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Abstract: Singing voice is a human quality that requires the precise coordination of numerous kinetic
functions and results in a perceptually variable auditory outcome. The use of multi-sensor systems
can facilitate the study of correlations between the vocal mechanism kinetic functions and the voice
output. This is directly relevant to vocal education, rehabilitation, and prevention of vocal health
issues in educators; professionals; and students of singing, music, and acting. In this work, we
present the initial design of a modular multi-sensor system for singing voice analysis, and describe
its first assessment experiment on the ‘vocal breathiness’ qualitative characteristic. A system case
study with two professional singers was conducted, utilizing signals from four sensors. Participants
sung a protocol of vocal trials in various degrees of intended vocal breathiness. Their (i) vocal
output, (ii) phonatory function, and (iii) respiratory behavior-per-condition were recorded through a
condenser microphone (CM), an Electroglottograph (EGG), and thoracic and abdominal respiratory
effort transducers (RET), respectively. Participants’ individual respiratory management strategies
were studied through qualitative analysis of RET data. Microphone audio samples breathiness
degree was rated perceptually, and correlation analysis was performed between sample ratings and
parameters extracted from CM and EGG data. Smoothed Cepstral Peak Prominence (CPPS) and
vocal folds’ Open Quotient (OQ), as computed with the Howard method (HOQ), demonstrated the
higher correlation coefficients, when analyzed individually. DECOM method-computed OQ (DOQ)
was also examined. Interestingly, the correlation coefficient of pitch difference between estimates
from CM and EGG signals appeared to be (based on the Pearson correlation coefficient) statistically
insignificant (a result that warrants investigation in larger populations). The study of multi-variate
models revealed even higher correlation coefficients. Models studied were the Acoustic Breathiness
Index (ABI) and the proposed multiple regression model CDH (CPPS, DOQ, and HOQ), which
was attempted in order to combine analysis results from microphone and EGG signals. The model
combination of ABI and the proposed CDH appeared to yield the highest correlation with perceptual
breathiness ratings. Study results suggest potential for the use of a completed system version in
vocal pedagogy and research, as the case study indicated system practicality, a number of pertinent
correlations, and introduced topics with further research possibilities.

Keywords: biomedical signal acquisition; singing voice; data processing; breathiness; electroglottog-
raphy; vocal mechanism; respiratory transducer; fundamental frequency estimation

1. Introduction

Singing is the result of certain neuromuscular functions pertaining to the vocal mech-
anism of the human body. Singing voice acoustic and perceptual properties have been
studied since Ancient Greek times, mainly by Aristotle, Aristoxenus and Dionysius of
Halicarnassus, and subsequently by Porphyrios, Nicomachus, and Cleonides [1]. This do-
main’s study has been continuing, and a plethora of modern-day research works have been
actualized regarding its anatomical, physiological, and acoustical properties [2], however
there is still much to be uncovered [3].
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One of the features that seems to require further investigation is singing voice over-
all quality assessment, which entails the quantification of individual perceptual voice
attributes that define it, as “no agreed-upon method currently exists for objective mea-
surement of perceived voice quality” [4] (p. 457). As a result, perceptual evaluation is
still an important factor in both voice disorder assessment and measurement instruments
result comparison, despite the extensive research realized and validity concerns [5]. The
quantification and understanding of such qualitative measures is also important to vocal
education, as well as to early diagnosis of voice misuse and prevention of relevant vocal
health issues in professional singing voice users (singers, actors, music teachers, etc.).

In order to achieve a higher level of understanding of the singing voice, and to facilitate
a more precise vocal pedagogy and rehabilitation, it would be useful to research and further
uncover the correlations between the vocal mechanism parts’ biomechanical functions and
their resulting perceptual vocal properties.

1.1. Singing Voice Acoustic Analysis

A common acoustic model of the vocal mechanism involves the distinction of three
parts: (a) the power source, or exciter (breathing system), (b) an oscillator (vocal folds),
and (c) a resonator/filter (vocal tract) [6]. The resulting output is the auditorily perceived
vocal timbre, which is defined by the contents of the vocal spectrum. This spectrum can
be described, in the time domain, as the convolution of the glottal (vocal folds) pulse
signal and the vocal tract filter impulse response [7,8]. Such an independent source-filter
model of the vocal instrument (and the subsequent described convolution result) can be an
“appropriate simplification” [7] (p. 2733) of a more complex interactions system.

The voice audio signal is easily acquired through a microphone, and its analysis can
reveal quantifiable evidence on a number of the vocal perceptual characteristics. Fast
Fourier Transform (FFT) as well as Logarithmic analysis methods on the spectrum of this
microphone signal (Cepstral Peak Prominence (CPP), Smoothed Cepstral Peak Prominence
(CPPS), Mel Frequency Cepstral Coefficient (MFCC), etc.), provide us with the potential to
evaluate glottal events and vocal tract resonances separately [9] (for a brief introduction to
CPP and CPPS cepstral measures please refer to Section 3.4).

1.2. Multi-Sensor Singing Voice Assessment

However, a more precise study of the voice could be achieved through combinatory
analysis of the above vocal sound measures in conjunction with the respective vocal
mechanism kinetic procedures. Such a venture requires the employment of more complex
systems. In a previous positional/review journalpaper, analyzing the reported decline of
operatic singing quality, as well as the challenges and recourse of vocal pedagogy [10],
we have suggested the need for development of research and education tools, utilizing
multiple sensors to transduce data regarding primary kinematic and acoustic functions of
the vocal mechanism. We also proposed that a series of experiments be actualized, aiming
towards the clarification of biomechanical-acoustical correlations.

The aim of the present work Authors: Changed for text clarity is multifold: (a) the
initial configuration of a modular, multi-sensor singing voice analysis system; (b) the
application of that system’s pilot study to research aspects of the breathiness characteristic
in singing; and (c) the utilization of the aforementioned research’s data for the evalua-
tion of vocal breathiness possible effects on the accuracy of an under-development vocal
tuner software.

The sensors incorporated to the above system were an Electroglottograph (EGG), two
Respiratory Effort Transducers (RET), and a Condenser Microphone (CM), while its pilot
study investigated possible system issues regarding: system and sensor usability, singer–
user convenience/task-hinderance level, compatibility, connectivity, signal acquisition,
data recording synchronization, and signal noise levels. The vocal breathiness characteristic
in singing was examined through a multi-faceted scope. Evaluation measures used were
Acoustic Breathiness Index (ABI), CPPS, vocal folds Open Quotient (OQ) —computed both
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with the Howard (HOQ) and the DECOM methods (DOQ)—, singing voice Fundamental
Frequency ( fo), phonation duration, "respiratory management strategies" (i.e., participants’
individual respiratory management strategies in singing, through —either conscious or
unconscious— muscular control of the breathing system), and breathiness level perceptual
evaluation. A new multivariate index, CDH (CPPS, DOQ, HOQ), was also proposed.

As mentioned above, experimental data extracted during the above pilot study were
also used to evaluate the efficiency of a microphone as sensor for pitch tracking purposes in
the case of users with varying degrees of vocal breathiness. This was realized by assessing
the deviation of Praat’s [11] pitch-tracking algorithm results between (1) CM signal and
(2) the respective EGG signal, in ‘distinct levels of intentionally breathy singing voice’. This
algorithm has been used in the fhabitual frequency tool [12] and is intended for use in Vocal
Tuner Tool, both being parts of the ‘Assistance for students in Singing and Music Aesthetics’
(ASMA) project, involving the authors of the present work.This new tool, estimating
voice fundamental frequency in combination with various spectral features of the voice,
is designed for use from school children and their teachers, without requiring the added
presence of medical or vocal experts (perceptually detecting possible vocal breathiness
prevalence of users). Results from a performance study on seven established pitch detection
algorithms [13] have shown indications of a “pitch error” increase in pathological voices.
Breathiness has been reported to have a 24.2% percent prevalence in a study of 71 children
3–9 years old [14], and 37.71% prevalence in a study with 70 children aged 6–10 [15]. It was
therefore considered important to test the algorithm in breathy singing, and to compare its
deviation between application on CM and EGG signals. It was hypothesized that an EGG
signal could be able to provide more accurate fundamental frequency estimation data in
cases of breathiness prevalence, as (a) breathy voice air turbulence noise is not a part of
the EGG signal, (b) vocal tract ‘filtering’ on voice signal is not actively affecting the glottal
pulse frequency, and (c) EGG signal is impervious to ambient noise, which could mask
the acoustic voice signal during field experimentation with breathy voices (where pitch
strength is already low [16]).

1.3. Related Work

Multi-sensor singing voice analysis is a field that is currently expanding. Examples
of software for combined EGG and microphone signal analysis are ‘PhaseComp’ [17]
and ‘VoceVista Video Pro’ [18], which have been developed by EGG device manufac-
turing companies. Additionally, the open-source voice analysis software Praat [11] has
incorporated scripts for working with an EGG signal, while the twocompanion software
‘VoiceSauce’ [19] and ‘EGGWorks’ [20] can be fused to export combined analysis results for
audio and EGG signals. Research on the singing voice realized using multiple sensor input
is not very common. Watson and Hixon [21] studied opera singers respiratory kinematics
using microphones, magnetometers, and video recording, while Salomoni et al. [22] used a
microphone, respiratory inductance plythesmography bands, and a pneumotachograph.
A 2018 study [23] compared measurements between an electret condenser microphone, a
sound level meter, and a piezoelectric contact microphone, assessing (among others) pitch
inaccuracies and cepstral measures of singing voice quality estimation in 14 professional
singers. Furthermore, a section of the international UNESCO ‘iTreasures’ project for the
preservation of ‘Intangible Cultural Heritage’ [24] resulted in the creation of a platform for
the capturing and analysis of rare singing techniques (i.e., Corsican Paghjella, human beat
box, and Byzantine chanting). This platform employed data capturing from a microphone,
an EGG, an imaging camera, a breathing belt, an ultrasound module, and piezoelectric
accelerometers [25]. Another study on singers employing both invasive and non-invasive
sensors regarded the definition of “supported singing voice” through the comparison
of the singers’ self-perception of supported and un-supported singing with quantitative
measures [26]. Additional sensors that can be (or have already been) used for singing
voice biofeedback include spirometers, skeleton tracking cameras, videokymograph, and
functional magnetic resonance imaging devices [10].
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Although the studies listed here performed a multi-sensor analysis, a significant
number of researchers have studied the singing voice with the use of solely accelerometers,
which can be employed for the examination of various voice-related measures, such as
fundamental frequency, open quotient, glottal airflow [27], and subglottal pressure [28],
that are traditionally captured with a microphone, an EGG, or airflow measurement devices.
Accelerometers have also been used in ambulatory voice monitors for analysis of singers’
vocal qualities, vocal habits, phonotrauma risk assessment [29,30], and detection and
classification of singing [31].

A recent study [32] on 20 professional singers used a videonasoendoscopic camera
system, a laryngostroboscopic system, an EGG, and a microphone to “assess and quantify
singers’ strategies for adding air to phonation to sound ‘breathy’ in a healthy manner” [32]
(p. 1). Finally, the study utilizing the set of sensors closest to the one described in the
current work was published by Ternström et al. [33], and reported findings from eight
trained female singer regarding the effects of relative lung volume on the EGG waveform.

Vocal ‘breathiness’ is a qualitative vocal characteristic that has been studied quite
extensively during the last decades [32,34,35]. It was chosen as an assessment case study
due to (a) its association with all three parts of the vocal mechanism, (b) its connection to
overall voice quality [36], and (c) its prevalence in children with dysphonia, a factor which
the authors wish to control for in ASMA project. The Consensus Auditory Perceptual
Evaluation of Voice (CAPE-V) standardized clinical protocol definition of the breathiness
vocal attribute is “audible air escape in the voice” [37] (p. 127), while the ABI introductory
study [35] specifies the characterization of breathy voice by a “turbulent noise during
phonation with excessively high frequency resulting from air leakage during glottal closure”
(p. 511.e11). This attribute is of interest to vocal pedagogy [32] and linguistics [38], as it is a
quality-defining perceptual characteristic [34], but also important to phoniatrics, as it has
also been connected to pathological conditions, such as vocal nodules, vocal fold bowing,
paralysis or paresis of the recurrent laryngeal nerve, and acute laryngitis [35]. Breathiness
has long been reported as “quantitatively related” to insufficient vocal fold closure [39]
(p. 5), resulting in continuous air leakage through the glottis (i.e., the opening/space
between the two vocal folds). Abduction (opening) and adduction (closing) of the vocal
folds is a determining factor for phonation and text articulation [6]) during phonation. This
makes breathiness a particularly important characteristic, as insufficient vocal fold closure
may imply a medical condition [40] but could also result in one [41]. Despite the apparent
multidisciplinary interest in the ’breathy’ voice quality, there are still publications reporting
a lack of adequate data correlating the ’breathy voice’ perceptual, qualitative feature, to the
pertinent biomechanical functions and the resulting acoustical, quantitative measures [32].

A ‘breathy’ voice may be tolerable, or even desired as a timbral option in some music
genres, such as Jazz, or some 20th–21st century music compositions using ‘Extended Vocal
Techniques’ (a term that is used to include phonation modes or experimental techniques
that deviate from the norm for Western classical singing, such as multiphonics, overtone
singing, ingressive singing, growling, etc.) [42] (pp. 21–22). This intentional use of
the breathiness characteristic is sometimes referred to as “air added to the voice”, to
distinguish it from involuntary breathy voice production [32] (p. 1). This study makes
use of the term breathy as the perceptual characteristic, without differentiating between
these conditions. Unintentional vocal breathiness is usually considered as a negative
characteristic in many music styles, such as operatic singing [43]. This is due to breathiness
being connected to relatively low vocal intensity (opera singers have to be clearly audible
in large auditoriums over the sound of a symphonic orchestra without amplification) and
low “pitch strength” [16], the latter implying the presence of a wide-band noise [44] from
the leaking air. Prevalence of this noise indicates the breathiness perceptual degree and has
been studied using various acoustic measures [35].

The following is a brief overview of the related work pertaining to vocal breathiness
analysis. Pongweni corrected typo in name [45] studied the effect of breathy voice on
Shona vowels using the amplitude, pitch and formants. Fritzell et al. [39] concluded that a
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quantitative relationship exists between breathy voice quality and glottal insufficiency in
pathological voices according to perceptual judgments. Scherer and Titze [34] extracted
the abduction quotient (Qa) from electroglottographic recordings in speech and singing
tasks in different voice qualities (breathy, normal, and pressed or constricted), concluding
that the abduction quotient decreases from breathy to pressed voice and suggesting that it
corresponds to the effective glottal width. Hartl et al. [46] showed that unilateral vocal fold
paralysis (UVFP) related breathiness was best correlated with airflow measurements and
that 10 of the 14 objective acoustic and aerodynamic parameters successfully distinguished
patients with UVFP from the control group. Shrivastav and Sapienza [47] compared sev-
eral measures obtained from the output of a previous auditory model to the perceptual
ratings of breathiness (for the Kay Elemetrics Disordered Voice database) using multidi-
mensional scaling techniques, concluding that the perceptual ratings of breathiness were
best predicted by the partial loudness of the periodic signal and stating the importance
of an auditory model as a signal processing front-end in obtaining objective measures of
voice that correspond closely with listeners’ perception of breathiness. Teixeira et al. [48]
presented a non-invasive procedure for automatic diagnosis of pathologies of the larynx
using jitter, shimmer (correlating it with breathiness), and HNR parameters, and proposed
threshold values for pathological voices. Fraile and Godino-Llorente [49] highlighted the
reliability of CPP in dysphonia detection and its extended use to the evaluation of over-
all voice quality, commenting, however, that this particular measure is not sufficient for
predicting voice quality aspects related to breathiness.

Borsky and Guðnason [50] classified five different voice types (modal, breathy, rough,
soft, and pressed) with Gaussian Mixture Model (GMM) from speech samples using an
electroglottograph and extracting the MFCCs. Barsties v. Latoszek et al. [35] proposed
a nine-variable acoustic model for the multiparametric measurement of breathiness, the
Acoustic Breathiness Index (ABI), in dysphonic voices using stepwise multiple regression
analysis. Kadiri and Yegnanarayana [51] classified breathy, modal, and tense voice us-
ing support vector machines (SVMs) and the zero-time windowing method, optimizing
the detection of phonation type when combining various acoustic and glottal features.
Aaen et al. [32] assessed air added to the voice (i.e., a singer’s strategy of adding air to
create a vocal breathiness effect in a healthy voice) by extracting various features from
laryngostroboscopic imaging and electroglottograph data, and observed a glottal gap
along the edge of the length of the vocal folds, as well as significant differences in various
acoustic parameters. Tylečková and Skarnitzl [52] proposed quantitative ranges of voice
quality parameters on non-pathological voices based on speech reading tasks in Czechs,
concluding that the estimated CPP values describe modal (e.g., non-breathy) phonation.
Barsties v. Latoszek [40] quantifyied evidence for the diagnostic accuracy of ABI, in terms
of sensitivity and specificity, from 34 research works, confirming the ABI’s robustness and
validity. Murton et al. [53] used CPP to evaluate clinical voice concluding in CPP cutoff
thresholds indicating the presence of voice disorders.

A recent publication indicated that breathiness studies have been (a) mostly concerned
with speech, (b) included singers as participants in a percentage seemingly lower than 2%
(35 out of 1923 in the 29 reviewed studies), and (c) rarely involving female and male singers
concurrently [32].

The system-in-development described and tested in the present publication will be,
when completed and to the best of our knowledge, one of the few non-invasive tool
attempts for the voice to combine acoustic, glottal, and respiratory signal acquisition from
dedicated sensors. The assessment experiment and analysis included measures that are
rarely studied against each other. A strong correlation has been hypothesized between
perceptual breathiness and CPPS, as well as between breathiness and OQ. The Acoustic
Breathiness Index was computed and a new multivariate regression model (CDH) was
introduced, to associate data results from CM and EGG signals for breathiness prediction,
while the possibility of combinatory analysis, using ABI and CDH, is also explored.
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Reports of transglottal airflow increase up to ~60% in breathy vowel phonation [54]
also lead to the assumption of a decrease in maximum phonation duration with breathiness
perceptual degree.

Furthermore, following the indications for pitch detection algorithm accuracy com-
parison between healthy and pathological voices [13], a secondary hypothesis was made.
This predicted a non-significant deviation when comparing results from the Praat pitch
detection algorithm between application to EGG and microphone signals of non-breathy
singing, but a significant deviation in respective results for breathy singing.

Correlation analysis appeared to confirm the aforementioned hypotheses, disproving
only the hypothesized accuracy decrease in microphone signal fundamental frequency
estimation in breathy singing, when compared to an EGG signal.

The innovative aspects of this work consisted mainly of (i) the design and testing of a
developing multi-sensor architecture to capture various parameters of the singing voice;
(ii) the comparative study of a specific pitch detection algorithm effectiveness in CM and
EGG signals in increasing singing voice breathiness conditions; and (iii) the introduction of
CDH, which is a new multi-variate regression model for the prediction of breathiness in
the singing voice, combining data from both microphone and EGG signals, which revealed
significant results for our dataset.

2. Materials and Methods

The system setup described here is being designed as a portable, non-invasive, mod-
ular monitoring system for signal acquisition, synchronization, and offline processing
of multiple sensors, transferring data from all three main parts of the vocal mechanism
(breathing system, phonatory system, and vocal tract). A distinct type of sensor was used
for each of the above mechanism parts. The exception to this was the monitoring of the
vocal tract with the use of a microphone, which can record the final vocal output, resulting
from vocal tract filtering on the vocal folds pulse signal. However, as mentioned above,
microphone signal data analysis can reveal useful information distinctive of the vocal tract
modifications and filtering. All sensors used in this initial system version could sent data
for recording and processing independently, through their respective signal acquisition
units, without direct sensor inter-communication.

As portability was a primary prerequisite for the equipment choice, the entire ex-
periment equipment (excluding the microphone stand) was fitted and held in a large
photography backpack, as shown in Figure 1. This will allow for future field experiment
measurements to be conducted.

Figure 1. The entire experiment setup equipment, both ready-for-use (left) and fitting a backpack
(center and right).

2.1. Breathing System Sensors

The breathing system was monitored by two respiratory effort transducers (Biopac
SS5LB) connected to a Biopac MP35 Signal Acquisition Unit (Biopac Systems, Goleta,
CA, USA). Each of the transducers was connected to a soft, adjustable nylon strap and
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measured the circumference expansion and contraction of a certain torso region. They
were selected for the experiment as they claim to “measure extremely slow respiration
patterns with no loss in signal amplitude while maintaining excellent linearity and minimal
hysteresis” [55]. Additionally, SS5LB belts are lightweight, extremely unobtrusive for
the singers, and sterilizable. One strap was placed around the thoracic region (RETt),
about 5 cm underneath the armpits (as suggested by the manufacturer), and a second
was placed around the abdominal region (RETa), right under the navel. Following the
SS5BL Instruction Manual, the straps were adjusted to have a slight tension at maximum
expiration state for each participant. RET placement also followed the respective model
used by Watson and Hixon [21].

2.2. Phonation

The vocal folds’ behavior was monitored with the use of an Electroglottograph (EGG).
The EGG is a non-invasive sensor that has been used extensively during the last six decades
for studying various aspects of laryngeal voice production, and its application has resulted
in a number of contributions to the science of the singing voice [56]. It employs the use
of two electrodes, which are placed bilaterally on the larynx (usually with the help of
an external soft strap). The EGG provides output regarding the relative contact area of
the vocal folds [57] in real-time, by measuring electric conductivity of a small current,
with a frequency commonly ranging from 300 kHz to several megahertz [58]. For the
present experiment, the EG2-PC electroglottograph by Glottal Enterprises was used. This
model additionally employs a ‘Laryngeal tracking indicator’, which can be utilized to
ensure correct electrode placement and minimize vertical larynx movements’ effect on
performance [57]. The unit is powered with the help of two internal rechargeable batteries
and remains unplugged during experimentation to allow for maximum line noise reduction
and transportability. To achieve optimal signal acquisition and minimize noise, the EGG
was used, making sure to maintain a small interelectrode angle and distance (as shown
in Figure 2), following the guidelines by I. Titze [59] and the instructions for the EGG
model used in our experiment by A. Michaud, including methods by N. Henrich and B.
Gautheron [60]. The latter instructions were also followed for experimental conditions,
device settings (with the exception of setting the EGG output level to ‘High’), device use,
and electrode alignment, whereas electrodes were held in place only by hand to allow for
maximum vocal freedom.

Figure 2. Participant displaying EGG electrode placement and alignment.

2.3. Vocal Output

The Behringer ECM8000 measurement microphone was use to capture the vocal
output. It is an omnidirectional microphone with flat frequency response at a 15 Hz to
20 kHz range and requires phantom power (+15 to +48 V). The microphone was placed at
a 40 cm distance from the singer’s mouth and its signal was passed through a PreSonus
TubePre professional microphone tube preamplifier, using XLR cables.
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2.4. Connections

Both the EGG signal and the pre-amplified microphone signal were input to two
distinct channels of a Steinberg UR44 external sound card. The sound card was connected
to a dedicated Dell G5 15 Laptop via a USB Type-C cable.

2.5. Software and Sensor Signal Recording

The (a) microphone audio and (b) EGG input signals were recorded at 48 kHz/24 bit
PCM (Pulse-Code Modulation audio format), following the suggestion of a previous
study [32] for a minimum of 16 kHz recordings, and using the Audacity Open Source
multi-track audio editor and recorder for Windows (Version 3.03). The resulting audio
was exported in files with .wav extension. The two Biopac SS5LB sensors signal, passed
through a Biopac MP35 Acquisition Unit, which output the acquired signals to the same
laptop via USB connection, as depicted in Figure 3. This was then recorded with the use of
the Biopac Student Lab (BSL) 4.1 Pro Software, using the software default sensor settings
(not the SS5BL settings). Waveforms from SS5LB sensors signal were also exported in
.wav files to allow for maximum compatibility in analysis with the microphone and EGG
signal files. In order to ensure the optimum synchronization of the four sensor signals,
being recorded by two distinct software programs, a script was written in the open-source
scripting language AutoHotkey (version 1.1.33.09). This enabled recording to commence in
both programs simultaneously (using a single keyboard key), and to thus result in exported
files with common time-stamps that could be synchronized more accurately for the purpose
of data analysis.

Figure 3. System Architecture: 1© Sensors. 2© Signal Acquisition and Amplification Units. 3© Data Recording Synchroniza-
tion. 4© File Export and Storage. 5© Data Analysis. 6© Post hoc Perceptual Evaluation.

2.6. Ambient and Hardware Noise

All experiment measurements took place in a soundproof recording room at the record-
ing studio of the Laboratory of Music Acoustics and Technology (LabMAT) of the Music
Studies Department of the University of Athens. In order to obviate a substantial portion
of possible interference and noise during measurement recordings, a laptop computer
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was setup to record using internal battery power and optimized for minimum-to-zero fan
noise. Furthermore, the external sound card was powered from the laptop using a USB-C
connection, while the EGG processor was powered by two internal batteries. The EGG man-
ufacturer claims that their “electroglottographs produce very low-noise EGG waveforms”
(https://www.glottal.com/Electroglottographs.html (accessed on 27 November 2021)). All
three devices were disconnected from external power sources and current transformers.

The Signal-to-Noise Ratio (SNR) was 45 dB for the recorded CM signals and 30 dB
for the EGG signals. This should allow the extraction of valid EGG results (SNR ≥ 30 dB)
and CM results with a theoretical measurement accuracy of 99% (SNR ≥ 42 dB), according
to reference studies [61,62]. For the purposes of this particular study, the RET signal
was analyzed qualitatively through signal waveform, where no noise seemed to visually
interfere. Due to the nature of respiratory muscles movement and relatively very low
speeds, RET signal frequencies of interest reside in the range of under 10 Hz (normal
respiratory cycles have a frequency of approximately 0.2–0.3 Hz, while frequencies higher
than 1 Hz “are commonly registered during high-intensity exercise” [63]). For system test
purposes, a software low-pass filter [64] was applied in Audacity, using a relatively high
threshold of 40 Hz, in order to overcompensate for any excessively fast muscle movement,
but cutting off possible interference of local electrical current (50 Hz). This filtering resulted
in elimination of any noise from mechanical or electrical sources upwards of 40 Hz, as
shown in Figure 4.

Figure 4. Waveforms and spectrograms of the two (top and bottom) RET sensors’ signal low-pass filter application for
noise removal, in a sample of intentionally excessive muscle movement (Left: before filtering; Right: after filtering).

https://www.glottal.com/Electroglottographs.html
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2.7. Experiment Participants

Professional operatic singers have been used as participants in research studies perti-
nent to the singing voice, as their extremely demanding profession [10] requires extensive
training and practice. The genre generally known as “operatic singing” or “Western
classical singing” is furthermore one of the most demanding types of vocal music. It encom-
passes a huge variety of sub-genres of many Western vocal traditions, ranging from the 17th
century to today. It requires singers to employ a high skill level pitch precision, vocal range,
volume/audibility, lyrics discernibility, voice health and stamina, vocal agility/flexibility,
musicality, stylistic proficiency, acting capability, etc. It is a trait often compared to elite
athleticism. This has been reported to promote a higher degree of kinesthetic control [65]
and enable the voluntary isolation or prevalence of distinct feedback modalities (auditory,
kinesthetic/somatosensory) [65,66]. Two participants took part in this study (1 female,
1 male—authors NK and EA, respectively). Both were professional singers with classical
training and professional experience (21 and 28 years, respectively) both as singers and
teachers of singing. Participants stated that they perceived their vocal instrument to be in
good health and that, in the past, they have both had stroboscopic medical evaluations that
had revealed no chronic vocal health issues. The data are available in a publicly accessi-
ble repository (https://github.com/nataliakotsani/Singing-Voice-Multi-Sensor-Analysis-
Tool/tree/main/DATASET (accessed on 28 November 2021)).

2.8. Experimental Protocol

The participants used the recording room one at a time. Participants were allowed
to commence at their own convenience and follow the protocol at their preferred pace,
pausing between trials, as they needed. The protocol of trials was discussed and was
available for them in a printed page. The protocol consisted of vocal trials on distinct
voluntary controlled degrees of vocal breathiness in singing. Three breathiness cases
were studied: (1) Non-Breathy singing Voice (NBSV), (2) Breathy singing Voice (BSV),
and (3) ‘Gradual’ Breathiness singing Voice (GBSV), where the breathiness characteristic
had to slowly and gradually be changed from non-breathy to breathy, quantifying data
for the varying degrees of this perceptual voice feature. Each of the above cases were
recorded on three degrees of vocal intensity (medium, high, low—m, h, l, respectively),
resulting in a total of nine experimental conditions. For each of these nine conditions,
the participants were asked to sing the following six trials, sustaining their sound for as
long as it was comfortable for them, aiming towards their maximum duration at optimum
vocal efficiency. Trials were (a) single sustained note on a comfortable tone, (b) single
sustained note on a high tone, (c) single sustained note on a low tone, (d) ascending vocal
glissando (2-octaves minimum), (e) descending vocal glissando (2-octaves minimum),
and (f) ascending and descending 2-octaves arpeggio. This resulted in a total amount of
54 distinct trials for each participant. Each participant’s complete trial run was recorded
as one incessant file, including failed and repeated trials. Participants were instructed to
cough lightly employing a simultaneous engagement of the abdominal region muscles
before commencing the trial run, as well as right after concluding the last trial. This served
the purpose of post hoc data synchronization via actively generated common events, which
is reported in the literature as a common approach [67]. Participants stated orally, for the
recording, the exact condition for each trial before commencing it.

3. Analysis

The section that follows describes in detail the way in which the experiment data was
handled, rated, classified, and subsequently analyzed (a) quantitatively, (b) qualitatively,
and (c) statistically.

3.1. Data Handling and Analysis Parameters

Total experiment time for participants 1 and 2 (P1 and P2) was 23 min 14 s and
16 min 42 s, respectively. Experiment data were exported into 48 kHz/24 bit .wav files

https://github.com/nataliakotsani/Singing-Voice-Multi-Sensor-Analysis-Tool/tree/main/DATASET
https://github.com/nataliakotsani/Singing-Voice-Multi-Sensor-Analysis-Tool/tree/main/DATASET
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and processed in Audacity. Audacity inherently performed lossless files conversion from
24-bit integer to 32-bit floating-point. Initial file processing involved separation of 32-bit
stereo audio files into two separate 16-bit monophonic files (one for each sensor) and
the subtraction of aborted trials, silent intervals, and oral trial descriptions, resulting in
concatenated .wav audio files containing solely the experiment trials sound. Processed
files had respective duration of 7 min 31 s (P1) and 7 min 44 s (P2) and were subsequently
segmented each into multiple 2 s consecutive numbered .wav sample files, preserving the
initial 16 bit-rate. Sample files were numbered from 000 to 224 for P1 and from 225 to
455 for P2. Microphone and EGG sound channels were processed simultaneously, creating
an equal number of audio files for the EGG signal.

For the analysis, the dataset samples were considered as independent data points (as
in corresponding studies of the literature [68]), instead of the subjects. The descriptive
outcomes and the correlation factors, between the selected parameters and the perceptual
breathiness ratings, were extracted using specific statistical libraries in python program-
ming language, and the implementation is available in a public repository
(https://github.com/nataliakotsani/Singing-Voice-Multi-Sensor-Analysis-Tool, (accessed
on 28 November 2021); https://doi.org/10.5281/zenodo.5732933 (accessed on 28 Novem-
ber 2021)) [69].

The selected features for the analysis were the Pitch Difference between estimations
from the CM and the EGG signals, in both Hz (PD) and Mel Scale (MPD), the Smoothed
Cepstral Peak Prominence (CPPS), the Open Quotient extracted with both the derivative
of the EGG signal-DECOM-(DOQ) [70] and Howard (HOQ) [71] methods, as well as the
Acoustic Breathiness Index (ABI) [35].

The correlations between the perceptual breathiness ratings and the above parameters
were analyzed. Of these acoustic and glottal parameters, the ones that displayed higher
correlations to breathiness ratings were CPPS, DOQ and HOQ. These were selected in
an attempt to model the relationship between them and perceptual breathiness. Using
multiple linear regression, a new index (CDH) for the prediction of the breathiness rating
was computed using the microphone and EGG signal results, through exclusively the CPPS,
DOQ, and HOQ parameters. In addition, the CDH index was experimentally combined
with the ABI index, a combination that yielded the highest correlation coefficients for
our dataset.

3.2. Perceptual Evaluation

The above 456 two-second microphone audio sample files were evaluated perceptu-
ally, using the same two experiment participants as judges, utilizing their expertise and
experience as singing teachers [72]. The evaluation was performed using a 9 point discrete
rating scale from ‘0’ (absolutely no perceivable breathiness in the voice) to ‘4’ (excessively
breathy vocal sound with a barely discernible pitch), including half point values (0.0, 0.5,
1.0, ... , 3.5, 4.0). Both judges reported to have no permanent or impermanent hearing or
vocal impediment. They evaluated all 456 samples (from P1 and P2), but each in a distinct
randomized order, using separate online forms, to avoid influence for consecutive samples
and priming effects, as well as to control for participant fatigue effect distribution.

Each participant evaluated the samples in four approximately 1-h sessions, with
interposed intervals to further control for fatigue, using the same model of closed type
headphones, and each at their own, personal environment.

The double attribute of the participants/raters was decided in order to ensure ability
of the raters to perceptually discern between variable conditions of vocal breathiness. A
previous intra-rater reliability and validity study on non-expert dysphonic patients [73]
reported findings that self-rating of perceptual voice qualitative features (including breath-
iness) appeared to be consistent and partially valid. Partial validity in that study [73]
was hypothesized to be attributed mainly to self-raters’ lack of expertise, poor auditory
discrimination and poor auditory memory skills prevalence in vocal patients, as well

https://github.com/nataliakotsani/Singing-Voice-Multi-Sensor-Analysis-Tool
https://doi.org/10.5281/zenodo.5732933
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as psychogenic factors. These influences were considered to be non-existent in current
research with healthy, expert participants.

In the work presented here, self-rating was predicted not to be significantly affected
by biases as (a) audio samples were merely 2 s long, leading towards judgment for the
specified vocal property, rather than overall singing quality; (b) during the recording exper-
iment, participants were asked to sing trials utilizing various degrees of breathy voice (thus
minimizing the response bias for a ‘good’ rating from themselves as judges); (c) samples
were presented for judgment in separate computer-generated randomized orders, to disas-
sociate them of any sense or knowledge regarding the intended target breathiness degree
for each sample; (d) trial audio segmentation in 2-s samples, the large total of samples
number (456), and a 15-day interval between measurements and perceptual judgment, was
employed to help eliminate any associative memory between experiment trial expectancy
and ratings; and (e) the judges had knowledge that participants’ initial breathiness target
degree was irrelevant to the study (as breathiness is a perceptual characteristic), that corre-
lations between intended voice breathiness degree and perceptual rating was not being
examined, and that statistical analysis would be based solely on the auditory rating and
not initial target intention.

Evaluations comparison between judges for the total 456 samples, in the 9 point scale,
revealed absolute judgment agreement in 63.8% of the samples (n = 291), 1 point judgment
deviation in 22.8% (n = 104), 2 to 3 point deviation in 11.9%, 4 to 5 point deviation in 1.5%
(n = 7), and 0% for 6 to 8 points deviation.

For the descriptive statistics outcomes, the above samples were classified according
to their average breathiness perceptual ratings. Calculating the average from the two
judges for each sample resulted in scores with a total of 17 values and a 0.25 step (0.00,
0.25, 0.50, 0.75, ..., 3.75, 4.00). For comparability with previous studies that used a 5-point
evaluation [32,47], samples were then classified using a taxonomy of the above 17 values
into five classes (0, 1, 2, 3, 4) of three to four values per class, minding the first and last
classes (0 and 4, respectively) to include exactly three values each. The latter was opted in
order to achieve a more uniform distribution of the sample population (see Figure 5), as
the experimental breathiness target conditions were (a) NBSV (which should yield samples
belonging mainly to class 0), (b) BSV (which should yield samples belonging mainly to
class 4), and (c) GBSV (which should yield samples belonging to all classes, including 0
and 4). Consequently, the grouping used for the five respective classes was <0.75, ≤1.5,
≤2.25, ≤3.25, ≤4.

Figure 5. The numbers of samples per class.
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3.3. Pitch Detection in Microphone and EGG Signals

The aim of this experiment included the assessment of the Praat pitch detection algo-
rithm, used also in the ASMA project for the fhabitual frequency tool [12]. In previous works
regarding the comparison between the microphone and the EGG signals, Vieira et al. [74]
compared the acoustic and EGG signal jitter for dysphonic speakers, and Jang et al. [13]
studied the comparative results of seven pitch detection algorithms for verification of
adequacy in pathological voices.

For the comparison of the pitch detection algorithm between microphone and EGG
signals we used our dataset and the python’s parselmouth library [75] which provides
an interface to the internal Praat [76] code, directly accessing Praat’s C/C++ code. The
Praat’s pitch detection algorithm was used in the microphone and EGG signals, comparing
the differences of the results as the breathiness evaluation values increased. A correlation
analysis was conducted between the breathiness perceptual ratings and (i) the difference of
the pitch detection algorithm results when applied over the CM and the EGG signals, and
(ii) the absolute values of that same difference.

3.4. CPPS of the CM Signal

For the extraction of the CPP, a Fourier transform is applied to the logarithm power
spectrum of a recorded sound wave. The relative amplitude of the cepstral peak in relation
to the expected amplitude of the cepstral peak is then estimated, using linear regression.
Intuitively, it has been mentioned that the CPP represents the degree of periodicity in the
voice signal and higher CPP values emerging from well-defined harmonic structure [77],
but, despite its extended use for overall voice quality evaluation, a definite explanation of
“what CPP actually measures” [49] is still lacking.

Formally, given a signal s(t), its real cepstrum, or power cepstrum, is equal to the
Fourier transform of the logarithm of its power spectrum, according to the first definition
of cepstrum [49]

Cr(q) = F{log |S( f )|2} (1)

where S2( f ) is the power spectrum of the signal

S2( f ) = F{E{s(t)× s(t− τ)}} (2)

A variant of CPP, called smoothed CPP (CPPS), was selected for acoustic analysis
in the present work. This variant utilizes smoothing operations added both in temporal
and cepstral domains [38], and has been reported to provide higher correlation with
breathiness [49]. More specifically, the modification of the CPP algorithm consisting of
an additional processing step, smoothing the individual cepstra (before extracting the
cepstral peak and calculating the peak prominence), in two steps, as, first the cepstra are
averaged across time, and second, the running average of cepstral magnitude is calculated
across quefrency.

The CPPS was extracted through Praat software (version 6.1.41) [76], with the same
parametrisation as Maryn’s and Corthals’ Acoustic Voice Quality Index (AVQI) Praat
script (v.02.03) [78,79], i.e., for the Power Cepstrogram, pitch floor: 60 Hz, time Step:
0.002 s, maximum frequency: 5000 Hz and pre-emphasis from 50 Hz, and the CPPS where
extracted without subtracting trend before smoothing, with time averaging window: 0.01 s,
quefrency averaging window: 0.001, peak search pitch range: 60–330 Hz, tolerance: 0.05,
parabolic interpolation, trend line quefrency range 0–0.001 s, straight trend type and robust
fit method.

3.5. OQ of the EGG Signals

The contact or closed quotient (CQ) is used to compare the duration of the contact
phase to the period of the vibratory cycle. It is complementary to the open quotient (OQ),
since CQ and OQ ratios together constitute the total glottal cycle, and therefore CQ + OQ
is always equal to 1. DECOM is an algorithm to calculate the OQ based only on the first
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derivative of the EGG signal (DEGG). This algorithm was proposed by Henrich et al. [70]
and extracts the OQ using a correlation-based method to estimate the distance between
two peaks of the dEGG signal corresponding to two respective consecutive vocal folds
closing instants, as well as the distance between two peaks corresponding to respective
consecutive instants of vocal folds opening and closing. Howard [71] proposed a different
method in which the contacting event is defined by the peak in the DEGG signal during the
closing phase, while the closed phase is defined by linear quantization between samples
either side of a 3:7 threshold.

For the OQ computation, a Praat script extracting OQ with both DECOM and Howard
methods was used [80] and the average value for each sample with both methods was extracted.

3.6. ABI of the Microphone Signals

Barsties v. Latoszek’s et al. multivariate acoustic model for the evaluation of breathi-
ness [35] is more suited to dysphonic voices, as it requires both concatenated voice samples
of continuous speech and a sustained vowel. In the present work, focusing mainly in
evaluating intentionally breathy singing phonation, an attempt to attain deliberate contin-
uous speech samples in various pitch regions and intensities, fully compliant with their
respective GBSV samples, would probably produce disputable results. For this reason, the
same sustained vowel file was given as an input for both the continuous speech and the
sustained vowel sample, accepting the possibility of model inaccuracies, and therefore
interpreting results with care.

For rating a pathological voice’s breathiness Barsties v. Latoszek [35] proposed
a combination of nine acoustic variables using stepwise multiple regression analysis:
ABI = (5.0447730915 − [0.172 × CPPs] − [0.193 × Jit] − [1.283 × GNEmax − 4500 Hz]
− [0.396 × Hfno − 6000 Hz] + [0.01 × HNR − D] + [0.017 × H1 − H2] + [1.473 × Shim
− dB] − [0.088 × Shim] − [68.295 × PSD]) × 2.9257400394.

In the present work, the ABI was computed using the Maryn and Barsties praat script [35].

3.7. Respiration

Data collected from the two respiratory effort transducers (RETt and RETa) were
exported as .wav files. As data recording was commenced simultaneously across data
recording software, the above .wav files had identical timestamps with recorded data for
the Microphone and EGG signals. All four sensor signals were loaded in four channels
of a new Audacity project. Actively generated common synchronization events revealed
adequate initial sensor data alignment, as well as negligible (for present study purposes)
clock drift at post-trials event time. For respiratory analysis the EGG signal track was not
used and was therefore temporarily disregarded. Failed trials (stopped or repeated by
participant’s own volition) were also disregarded and only one trial per condition was
included in analysis. Valid trials were marked across sensors and labeled according to trial
experimental condition. Following Salomoni et al. [22], respiratory cycles were identified
visually by local maximum and minimum values of RETt and RETa data graphs to allow
for optimum examination of breathing patterns.

3.8. Phonation Duration

Approximate phonation duration of individual trials entailing sustained both vowel
and frequency was measured manually in Audacity using the selection tool and rounded
to one decimal point values (sec). Glissando and arpeggio trials were excluded in order to
control for in-trial pitch changes effects on phonatory duration.

4. Results

The above experiment data analysis revealed the results detailed below.
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4.1. Quantitative Analysis Results

As we can see in Table 1 the average values of the pitch difference between estimations
from EGG and CM signals decrease as the breathiness rate decreases, in both frequency and
mel scale results. We also observe a decrease in the average CPPS values as the breathiness
rates are increasing. For the non-breathy voice samples (breathiness = 0 ), the average
CPPS value is 19.0021, while for the excessively breathy voice samples (breathiness = 4),
the average CPPS value is 9.7419. We can also note that the OQ values increase as the
breathiness rate increase (0.5285 for breathiness = 0 and 0.6473 for breathiness = 4, using
the Howard algorithm) and that the use of Howard algorithm yielded higher values
compared to the DECOM method. The ABI, as expected, increases as the perceptual
breathiness ratings increase.

Table 1. Descriptive outcomes: Average values for different perceptual ratings of breathiness. BR:
breathiness rating, PD: Pitch Difference, MPD: Pitch Difference in Mel scale, CPPS: Smoothed
Cepstral Peak Prominence, DOQ: Open Quotient with DECOM method, HOQ: Open Quotient with
Howard method.

BR PD MPD CPPS DOQ HOQ ABI

0 −0.1197 −0.1624 19.0021 0.4969 0.5285 0.1542
1 −0.5997 −0.6998 16.6308 0.5119 0.5483 1.4276
2 −1.0749 −1.1693 15.7304 0.5652 0.5778 2.0935
3 −2.0878 −2.1259 13.2119 0.6067 0.6225 3.8265
4 −2.9783 −2.9235 9.7419 0.6391 0.6473 6.1339

Table 2 shows the Pearson Correlation Coefficients (r) with their p-values (p) and
Table 3 shows the Spearman Correlation Coefficients (ρ) with their p-values (p), for the
PD, MPD, CPPS, and the OQ values with DECOM and Howard methods, as well as for
the proposed multivariate index CDH and its combination with the ABI (CDH + ABI).
The results demonstrate higher correlation coefficients for the CDH + ABI, CDH and
ABI indexes, while the individual parameters displaying the highest significance appear
to be the HOQ and the CPPS. We observe that, with the exception of PD and MPD, all
correlations (CPPS, DOQ, HOQ, ABI, CDH, CDH + ABI) were statistically significant.

Table 2. Pearson Correlation Coefficients, r (p-values), between the breathiness rating and the selected
parameters (PD: Pitch Difference, MPD: Pitch Difference in Mel scale, CPPS: Smoothed Cepstral
Peak Prominence, DOQ: Open Quotient with DECOM method, HOQ: Open Quotient with Howard
method, CDH: CPPS + DOQ + HOQ, CDH + ABI: CPPS + DOQ + HOQ + ABI).

PD MPD CPPS DOQ HOQ ABI CDH CDH + ABI

r −0.0606 −0.0494 −0.7655 0.5516 0.6423 0.8107 0.8308 0.8534
p 0.1966 0.2927 <10−5 <10−5 <10−5 <10−5 <10−5 <10−5

Table 3. Spearman Correlation Coefficients, ρ (p-Values). BR: breathiness rating, PD: Pitch Differ-
ence, MPD: Pitch Difference in Mel scale, CPPS: Cepstral Peak Prominence, DOQ: Open Quotient
with DECOM method, HOQ: Open Quotient with Howard method, CDH: CPPS + DOQ + HOQ,
CDH + ABI: CPPS + DOQ + HOQ + ABI).

PD MPD CPPS DOQ HOQ ABI CDH CDH + ABI

ρ −0.1436 −0.1427 −0.7647 0.5494 0.6447 0.8279 0.8410 0.8700
p 0.0021 0.0023 <10−5 <10−5 <10−5 <10−5 <10−5 <10−5

According to the results of the Tables 1 and 2, the statistically significant individual
parameters (CPPS, DOQ, and HOQ) were selected and a linear regression model was
created. The resulting equation of the proposed index (CDH), according to the coefficients
of the regression, was:
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CDH = (−0.20688984 × CPPS) + (−3.21878076 × DOQ) + (9.56627174 × HOQ).
Adding the ABI values, yielded the equation:

CDH + ABI = (−0.06959419 × CPPS) + (−3.26429585 × DOQ) + (8.27435347 × HOQ)
+ (0.2633933 × ABI).

The regression lines between breathiness perceptual ratings and the selected param-
eters (CPP, ABI, DOQ, and HOQ), and the indexes CDH and CHD+ABI, are shown in
Figure 6.

Figure 6. The scatter plots between average breathiness perceptual ratings and the selected acoustic
measures: CPP (r = −0.7655, p < 10−5, ρ = −0.7647, p< 10−5), ABI (r = 0.8107, p < 10−5, ρ = 0.8279,
p < 10−5), DOQ (r = 0.5516, p < 10−5, ρ = 0.5494, p < 10−5), HOQ (r = 0.6423, p < 10−5, ρ = 0.6447,
p < 10−5), CDH (r = 0.8308, p < 10−5, ρ = 0.8410, p < 10−5), CHD + ABI (r = 0.8534, p < 10−5,
ρ = 0.8700, p < 10−5).

Figure 7 shows the regression lines between breathiness perceptual ratings and the
difference of the pitch detection algorithm between the CM and the EGG signals (PD) with
r = −0.0606, p = 0.1966, and ρ = −0.1436, p = 0.0021, their difference converted in mel scale
(MPD) with r = −0.0494, p = 0.2927, and ρ = −0.1427, p = 0.0023, and the absolute value
(ABS) of their difference (Tables 2 and 3).
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As we observe in Figure 7, absolute pitch difference between estimations from the CM
and the EGG signals increased especially in the highest perceptual breathiness degrees.
However, this pitch difference was not steadily either positive or negative. In other words,
we regard that neither one of the two signals (CM and EGG) gave consistently higher or
lower pitch estimates than the other.

Additionally, for the purpose of further illuminating the above relation between pitch
estimation from the two signals in increasing breathiness degrees, the descriptive outcomes
regarding mean absolute values of pitch difference per breathiness class in Hertz are
adduced: 0.2521 (class 0), 0.7418 (class 1), 1.2193 (class 2), 2.3563 (class 3), 10.4701 (class 4).
Similarly, mean values of the absolute PD as expressed in the mel scale are presented here
as an indicator of the perceptual significance between the two estimation methods: 0.4020
(class 0), 1.1838 (class 1), 1.9354 (class 2), 3.6945 (class 3), 15.6859 (class 4).

Figure 7. The scatter plots between average breathiness perceptual ratings and the difference of the
pitch detection algorithm between the CM and the EGG signals (PD), with r = −0.0606, p = 0.1966,
and ρ =−0.1436, p = 0.0021, their difference converted in mel scale (MPD) with r =−0.0494, p = 0.2927,
and ρ = −0.1427, p = 0.0023, and the absolute value of their difference.

4.2. Respiration

Audacity wave tracks containing the trials sensor data, as described in Section 3.7,
were studied and analyzed visually, in order to attain information on each participant’s
individual respiratory management strategies and to regard any discernible correlations to
distinct trial conditions.

After studying sensor data graphs for CM, RETt, and RETa, and conducting an
observatory comparison between trials, as well as between participants P1 and P2, the
following patterns seem to emerge and should be taken into consideration for further
investigation. For P1 an overall uniform breathing strategy was observed across trial
conditions. RETt data review revealed a thoracic movement tactic that can be visually
segmented into four stages (as depicted in Figure 8): (a) a thoracic region expansion,
reaching a local maximum before phonation onset (stage one), (b) a slow, linear thoracic
volume decrease, leading up to approximately the midpoint of trial phonation duration
(stage two), (c) a consecutive significantly more rapid volume collapse (stage three), and
(d) a stabilization at a local minimum briefly after stage three (stage four).
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Figure 8. Graphic representation for the four distinct stages for thoracic movement during a typical
phonation trial for Participant 1 (P1). Representations shown are for Condencer Microphone (CM)
signal (top), and for thoracic region Respiratory Effort Transducer (RETt) (bottom).

During BSV trials, stage two of the above observations was consistently close to visual
assimilation with stage three, pointing to a faster air depletion rate. This is also corroborated
by mean trial durations, which were shorter in breathy phonation trials. Additionally, trials
involving phonation on a high frequency seem to demonstrate a tendency for increased
duration of stages two and three and thus a relatively later commencement of stage four.

RETa data for P1 showed phonation onset also on a local maximum for abdominal
circumference expansion, revealing a full inspiratory capacity utilization. However, in
contrast to evidence on thoracic region behavior, RETa data suggest a distinct abdominal
kinetic strategy for phonation trials that varied with different breathiness degrees. More
specifically, P1 showed a tendency to retain abdominal region at near maximum expansion
levels for the greater part of phonation duration in trials on NBSV, and a minimal-to-no
abdominal region volume decrease when approximating phonation ending. This strategy
was altered in BSV trials to display an abdominal circumference attenuation shortly after
phonation commencement, which continued during phonation and reached a much lower
value than in NBSV trials. In GBSV trials, P1 employed a strategy ranging between the
previous two, as can be seen in Figure 9.

P2 also demonstrated a personal, consistent breathing kinetic strategy, as shown in
Figure 10. RETt revealed a thoracic muscle behavior generally similar to that of P1, dif-
ferentiated mainly by a significantly slower thoracic volume decrease during phonation
stage two. Additionally, P1 did not seem to employ a distinct approach for BSV, regarding
thoracic muscle activation. RETa for P2 suggest a variation of abdominal kinetic behavior
when singing trial included high frequency tones, which involved a faster inward abdomi-
nal movement with a perceptually wider displacement range. Trial breathiness degree did
not seem to have an obvious effect on P2 RETa waveforms.
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Figure 9. Graph of the nine initial trials for Participant 1 (P1). Sensors depicted are Microphone (top graph), Thoracic
circumference Respiratory Effort Transducer (RETt) (middle graph), Abdominal circumference Respiratory Effort Transducer
(RETta) (bottom graph). Individual trial labels correspond to trial conditions, namely (left to right) (1) breathiness
degree: Non-Breathy singing Voice (NBSV), Breathy singing Voice (BSV), and ‘Gradual’ Breathiness singing Voice (GBSV),
(2) frequency: ‘habitual’ refers to participant habitual voice frequency, (3) vocal intensity: medium, low, high.

Figure 10. Graph of the nine initial trials for Participant 2 (P2). Sensors and trials illustrated are as described in corresponding
Figure 9 for P1.

4.3. Breathiness Effect on Phonation Duration

Mean phonation duration values (in seconds) for distinct breathiness level trials were
NBSV = 12.43, GBSV = 9.43, BSV = 7.11.

5. Discussion

The assessment study of the system-in-development described in the present work
yielded the results presented within the previous sections.

5.1. System Evaluation

An overall evaluation of the current system revealed it to be the basis for a versatile
modular tool, suitable for studio and field experimentation on the singing voice. Such a tool
could also be applicable to personalized vocal education and rehabilitation. All included
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sensors are non-invasive, and experiment participants reported to have experienced no
hindrance in singing and felt free to sing normally. Equipment and settings were selected
such as to produce minimum noise and data synchronization was inherently sufficient.
The system was able to provide data from all three major parts of the vocal mechanism
that can be analyzed and correlated to further elucidate facts regarding the singing voice.

5.2. Breathiness

The breathiness characteristic was studied in relation with glottal and acoustic mea-
sures. Participants’ glottal behavior, as monitored by the EGG sensor, confirmed the
hypothesis for an increased vocal folds open quotient (or “quasi open quotient” (QOQ),
as Herbst [56] suggests) in breathy voice prevalence samples. This is corroborated by
high values of the ABI, low CPPS values, shorter phonation duration, and BSV trials
breathing muscles gestures that seem to indicate a faster inhaled air depletion. All these
factors indicate agreement with previously reported highly increased transglottal airflow
in breathy vowel phonation [54]. Correlation between perceptual breathiness degree and
each of the selected (acoustic, glottal, and combinatory model) parameters is illustrated
in Figure 6, through depiction of the respective correlation analysis scatter plots. The
combination of the ABI index together with the CDH index (which added EGG input data
and readjusted the CPPS regression coefficient) gave the highest correlation coefficient
for our dataset (r = 0.8534, p < 10−5, ρ = 0.8700, p < 10−5). Note that merely one of the
variables (CPPS) used by the ABI index, when combined with two OQ extraction methods,
appeared to have a strong correlation for predicting breathiness as a singing voice quality
characteristic (r = 0.8308, p < 10−5 ρ = 0.8410, p < 10−5). Furthermore, as expected, the
ABI index showed a stronger correlation (r = 0.8107, ρ = 0.8279) than each of the selected
parameters (PD, MDP, CPPS, DOQ, HOQ) independently.

5.3. Fundamental Frequency Estimation

Fundamental frequency estimation deviation analysis between CM and EGG signals
seems to corroborate previous studies results, comparing fundamental frequency estima-
tion between microphone and contact sensors (accelerometres and piezoelectric contact
microphone) in singing [23,81] and speech [82]. Our study confirmed “comparable re-
sults” [23] to be valid also in the comparison case between CM and EGG in normophonic
(NBSV) singing voice and examined the special case of BSV, specifically their difference
in frequency (PD) and mel scale (MPD). In the case of BSV, our initial hypothesis was
disproved, as practically no significant deviation was detected between pitch estimation
with CM and EGG signal in most degrees of vocal breathiness (the mean of PD absolute
values were <= 1.2193 Hz for breathiness class ratings 0–2).

We observe that, based on the Pearson correlation coefficient, the correlation between
breathiness and PD or MPD is statistically insignificant. The significant, albeit weak,
correlation emerging from the Spearman correlation coefficient could be attributed to
systematical outliers, while otherwise observation of Figure 7 indicates that these variables
seem to be independent for our dataset. This result could support a claim of microphone
sufficiency for pitch estimation purposes, even when measuring populations of subjects
with varying degrees of vocal breathiness, thus allowing its use in the ASMA vocal tuner
tool. This vocal tuner is being designed for singing voice use in Elementary School Classes.
Children of about this age range (6–10) have been reported to display mean fundamental
frequencies of 262 Hz for boys and 281 Hz for girls, across speaking and singing tasks,
with a tendency for higher frequencies during singing tasks [83]. For a voice rated with
a class 2 breathiness (of the described 0–4 classification), the absolute mean difference
between CM and EGG pitch estimation was found to be 1.2193 Hz. Even in such a case this
pitch deviation in a mean frequency of singing around 270 Hz would be the perceivable
analogue of 0.077 semitones (7.7 Cents), while in a comfortable (for children) tone of 350 Hz,
estimation difference in a mildly breathy voice (class 1) would have a mean of 0.7418 Hz,
meaning 0.035 semitones (3.5 Cents). In his chapter “The Perception of Singing” [84],
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Sundberg describes a 2.9 cent interval at 300 Hz as “impossible for almost any listener
to detect under any experimental conditions”, and states that “the difference limen for
frequency is at least 6 cents but may be considerably higher” [84]. This further supports
the validity of our sensor (CM) and algorithm choice for the task at hand.

5.4. Respiration

Professional singers have been known to employ distinct respiratory management
strategies. P1 and P2 have displayed differences in abdominal kinetic behavior during
NBSV trial. However, when faced with a need for air added to the voice (BSV trials), they
both opted to use an inward movement of the abdominal muscles, to apparently force
an upward diaphragmatic movement and elevate subglottal air pressure. P1 and P2 RET
analysis agreed with general expectation for experienced singers with years of respiratory
training and indicated consistent (albeit distinct between participants) individual respira-
tory management strategies. However, qualitative analysis pointed to evidence of variation
in extreme vocal breathiness conditions and high frequency phonation. These evidence
are not generalizable, as the experiment was performed as a case study and involved
intentionally breathy phonation (air added to the voice [32]) by trained professionals, and
not untrained participants with inadvertently breathy or pathological voices. Nevertheless,
this analysis can be used as a showcase of the proposed multi-sensor voice analysis system
capability, while more cases could be the subject of further experimentation.

5.5. Study Limitations and Future Work

The system presented here is a work-in-progress towards a modular multi-sensor
tool for singing voice analysis. A dedicated software that will record and automatically
synchronize the data from all sensors (without the required use of third party or sensor
manufacturer’s programs) is currently in discussion. Additionally, the Kinect Azure
SDK [85] is already being implemented to the system, using skeletal tracking [86] as a
means of monitoring and recording (a) singers’ postural alignment, and (b) kinetic habits
connected to, or affecting, the production of the singing voice. This camera model has
increased portability, and has been reported to have higher accuracy and lower noise than
previous models, and operate in various distinct modes (e.g., different fields of view) [87].
Another possible sensor addition to this modular system is that of an accelerometer. This
has been tested for the estimation of vocal measures such as fundamental frequency, glottal
airflow, open quotient [27], and subglottal pressure [28].

In the present study, we have provided a brief qualitative analysis of the respiratory
measurements obtained from the evaluation setup described in Sections 3.7 and 4.2. In
a future work, we will provide quantitative data analyses of the outcomes from more
experiments than the proof of concept results presented herein. The volume of both
experimental and analytical work needed to obtain meaningful outcomes presumes a
venture by far surpassing the scope of the work we have presented here. Related data have
been assayed in a singer’s breathing dedicated study using Principal Component Analysis
(PCA) [22] and it is our intention to use similar protocols and fitting techniques for analysis,
as well as appropriate low-pass filtering to eliminate high frequency instrument noise.

COVID-19-related restrictions and precaution measures led to the limitation of the
current experiment’s accessible and willing participant number, as the study design al-
ready required professional singers demonstrating a high expertise level in vocal control.
Therefore, the experimental part of this work served mostly as a case study to assess the
current system stage, and to extract predictive results regarding vocal breathiness, with
professionals intentionally adding air to their voice.

Apart from the testing a stage of this in-development system, potential innovative
aspects of the presented work are (i) the proposed CDH multivariate model and its combi-
nation with the ABI model, which best predicted the perceived breathiness rating for our
dataset, and (ii) the comparison of pitch detection algorithm results between microphone
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and EGG signals in vocal breathiness conditions. Testing the above models and results in
larger data pools has been planned.

Further extensions of the current work would also pertain to the existing dataset
expansion with (i) greater participant and judges populations; (ii) participant groups of
distinct vocal proficiency levels and ages; and (iii) inclusion of a number of categorized
perceptual vocal features, related to voice quality, and especially vocal technique and
idioms. Our goal for the integrated form of the system is for it to support multivariate
correlations, using machine learning techniques and models, as well as real-time analysis
and voice monitoring.
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