performance of SC-DCMS for the IBFT and RAFT consensus algorithms, reaching a peak
of 834 and 1000 tx/s throughputs with 4.26 and 3.32 s latencies for a maximum of 2000 tx/s
input transaction rates for IBFT and RAFT, respectively. As compared to IBFT, the RAFT
consensus performed better with less resource consumption. This is owing to its faster
block times (with a minimum of 1 ms), transaction finality, and on-demand block creation.
The IBFT algorithm minted blocks at a constant rate every 1 s, and even empty blocks
were minted, which used excessive storage and created a lot of messaging overheads.

6. Limitations and Open Challenges

(a) (b)

C
on

ta
in

er
 C

PU
 u

sa
ge

 (%
)

C
on

ta
in

er
 m

em
or

y
us

ag
e

(M
B)

Figure 8. System computing resource usage: (a) container system CPU usage (%) and (b) container
memory usage (MB).

Sensors 2021, 21, 7994 21 of 24

Figure 9. Network bandwidth utilization of the IPFS storage system.

The results of our experiment revealed that a minimum of 409.6 Kb/s of bandwidth
was required on average to keep the IPFS nodes running. This has optimized the overall
performance of SC-DCMS for the IBFT and RAFT consensus algorithms, reaching a peak of
834 and 1000 tx/s throughputs with 4.26 and 3.32 s latencies for a maximum of 2000 tx/s
input transaction rates for IBFT and RAFT, respectively. As compared to IBFT, the RAFT
consensus performed better with less resource consumption. This is owing to its faster
block times (with a minimum of 1 ms), transaction finality, and on-demand block creation.
The IBFT algorithm minted blocks at a constant rate every 1 s, and even empty blocks were
minted, which used excessive storage and created a lot of messaging overheads.

6. Limitations and Open Challenges

In this section, we elaborate on some limitations and open challenges that need
further research.

• System complexity and key management: The complexity of our proposed solution makes
the key management very challenging, as it is integrated with several systems and
platforms. Efficient and user-friendly key management schemes are required to take
advantage of the permissioned blockchain-enabled security and privacy features.

• Oracle problem with smart contracts and blockchain: Data exchange between the outside
world and blockchain is handled by SCs integrated with Dapps. This may lead to an
oracle problem if it is not correctly implemented [51,52].

• GDPR and immutable nature of blockchain: Withdrawing consent under GDPR might
require, in some cases, deleting stored personal data for users to exercise their rights
to be forgotten (Article 17). However, this remains a complex and challenging issue
because of the immutable nature of blockchain wherein further research is required to
be effectively applied and implemented [53,54].

• Smart contract vulnerabilities: Developing completely correct and bug-free smart con-
tracts is very challenging. As SCs are gain in popularity, this will raise new security
issues and challenges. Efficient smart contract vulnerability and security auditing
solutions are very critical.

• Smart contract adaptability and upgradability: As SCs are immutably stored on a blockchain
once deployed, they cannot be updated or upgraded for patching bugs or security
vulnerabilities. This becomes a major challenge when adapting to evolving privacy,
security, and legal compliance policies.

• Automated security and privacy policies verification and GDPR compliance checking: There
is still an urgent need for user-friendly audit engines to automatically verify security,
privacy, and legal compliance policies more efficiently.

7. Conclusions and Future Work

We have proposed a user-centric dynamic consent management system using smart
contracts for lawful personal data usage under GDPR. Our system design is aligned

Sensors 2021, 21, 7994 22 of 24

with the GDPR requirements. It empowers individuals to systematically provide various
types of consent agreements on distinct personal information and manage their consented
data usage. IPFS-protocol-enabled decentralized storage nodes were integrated with our
system to store data off-chain. Blockchain technology was used to enforce trust between
participants and for immutable data transaction history and access log recording, trusted
data provenance, and accountability features. Users can delegate their consent rights and
audit them by tracking the event logs on the blockchain. Users are notified about any
consent violation and can withdraw consent at any time. We designed and implemented
a prototype of the proposed system, which is integrated with GoQuorum blockchain to
demonstrate the feasibility of our concept. The implemented SC code and artifacts are
publicly available on GitHub, with a description of how to reproduce the test results.
Experimental testing and validation processes were conducted to assess its acceptability
and reliability. The settings of our system can be easily adapted and generalized to support
a wide range of industries and use cases. We also assessed the system’s security and privacy
as well as its performance in terms of SC algorithm computation time and space complexity,
transaction throughput and latency, computing resources, and storage network bandwidth
usages. The experiments were conducted to examine the impact of the transaction workload
variation on the overall system performance with RAFT and IBFT consensus protocols.
The experimental results showed that the proposed system achieved high transaction
throughputs and low latencies with moderate resource consumption and storage network
bandwidth utilization.

Above all, this study provides useful theoretical and practical background for further
research to be carried out in the future. Future directions to investigate are as follows:

• The experiments in this study were performed on a single server with nodes running
in containers. In the future, we plan to consider using a cluster or cloud computing
services to deploy our solution and conduct in-depth performance and scalability
analyses for a variable number of nodes and batch sizes.

• We plan to design an automated compliance-checking engine based on the techniques
described in other studies [55,56] for compliance with data protection regulations and
verification of security policies.

• Novel efficient and user-friendly key management approaches are worthy of further
investigation.

• Future research can try to develop systematic auditable and privacy-preserving proof
of compliance schemes for consent revocations that require personal data deletion by
data controllers.

Author Contributions: Conceptualization, M.M.M.; investigation and methodology, M.M.M., H.P.I.,
S.-P.H. and Y.K.L.; system design, development, and experimentation, M.M.M.; writing—original
draft preparation, M.M.M.; writing—review and editing, M.M.M., H.P.I., S.-P.H. and Y.K.L.; supervi-
sion and funding acquisition, H.P.I. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the MSIT (Ministry of Science and ICT) of the Korean Government, under Grant No.
NRF-2021R1A2C2012476.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank the GoQuorum community for providing the
underlying blockchain framework and tools used to implement the proof of concept of our solution.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 7994 23 of 24

References
1. Ekong, I.; Chukwu, E.; Chukwu, M. COVID-19 mobile positioning data contact tracing and patient privacy regulations: Ex-

ploratory search of global response strategies and the use of digital tools in Nigeria. JMIR mHealth uHealth 2020, 8, e19139.
[CrossRef]

2. Almeida, B.A.; Doneda, D.; Ichihara, M.Y.; Barral-Netto, M.; Matta, G.C.; Rabello, E.T.; Gouveia, F.C.; Barreto, M. Personal data
usage and privacy considerations in the COVID-19 global pandemic. Saúde Colet 2020, 25, 2487–2492. [CrossRef] [PubMed]

3. Park, O.; Park, Y.J.; Park, S.Y.; Kim, Y.M.; Kim, J.; Lee, J.; Park, E.; Kim, D.; Jeon, B.H.; Ryu, B.; et al. Contact transmission of
Covid-19 in South Korea: Novel investigation techniques for tracing contacts. Osong Public Health Res. Perspect. 2020, 2487–2492.

4. Ienca, M.; Vayena, E. On the responsible use of digital data to tackle the COVID-19 pandemic. Nat. Med. 2020, 26, 463–464.
[CrossRef]

5. Voigt, P.; Von dem Bussche, A. The Eu General Data Protection Regulation (GDPR): A Practical Guide, 1st ed.; Springer International
Publishing: Cham, Switzerland, 2017.

6. Teare, H.J.; Teare, H.J.; Morrison, M.; Whitley, E.A.; Kaye, J. Towards ‘Engagement 2.0′: Insights from a study of dynamic consent
with biobank participant. Digit. Health 2015, 1. [CrossRef]

7. Kaye, J.; Whitley, E.A.; Lund, D.; Morrison, M.; Teare, H.; Melham, K. Dynamic consent: A patient interface for twenty-first
century research networks. Eur. J. Hum. Genet. 2015, 23, 141–146. [CrossRef]

8. Steinsbekk, K.S.; Myskja, B.K.; Solberg, B. Broad consent versus dynamic consent in biobank research: Is passive participation an
ethical problem? Eur. J. Hum. Genet. 2013, 21, 897–902. [CrossRef] [PubMed]

9. Scott, A.S.; Goldsmith, M.; Teare, H. Wider Research Applications of Dynamic Consent. In IFIP International Summer School on
Privacy and Identity Management; Springer: Cham, Switzerland, 2018.

10. Budin-Ljøsne, I.; Budin-Ljøsne, I.; Teare, H.J.; Kaye, J.; Beck, S.; Bentzen, H.B.; Caenazzo, L.; Collett, C.; D’Abramo, F.;
Felzmann, H.; et al. Dynamic Consent: A potential solution to some of the challenges of modern biomedical research. BMC Med.
Ethics 2017, 18, 1–10. [CrossRef]

11. Asghar, M.R.; Russello, G. Flexible and Dynamic Consent-Capturing. In International Workshop on Open Problems in Network
Security; Springer: Berlin/Heidelberg, Germany, 2011; pp. 119–131.

12. Prictor, M.; Lewis, M.A.; Newson, A.J.; Haas, M.; Baba, S.; Kim, H.; Kokado, M.; Minari, J.; Molnar-Gabor, F.; Yamamoto, B.; et al.
Dynamic Consent: An Evaluation and Reporting Framework. J. Empir. Res. Hum. Res. Ethic 2020, 15, 175–186. [CrossRef]

13. Mont, M.C.; Sharma, V.; Pearson, S. EnCoRe: Dynamic Consent, Policy Enforcement and Accountable Information Sharing
within and across Organisations. Available online: https://www.hpl.hp.com/techreports/2012/HPL-2012-36.pdf (accessed on
25 November 2021).

14. Tokas, S.; Owe, O. A Formal Framework for Consent Management. In International Conference on Formal Techniques for Distributed
Objects, Components; Springer: Cham, Switzerland, 2020; Volume 12136, pp. 169–186.

15. Genestier, P.; Zouarhi, S.; Limeux, P.; Excoffier, D.; Prola, A.; Sandon, S.; Temerson, J.M. Blockchain for consent management in
the eHealth environment: A nugget for privacy and security challenges. J. Int. Soc. Telemed. Ehealth 2017, 5, GKR–e24.

16. Camilo, J. Blockchain-based consent manager for GDPR compliance. In Open Identity Summit 2019; Gesellschaft für Informatik:
Bonn, Germany, 2019; pp. 165–170.

17. Rupasinghe, T.; Burstein, F.; Rudolph, C. Blockchain based Dynamic Patient Consent: A Privacy-Preserving Data Acquisi-
tion Architecture for Clinical Data Analytics. In Proceedings of the International Conference on Information Systems 2019,
Munich, Germany, 15–18 December 2019.

18. InterPlanetary File System. Available online: https://github.com/ipfs-shipyard/ipfs-desktop (accessed on 25 November 2021).
19. Quorum: A Permissioned Implementation of Ethereum Supporting Data Privacy. Available online: https://github.com/

ConsenSys/quorum (accessed on 25 November 2021).
20. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 21260. Available online:

https://www.ussc.gov/sites/default/files/pdf/training/annual-national-training-seminar/2018/Emerging_Tech_Bitcoin_
Crypto.pdf (accessed on 25 November 2021).

21. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
22. Xu, X. A Taxonomy of Blockchain-Based Systems for Architecture Design. In Proceedings of the 2017 IEEE International

Conference on Software Architecture (ICSA), Gothenburg, Sweden, 3 April 2017; pp. 243–252.
23. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.;

Manevich, Y.; et al. Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains. In Proceedings of the
Thirteenth EuroSystem Conference, Porto, Portugal, 23 April 2018; pp. 1–15.

24. Jaiman, V.; Urovi, V.A. Consent Model for Blockchain-Based Health Data Sharing Platforms. IEEE Access 2020, 8, 143734–143745.
[CrossRef]

25. Madine, M.M.; Battah, A.A.; Yaqoob, I.; Salah, K.; Jayaraman, R.; Al-Hammadi, Y.; Pesic, S.; Ellahham, S. Blockchain for Giving
Patients Control over Their Medical Records. IEEE Access IEEE Access 2020, 8, 193102–193115. [CrossRef]

26. Madine, M.M.; Salah, K.; Jayaraman, R.; Yaqoob, I.; Al-Hammadi, Y.; Ellahham, S.; Calyam, P. Fully Decentralized Multi-Party
Consent Management for Secure Sharing of Patient Health Records. IEEE Access 2020, 8, 225777–225791. [CrossRef]

27. Albanese, G.; Calbimonte, J.P.; Schumacher, M.; Calvaresi, D. Dynamic consent management for clinical trials via private
blockchain technology. J. Ambient. Intell. Humaniz. Chomput. 2020, 11, 4909–4926. [CrossRef]

http://doi.org/10.2196/19139
http://doi.org/10.1590/1413-81232020256.1.11792020
http://www.ncbi.nlm.nih.gov/pubmed/32520293
http://doi.org/10.1038/s41591-020-0832-5
http://doi.org/10.1177/2055207615605644
http://doi.org/10.1038/ejhg.2014.71
http://doi.org/10.1038/ejhg.2012.282
http://www.ncbi.nlm.nih.gov/pubmed/23299918
http://doi.org/10.1186/s12910-016-0162-9
http://doi.org/10.1177/1556264619887073
https://www.hpl.hp.com/techreports/2012/HPL-2012-36.pdf
https://github.com/ipfs-shipyard/ipfs-desktop
https://github.com/ConsenSys/quorum
https://github.com/ConsenSys/quorum
https://www.ussc.gov/sites/default/files/pdf/training/annual-national-training-seminar/2018/Emerging_Tech_Bitcoin_Crypto.pdf
https://www.ussc.gov/sites/default/files/pdf/training/annual-national-training-seminar/2018/Emerging_Tech_Bitcoin_Crypto.pdf
http://doi.org/10.1109/ACCESS.2020.3014565
http://doi.org/10.1109/ACCESS.2020.3032553
http://doi.org/10.1109/ACCESS.2020.3045048
http://doi.org/10.1007/s12652-020-01761-1

Sensors 2021, 21, 7994 24 of 24

28. Mamo, N.; Martin, G.M.; Desira, M.; Ellul, B.; Ebejer, J.P. Dwarna: A blockchain solution for dynamic consent in biobanking. Eur.
J. Hum. Genet. 2019, 28, 609–626. [CrossRef]

29. Bhaskaran, K.; Ilfrich, P.; Liffman, D.; Vecchiola, C.; Jayachandran, P.; Kumar, A.; Lim, F.; Nandakumar, K.; Qin, Z.;
Ramakrishna, V.; et al. Double-Blind Consent-Driven Data Sharing on Blockchain. In Proceedings of the IEEE International
Conference on Cloud Engineering (IC2E), Orlando, FL, USA, 17–20 April 2018; pp. 385–391.

30. Rantos, K.; Drosatos, G.; Kritsas, A.; Ilioudis, C.; Papanikolaou, A.; Filippidis, A.P. A blockchain-based platform for consent
management of personal data processing in the IoT ecosystem. Secur. Commun. Netw. 2019, 2019, 1–15. [CrossRef]

31. Rantos, K.; Drosatos, G.; Demertzis, K.; Ilioudis, C.; Papanikolaou, A.; Kritsas, A. ADvoCATE: A Consent Management Platform
for Personal Data Processing in the Iot Using Blockchain Technology. In Innovative Security Solutions for Information Technology and
Communications; Springer: Cham, Switzerland, 2018; pp. 300–313.

32. Agarwal, R.R.; Kumar, D.; Golab, L.; Keshav, S. Consentio: Managing Consent to Data Access Using Permissioned Blockchains.
In Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), IEEE, Toronto, ON, Canada,
2 May 2020; pp. 1–9.

33. Lakhan, A.; Mohammed, M.A.; Rashid, A.N.; Kadry, S.; Panityakul, T.; Abdulkareem, K.H.; Thinnukool, O. Smart-Contract
Aware Ethereum and Client-Fog-Cloud Healthcare System. Sensors 2021, 21, 4093. [CrossRef] [PubMed]

34. Pandit, H.J.; Debruyne, C.; O’Sullivan, D.; Lewis, D. GConsent-a Consent Ontology Based on the GDPR. In European Semantic
Web Conference; Springer: Cham, Switzerland, 2019.

35. Xacml v3. 0 Core and Hierarchical Role-Based Access Control (RBAC) Profile Version 1.0: Committee Specification 02; Rissanen, E. (Ed.)
Organization for the Advancement of Structured Information Standards (OASIS): Burlington, MA, USA, 2014.

36. JSON Profile of XACML 3.0 Version 1.0, vol. 1: Candidate OASIS Standard 01; Brossard, D. (Ed.) Organization for the Advancement
of Structured Information Standards (OASIS): Burlington, MA, USA, 2014; p. 11.

37. Cakeshop. Available online: https://github.com/ConsenSys/cakeshop (accessed on 25 November 2021).
38. Tessera. Available online: https://github.com/consensys/tessera (accessed on 25 November 2021).
39. Constellation. A Self-Managing Peer-to-Peer System. Available online: https://bit.ly/3kaVrmv (accessed on 25 November 2021).
40. Istanbul Byzantine Fault Tolerant. Available online: https://bit.ly/3kAw51J (accessed on 25 November 2021).
41. Ongaro, D.; Ousterhout, J. In Search of an Understandable Consensus Algorithm. In Proceedings of the USENIX Annual Technical

Conference ({USENIX} {ATC} 14, Philadelphia, PA, USA, 19–20 June 2014; pp. 305–319.
42. cAvisior. Available online: https://github.com/google/cadvisor (accessed on 25 November 2021).
43. Quorum Reporting. Available online: https://github.com/ConsenSys/quorum-reporting (accessed on 25 November 2021).
44. Splunk App for Quorum. Available online: https://splk.it/3qg6myV (accessed on 25 November 2021).
45. So, S.; Lee, M.; Park, J.; Lee, H.; Oh, H. VeriSmart: A Highly Precise Safety Verifier for Ethereum Smart Contracts. In Proceedings

of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 30 July 2020; pp. 1678–1694.
46. Tikhomirov, T.; Voskresenskaya, E.; Ivanitskiy, I.; Takhaviev, R.; Marchenko, E.; Alexandrov, Y. Smartcheck: Static Analysis of

Ethereum Smart Contracts. In Proceedings of the 1st International Workshop on Emerging Trends in Software Engineering for
Blockchain, Gothenburg, Sweden, 27 May 2018; pp. 9–16.

47. Baliga, A.; Subhod, I.; Kamat, P.; Chatterjee, S. Performance evaluation of the quorum blockchain platform. arXiv 2018,
arXiv:1809.03421. Available online: https://arxiv.org/pdf/1809.03421.pdf (accessed on 25 November 2021).

48. Bieker, F.; Friedewald, M.; Hansen, M.; Obersteller, H.; Rost, M. A Process for Data Protection Impact Assessment Under the
European General Data Protection Regulation. In Annual Privacy Forum; Springer: Cham, Switzerland, 2016; pp. 21–37.

49. Health Information and Quality Authority. Guidance on Privacy Impact Assessment in Health and Social Care: Version 2.0. 2017.
Available online: https://bit.ly/2Yqp2kf (accessed on 25 November 2021).

50. Mazzoni, M.; Corradi, A.; Di Nicola, V. Performance evaluation of permissioned blockchains for financial applications:
The ConsenSys Quorum case study. Blockchain Res. Appl. 2021, 100026. [CrossRef]

51. Egberts, A. The Oracle Problem—An Analysis of How Blockchain Oracles Undermine the Advantages of Decentralized
Ledger Systems. SSRN 3382343. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3382343 (accessed on
25 November 2021).

52. Caldarelli, G. Understanding the Blockchain Oracle Problem: A Call for Action. Information 2020, 11, 509. [CrossRef]
53. Politou, E.; Alepis, E.; Patsakis, C. Forgetting personal data and revoking consent under the GDPR: Challenges and proposed

solutions. J. Cybersecur. 2018, 4, tyy001. [CrossRef]
54. Lee, Y.K.; Jeong, J. Securing biometric authentication system using blockchain. ICT Express 2021, 7, 322–326. [CrossRef]
55. Ranise, S.; Siswantoro, H. Automated Legal Compliance Checking by Security Policy Analysis. In International Conference on

Computer Safety, Reliability and Security; Springer: Cham, Switzerland, 2017; Volume 10489, pp. 361–372.
56. Torre, D.; Soltana, G.; Sabetzadeh, M.; Briand, L.C.; Auffinger, Y.; Goes, P. Using Models to Enable Compliance Checking Against

the GDPR: An Experience Report. In Proceedings of the ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems (MoDELS), Munich, Germany, 15–20 September 2019; pp. 1–11. [CrossRef]

http://doi.org/10.1038/s41431-019-0560-9
http://doi.org/10.1155/2019/1431578
http://doi.org/10.3390/s21124093
http://www.ncbi.nlm.nih.gov/pubmed/34198608
https://github.com/ConsenSys/cakeshop
https://github.com/consensys/tessera
https://bit.ly/3kaVrmv
https://bit.ly/3kAw51J
https://github.com/google/cadvisor
https://github.com/ConsenSys/quorum-reporting
https://splk.it/3qg6myV
https://arxiv.org/pdf/1809.03421.pdf
https://bit.ly/2Yqp2kf
http://doi.org/10.1016/j.bcra.2021.100026
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3382343
http://doi.org/10.3390/info11110509
http://doi.org/10.1093/cybsec/tyy001
http://doi.org/10.1016/j.icte.2021.08.003
http://doi.org/10.1109/MODELS.2019.00-20

	Introduction
	Dynamic Consent Management
	Our Contributions

	Background and Related Work
	Blockchain and Smart Contract
	Blockchain-Enabled Dynamic Consent Management

	Proposed System Model
	Key Stakeholders and Roles Identification
	Consent Requirements and Model Definition
	System Architecture
	User Profile and Personal Data Management
	User Profile Creation and Role Approval
	Personal Data Management

	Smart-Contract-Based Dynamic Consent Management
	Consent Expression
	Consent Request and Agreement
	Consent Withdrawal

	Implementation and Experiments
	Consent Contract Generation
	Implementation Details

	Evaluation
	Security and Privacy Analysis
	Satisfying Design Requirements
	Performance Evaluation

	Limitations and Open Challenges
	Conclusions and Future Work
	References

