
sensors

Article

An Indexing Method of Continuous Spatiotemporal Queries for
Stream Data Processing Rules of Detected Target Objects

Muhammad Habibur Rahman 1, Bonghee Hong 1,*, Hari Setiawan 1, Sanghyun Lee 1, Dongjun Lim 1 and
Woochan Kim 2

����������
�������

Citation: Rahman, M.H.; Hong, B.;

Setiawan, H.; Lee, S.; Lim, D.; Kim, W.

An Indexing Method of Continuous

Spatiotemporal Queries for Stream

Data Processing Rules of Detected

Target Objects. Sensors 2021, 21, 8013.

https://doi.org/10.3390/s21238013

Academic Editor: Antonio Guerrieri

Received: 19 October 2021

Accepted: 27 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, Pusan National University, Busan 46241, Korea;
Mhabiburr17@pusan.ac.kr (M.H.R.); 960416-5120063@pusan.ac.kr (H.S.); geodb@pusan.ac.kr (S.L.);
dannylim0709@pusan.ac.kr (D.L.)

2 Agency for Defense Development, Changwon 34186, Korea; woochankim@add.re.kr
* Correspondence: bhhong@pusan.ac.kr

Abstract: Real-time performance is important in rule-based continuous spatiotemporal query pro-
cessing for risk analysis and decision making of target objects collected by sensors of combat vessels.
The existing Rete algorithm, which creates a compiled node link structure for executing rules, is
known to be the best. However, when a large number of rules are to be processed and the stream
data to be performed are large, the Rete technique has an overhead of searching for rules to be bound.
This paper proposes a hashing indexing technique for Rete nodes to the overhead of searching for
spatiotemporal condition rules that must be bound when rules are expressed in a node link structure.
A performance comparison evaluation experiment was conducted with Drool, which implemented
the Rete method, and the method that implemented the hash index method presented in this paper.
For performance measurement, processing time was measured for the change in the number of rules,
the change in the number of objects, and the distribution of objects. The hash index method presented
in this paper improved performance by at least 18% compared to Drool.

Keywords: continuous query; index; rule processing; spatiotemporal query; stream data

1. Introduction

A ship combat system uses a rule-based event processing application for threat analy-
sis and weapon response [1,2] for target objects collected in real time. As shown in Figure 1,
it is assumed that the target object data collected from the radar sensor, sonar sensor, and
electromagnetic sensor [3] installed on the ship are ID, speed, elevation, IFF, direction,
location, and time; here, ID is the identifier of a target object, and IFF is the foe or friendly
identification information. The input data in Figure 1 are stream data collected from the
data distribution service topic [4]. Threat analysis and decision making are performed by
applying rules for event processing, event capturing, continuous query (CQ) [5–8] pro-
cessing, and complex event processing [9–16]. For complex event processing, the operator
scheduling method [17] that uses a similarity-based preference was proposed to address the
difficulty in determining complex events due to the uncertainty of dynamic input events;
however, it is still not suitable to address the processing performance of rule binding. The
continuous query repeatedly executes a given query condition for each stream of data that
is continuously input in real time.

The performance of the rule-based event processing framework is determined by the
search time to look for some appropriate rules to the stream input data in real time and
the processing time of individual rules. The set of rules of event filter, event capture, CQ,
and complex event processing [18–21] are interrelated. Thus, rules should be executed as
a binding process in which the output of one rule becomes the input of another rule. A
complex event implies that when at least two events are input to a rule, join events that
satisfy the rule condition must be generated. The rule execution by interpretation presents

Sensors 2021, 21, 8013. https://doi.org/10.3390/s21238013 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5983-6780
https://doi.org/10.3390/s21238013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21238013
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21238013?type=check_update&version=2

Sensors 2021, 21, 8013 2 of 16

a slow processing speed when stream data are input. To alleviate this problem, a Rete
algorithm, which means network in Italian, was proposed to maintain the internal data
structure by complying with the rules [22].

Sensors 2021, 21, x FOR PEER REVIEW 2 of 16

Figure 1. Rule-based event processing framework.

The performance of the rule-based event processing framework is determined by the
search time to look for some appropriate rules to the stream input data in real time and
the processing time of individual rules. The set of rules of event filter, event capture, CQ,
and complex event processing [18–21] are interrelated. Thus, rules should be executed as
a binding process in which the output of one rule becomes the input of another rule. A
complex event implies that when at least two events are input to a rule, join events that
satisfy the rule condition must be generated. The rule execution by interpretation presents
a slow processing speed when stream data are input. To alleviate this problem, a Rete
algorithm, which means network in Italian, was proposed to maintain the internal data
structure by complying with the rules [22].

When there are N target moving objects that are continuously collected in real time,
the rule processing for M continuous query rules should be repeated N × M times. Usually,
the detection of the target objects by the radar is repeated every 3 to 5 s. Let p be the num-
ber of times the target stream objects are collected within a given period. If the input of
stream data of target objects continuously collected is repeated p times, the total number
of rule processing becomes N × M × p, and then, the time complexity becomes approxi-
mately O(n3). Therefore, even if the compiled internal data structure of the rule using the
Rete algorithm is used, the performance significantly degrades. In particular, in the case
of a rule including a spatiotemporal CQ condition, the performance of rule binding be-
comes worse.

Existing studies incorporated Java topology suite-based spatial functions [23,24] to
ensure the inclusion of spatial data processing functions in rules by extending the Rete
algorithm. The extension of the Rete algorithm to support spatial functions in the pro-
cessing of conditional operation of rules was implemented in the Drools engine [25]. How-
ever, the stream data processing method of the improved Rete algorithm was required to
examine all the rules for input data consecutively. Hence, the rule processing performance
was not efficient when the number of rules was significant. To reduce unnecessary join
operations of beta nodes in the condition processing of rules, the concept of the time-
stamped event to reduce join targets using time constraints was proposed [26]. An alter-
native method, which is a performance improvement technique, was also proposed to
reduce the search overhead of rules by applying a hash map to the Rete root node and
classifying it as a FactTypeNode [27,28].

However, existing studies on the performance improvement of rule-processing based
on the extension of Rete algorithm did not consider the index for rules, including spatial
conditions. The existing studies failed to address the problem of performance deteriora-
tion caused by an increase in the number of rules. Therefore, this study proposes a perfor-
mance improvement algorithm [29] that can instantaneously determine the rule by stab-
bing the stream event input in real-time using a pre-made hash index for the

Figure 1. Rule-based event processing framework.

When there are N target moving objects that are continuously collected in real time,
the rule processing for M continuous query rules should be repeated N × M times. Usually,
the detection of the target objects by the radar is repeated every 3 to 5 s. Let p be the number
of times the target stream objects are collected within a given period. If the input of stream
data of target objects continuously collected is repeated p times, the total number of rule
processing becomes N × M × p, and then, the time complexity becomes approximately
O(n3). Therefore, even if the compiled internal data structure of the rule using the Rete
algorithm is used, the performance significantly degrades. In particular, in the case of a rule
including a spatiotemporal CQ condition, the performance of rule binding becomes worse.

Existing studies incorporated Java topology suite-based spatial functions [23,24] to
ensure the inclusion of spatial data processing functions in rules by extending the Rete
algorithm. The extension of the Rete algorithm to support spatial functions in the processing
of conditional operation of rules was implemented in the Drools engine [25]. However, the
stream data processing method of the improved Rete algorithm was required to examine
all the rules for input data consecutively. Hence, the rule processing performance was not
efficient when the number of rules was significant. To reduce unnecessary join operations
of beta nodes in the condition processing of rules, the concept of the time-stamped event
to reduce join targets using time constraints was proposed [26]. An alternative method,
which is a performance improvement technique, was also proposed to reduce the search
overhead of rules by applying a hash map to the Rete root node and classifying it as a
FactTypeNode [27,28].

However, existing studies on the performance improvement of rule-processing based
on the extension of Rete algorithm did not consider the index for rules, including spatial
conditions. The existing studies failed to address the problem of performance deterioration
caused by an increase in the number of rules. Therefore, this study proposes a performance
improvement algorithm [29] that can instantaneously determine the rule by stabbing the
stream event input in real-time using a pre-made hash index for the spatiotemporal query
conditions. The CQ conditions of the rule were implemented using the spatial index of the
R* Tree [30].

This study addresses the problem of performance degradation when the number
of alpha nodes bound to beta nodes increases when alpha nodes are continuous spatial
queries in the Rete node structure. We propose a hash CQ index for two or more alpha
nodes bound to beta nodes in the Rete node network of bound rules. This study aimed
to reduce the number of rules that need to be searched by CQ indexing, by creating a
spatiotemporal index for the nodes generated by the Rete algorithm. This study makes the
following contributions. An algorithm is proposed that determines the binding rule to a

Sensors 2021, 21, 8013 3 of 16

better node through a stabbing process for events that are dynamically continuously input
by creating a CQ index when the alpha node bound to the bettor node is spatiotemporal
CQ. To evaluate the hash CQ index and stabbing algorithm presented in this paper, we
conducted a performance evaluation experiment with Drool, which has commercialized
the existing Rete algorithm, according to the change in the number of rules and the number
of target objects.

The remaining paper is structured as follows: Section 2 examines the continuous
query rule processing and addresses the problem. Section 3 presents the algorithm details
to solve the addressed problem. Section 4 exhibits the performance evaluation results, and
Section 5 draws the concluding remarks of the article.

2. Spatiotemporal Continuous Query Rule Processing

This section examines the Rete structure compiled by continuous and complex event
processing rules.

2.1. Stream Processing Rules of Target Objects

The Rete algorithm [22] incorporates Rule1, Rule2, and Rule3 shown in Figure 2 into
a network of nodes composed of alpha nodes (red) and beta nodes (green). A beta node
includes a join operation between the alpha nodes or between beta nodes. As shown in
Figure 2, the beta node was used as an input to the alpha node of the bound rules. The alpha
node (blue), including the CQ operation of Rule2, received and processed the event from
the beta node of Rule1. The red alpha node of Rule1 represents a condition for a simple
literal condition, and the blue alpha node of Rule2 represents a spatiotemporal condition.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 16

Figure 2. Rete node network for bounded rules.

When the output value of a beta node was input to more than one alpha node, the
corresponding alpha nodes were executed sequentially. In particular, when the alpha
node was a continuous spatial query, the performance decreased because the correspond-
ing spatial operation was executed sequentially for each rule. As shown in Figure 3, when
there were eight continuous spatiotemporal queries defined for one vessel, eight alpha
nodes connected to a given beta node were created to perform CQ operations. The CQs
entered by the beta node ‘Enemy Vessel’ are CQ1 and CQ4. Rather than searching for CQ1
to CQ8 bound to beta nodes one by one, we propose a method of stabbing search by cre-
ating a spatiotemporal index for continuous queries. In Figure 3, EnemyVessel is a beta
node, and CQ1–CQ8 are alpha nodes.

Figure 3. Example of Rete network created for eight continuous query rules.

Figure 2. Rete node network for bounded rules.

Sensors 2021, 21, 8013 4 of 16

When the output value of a beta node was input to more than one alpha node, the
corresponding alpha nodes were executed sequentially. In particular, when the alpha node
was a continuous spatial query, the performance decreased because the corresponding
spatial operation was executed sequentially for each rule. As shown in Figure 3, when
there were eight continuous spatiotemporal queries defined for one vessel, eight alpha
nodes connected to a given beta node were created to perform CQ operations. The CQs
entered by the beta node ‘Enemy Vessel’ are CQ1 and CQ4. Rather than searching for
CQ1 to CQ8 bound to beta nodes one by one, we propose a method of stabbing search by
creating a spatiotemporal index for continuous queries. In Figure 3, EnemyVessel is a beta
node, and CQ1–CQ8 are alpha nodes.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 16

Figure 2. Rete node network for bounded rules.

When the output value of a beta node was input to more than one alpha node, the
corresponding alpha nodes were executed sequentially. In particular, when the alpha
node was a continuous spatial query, the performance decreased because the correspond-
ing spatial operation was executed sequentially for each rule. As shown in Figure 3, when
there were eight continuous spatiotemporal queries defined for one vessel, eight alpha
nodes connected to a given beta node were created to perform CQ operations. The CQs
entered by the beta node ‘Enemy Vessel’ are CQ1 and CQ4. Rather than searching for CQ1
to CQ8 bound to beta nodes one by one, we propose a method of stabbing search by cre-
ating a spatiotemporal index for continuous queries. In Figure 3, EnemyVessel is a beta
node, and CQ1–CQ8 are alpha nodes.

Figure 3. Example of Rete network created for eight continuous query rules. Figure 3. Example of Rete network created for eight continuous query rules.

2.2. Spatiotemporal Continuous Query Rules

In the Rete node network of bound rules, the hash index for the alpha node, including
the CQ condition, was used to select the alpha node to apply to the beta node. As shown in
Figure 2, EnemyVessel was created as a beta node of Rule 1, and EnemyVessel was used as
the CQ condition of Rule 2. Therefore, the CQ condition of Rule 2 was an alpha node. This
study proposed a new method for determining the alpha node of Rule 2 as a hash index for
a stream event EnemyVessel to satisfy the spatiotemporal condition of Rule 2 [31]. When
the alpha node of the CQ condition was converted into a spatiotemporal index, the stream
event of the beta node became a stabbing process for the spatiotemporal CQ index, thereby
reducing the search overhead of the rules [29].

The spatiotemporal condition was expressed as a polygonal area with a fixed position,
or a sector or circle set by the radar or sonar sensor range of the ship, as shown in Figure 4.
When the vessel moved, the sectoral or circular space-time condition was expressed as a
spatiotemporal condition because the position of the space condition changed with time. As
shown in Figure 4, when a rule including a spatial condition for the beta node EnemyVessel
was added, it was processed as an update of the continuous query index. When the spatial
CQ rule is added, as shown in Figure 4, an alpha node bound is added to the beta node
shown in Figure 3.

Sensors 2021, 21, 8013 5 of 16

Sensors 2021, 21, x FOR PEER REVIEW 5 of 16

2.2. Spatiotemporal Continuous Query Rules
In the Rete node network of bound rules, the hash index for the alpha node, including

the CQ condition, was used to select the alpha node to apply to the beta node. As shown
in Figure 2, EnemyVessel was created as a beta node of Rule 1, and EnemyVessel was used
as the CQ condition of Rule 2. Therefore, the CQ condition of Rule 2 was an alpha node.
This study proposed a new method for determining the alpha node of Rule 2 as a hash
index for a stream event EnemyVessel to satisfy the spatiotemporal condition of Rule 2
[31]. When the alpha node of the CQ condition was converted into a spatiotemporal index,
the stream event of the beta node became a stabbing process for the spatiotemporal CQ
index, thereby reducing the search overhead of the rules [29].

The spatiotemporal condition was expressed as a polygonal area with a fixed posi-
tion, or a sector or circle set by the radar or sonar sensor range of the ship, as shown in
Figure 4. When the vessel moved, the sectoral or circular space-time condition was ex-
pressed as a spatiotemporal condition because the position of the space condition changed
with time. As shown in Figure 4, when a rule including a spatial condition for the beta
node EnemyVessel was added, it was processed as an update of the continuous query
index. When the spatial CQ rule is added, as shown in Figure 4, an alpha node bound is
added to the beta node shown in Figure 3.

Figure 4. Rule examples with spatiotemporal CQ conditions.

3. Rete Node Indexing and Stabbing Algorithms
This section describes the algorithm for inserting the hash CQ index when the spatial

CQ rule is added as well as the stabbing process algorithm for alpha nodes.

3.1. Hashing Index of Rete Node
The first Rete algorithm was designed to improve the performance of rule processing

for logical reasoning in static databases [22]. The improved method of the existing Rete
algorithm [32] proved to be effective for stream event processing; however, the overhead
of processing all rules sequentially to process input stream data continuously remains un-
solved. In the Rete structure shown in Figure 5, EnemyVessel and EnemySubmarine are
beta nodes, and there is a time-wasting factor to sequentially execute alpha nodes to ex-
press the CQs. Figure 5 shows an example of introducing a hash index to beta nodes to
manage the output value of the beta node in the hash table and reduce the rule search
overhead with the stabbing algorithm by creating an index in the CQ space. The code
written in italics in Algorithm 1 is the process of creating an index for a spatial node. In
addition to the existing Rete algorithm, a spatial node index construct processing process
was developed.

Figure 4. Rule examples with spatiotemporal CQ conditions.

3. Rete Node Indexing and Stabbing Algorithms

This section describes the algorithm for inserting the hash CQ index when the spatial
CQ rule is added as well as the stabbing process algorithm for alpha nodes.

3.1. Hashing Index of Rete Node

The first Rete algorithm was designed to improve the performance of rule processing
for logical reasoning in static databases [22]. The improved method of the existing Rete
algorithm [32] proved to be effective for stream event processing; however, the overhead
of processing all rules sequentially to process input stream data continuously remains
unsolved. In the Rete structure shown in Figure 5, EnemyVessel and EnemySubmarine
are beta nodes, and there is a time-wasting factor to sequentially execute alpha nodes to
express the CQs. Figure 5 shows an example of introducing a hash index to beta nodes
to manage the output value of the beta node in the hash table and reduce the rule search
overhead with the stabbing algorithm by creating an index in the CQ space. The code
written in italics in Algorithm 1 is the process of creating an index for a spatial node. In
addition to the existing Rete algorithm, a spatial node index construct processing process
was developed.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 16

Figure 5. Examples: introduction of hash indexes for beta nodes.

Algorithm 1. Rule Insertion (r).
1 Input: vector<string> Input //string of rule input;
2 Output: RETE net and updated Node Indexing;

 /* Based on node identification, build each node*/
3 expVec = new vector<pair<string,string>> //node type and rule input;
4 While (Input != end) {
5 extracted=DecomposeRule(Input[i]);
6 expVec.push(extracted);
7 }
8 nodeVec = new vector<Node*> //created node;
9 scalarVec = new vector<Node*> //created CQ node;
10 spatialVec = new vector<Node*> //created Spatial node;
11 While (expVec != NULL && nodeVec.size()—1){
12 If (expVec.first == “Alpha”) {
13 tempAlphaNode = new AlphaNode(expVec.second);
14 nodeVec.push(tempAlphaNode);
15 scalarVec.push(tempAlphaNode);
16 expVec.pop();
17 }
18 Else {

/* check whether the previous node is an existing node */
19 If (expVec.first == “spatial”) {
20 tempBetaNode = new BetaNode(expVec.second);
21 nodeVec.push(tempBetaNode);
22 spatialVec.push(tempBetaNode);
23 expVec.pop()
24 }
25 Else {
26 If (isExist(expVec.second)) {
27 nodeVec.push(findNode(expVec.second));
28 }
29 Else {
30 tempBetaNode = new BetaNode(expVec.second);
31 nodeVec.push(tempBetaNode);
32 }
33 expVec.pop();
34 }
35 }
36 tempBetaNode = newBetaNode(nodeVec.top(), nodeVec.top()-1);
37 connectNode(nodeVec.top, nodeVec.top()-1, tempBetaNode);
38 nodeVec.pop();
39 nodeVec.pop();
40 nodeVec.push(tempBetaNode);

Figure 5. Examples: introduction of hash indexes for beta nodes.

Sensors 2021, 21, 8013 6 of 16

Algorithm 1 Rule Insertion (r)

1 Input: vector<string> Input //string of rule input;
2 Output: RETE net and updated Node Indexing;
/* Based on node identification, build each node*/
3 expVec = new vector<pair<string,string>> //node type and rule input;
4 While (Input != end) {
5 extracted=DecomposeRule(Input[i]);
6 expVec.push(extracted);
7 }
8 nodeVec = new vector<Node*> //created node;
9 scalarVec = new vector<Node*> //created CQ node;
10 spatialVec = new vector<Node*> //created Spatial node;
11 While (expVec != NULL && nodeVec.size()—1){
12 If (expVec.first == “Alpha”) {
13 tempAlphaNode = new AlphaNode(expVec.second);
14 nodeVec.push(tempAlphaNode);
15 scalarVec.push(tempAlphaNode);
16 expVec.pop();
17 }
18 Else {
/* check whether the previous node is an existing node */
19 If (expVec.first == “spatial”) {
20 tempBetaNode = new BetaNode(expVec.second);
21 nodeVec.push(tempBetaNode);
22 spatialVec.push(tempBetaNode);
23 expVec.pop()
24 }
25 Else {
26 If (isExist(expVec.second)) {
27 nodeVec.push(findNode(expVec.second));
28 }
29 Else {
30 tempBetaNode = new BetaNode(expVec.second);
31 nodeVec.push(tempBetaNode);
32 }
33 expVec.pop();
34 }
35 }
36 tempBetaNode = newBetaNode(nodeVec.top(), nodeVec.top()-1);
37 connectNode(nodeVec.top, nodeVec.top()-1, tempBetaNode);
38 nodeVec.pop();
39 nodeVec.pop();
40 nodeVec.push(tempBetaNode);
41 }
/*Spatial Node Index Construction */
42 While (spatialVec.size() > 0) {
43 pointVec = Utilities::decomposeNode(spatialVec.top);
/*Get the entity name from the CQ node */
44 observedEntityName = getEntityName(spatialVec.top);
/*from the existing node indexing tree, insert the CQ area */
45 *(spatialIndex[observedEntityName]).insert(pointVec);
/*remove the node from the vector */
46 spatialVec.pop();
47 }

Sensors 2021, 21, 8013 7 of 16

In the study of a typical implementation and application of the Rete algorithm [19],
alpha nodes and beta nodes are constructed by compiling the rules input as text and
subsequently adding them to the existing Rete node structure. In this study, an existing
Rete network was implemented using the Boost C++ library, and a hash index for the
CQ space was implemented as an R* tree. We designed and executed a minimum bound
rectangle (MBR)-based hash index for all spatiotemporal conditions of the input rules. The
MBR, expressed by transforming the spatial nodes of the rule, contained the minimum
rectangle of the spatial nodes and the rule type. The moving object type of the enemy
ship rule is ship, which we will call a rule type. The rule type of the enemy aircraft rule is
aircraft. The index for the CQ area is made as a CQ index separated by rule type.

The CQ index separated by rule type was implemented using R* tree using the MBR
of each CQ. The location of the target objects is used as the hash key of the CQ index. In
Figure 6, the newly inserted MBR of Node 11 is added to the R* tree and bound to the
entity hash table.

A spatial node referred to as ‘plot_dist(rect(25,25,52,52) EnemyVessel’ was created
from the rules described in the text. Node 11 (red dotted square in Figure 6), representing
the MBR of the spatial node, was inserted into the R* tree. By inserting the entity of the
spatial node into the entity hash table by type, the index and hash table were connected.
For example, as shown in Figure 6, there was ‘plot_dist()’ in the spatial node of the rule;
thus, the corresponding MBR was inserted into the R* tree. Since these rules only applied
to events for ‘EnemyVessel’, stabbing the MBR node was added from the R* tree points to
the hash bucket of the ‘Entity Hash Table’. The CQ index and hashing bucket process for
processing spatial nodes in the Rete algorithm are described in Algorithm 1.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 16

41 }
 /*Spatial Node Index Construction */
42 While (spatialVec.size() > 0) {
43 pointVec = Utilities::decomposeNode(spatialVec.top);
 /*Get the entity name from the CQ node */
44 observedEntityName = getEntityName(spatialVec.top);
 /*from the existing node indexing tree, insert the CQ area */
45 *(spatialIndex[observedEntityName]).insert(pointVec);
 /*remove the node from the vector */
46 spatialVec.pop();
47 }

In the study of a typical implementation and application of the Rete algorithm [19],
alpha nodes and beta nodes are constructed by compiling the rules input as text and sub-
sequently adding them to the existing Rete node structure. In this study, an existing Rete
network was implemented using the Boost C++ library, and a hash index for the CQ space
was implemented as an R* tree. We designed and executed a minimum bound rectangle
(MBR)-based hash index for all spatiotemporal conditions of the input rules. The MBR,
expressed by transforming the spatial nodes of the rule, contained the minimum rectangle
of the spatial nodes and the rule type. The moving object type of the enemy ship rule is
ship, which we will call a rule type. The rule type of the enemy aircraft rule is aircraft. The
index for the CQ area is made as a CQ index separated by rule type.

The CQ index separated by rule type was implemented using R* tree using the MBR
of each CQ. The location of the target objects is used as the hash key of the CQ index. In
Figure 6, the newly inserted MBR of Node 11 is added to the R* tree and bound to the
entity hash table.

A spatial node referred to as ‘plot_dist(rect(25,25,52,52) EnemyVessel’ was created
from the rules described in the text. Node 11 (red dotted square in Figure 6), representing
the MBR of the spatial node, was inserted into the R* tree. By inserting the entity of the
spatial node into the entity hash table by type, the index and hash table were connected.
For example, as shown in Figure 6, there was ‘plot_dist()’ in the spatial node of the rule;
thus, the corresponding MBR was inserted into the R* tree. Since these rules only applied
to events for ‘EnemyVessel’, stabbing the MBR node was added from the R* tree points to
the hash bucket of the ‘Entity Hash Table’. The CQ index and hashing bucket process for
processing spatial nodes in the Rete algorithm are described in Algorithm 1.

Figure 6. Inserting a spatial node into an index.

3.2. Stabbing Algorithm for Continuous Query Events
Stabbing Rete nodes for continuous spatiotemporal queries is a method used to de-

termine the rules that need to be applied to incoming events with spatiotemporal indexes.
The stabbing procedure for nodes for an incoming event in this study is as follows. First,

Figure 6. Inserting a spatial node into an index.

3.2. Stabbing Algorithm for Continuous Query Events

Stabbing Rete nodes for continuous spatiotemporal queries is a method used to
determine the rules that need to be applied to incoming events with spatiotemporal
indexes. The stabbing procedure for nodes for an incoming event in this study is as follows.
First, the target object event coming into the data distribution service topic was treated
sequentially in the working memory, which managed all external events entered prior to
the starting of the Rete network. Second, it was examined against the alpha node of all
rules that did not include a sliding window for the highest priority event in the working
memory. Third, we examined an alpha node with a temporal condition. A rule with a time
condition was executed at the trigger time, which is the point where the node condition
was checked for the event contained in the buffer.

As can be observed in Figure 7, when there was no hash index for the ‘EnemyVessel’
beta node, alpha nodes 3, 4, and 5 were examined consecutively. When a hash index was
created, it was directly stabbed to alpha node 2 with respect to beta node 1. Since a hash
index was used, all events were classified using buckets in the hash table, indicating the

Sensors 2021, 21, 8013 8 of 16

entity type of each event. The node-stabbing process using the hash index was implemented
based on Algorithm 2. Node stabbing was processed with intersect () for the event location,
as shown in Algorithm 2.

Algorithm 2 Event Stabbing (e)

1 Input: Event //Tested event with its attributes;
2 Output: List<String> //Result of Event evaluation;
/* Copy the input into Working Memory queue */
3 mainWM.pushEvent(Event);
/* stab the event */
4 If (IsNotEmpty(mainWM)) {
/* Define the entity hash */
5 List<Node*> stabbed;
6 While (ScalarNode != NULL) {
7 If (ScalarNode[i].test(Event)) {
8 stabbed.push(ScalarNode-i);
9 }
10 }
11 EntityHash = EntityNodeList[stabbed];
12 EntityNode.pushEvent(Event);
/* spatial node stabbing */
13 *SpatialTree = SpatialIndex[EntityHash];
14 *root = *SpatialTree;
15 EventLocation<int, int> = {Event.Latitude, Event.Longitude};
16 List<Node*> stabbedCQ;
17 While (*root != NULL) {
18 If (IsALeaf(*root)) {
19 stabbedCQ.push(*root);
20 *root = NULL;
21 }
22 Else {
23 For (auto *leaf in *root.leaf) {
24 If (Intersects(EventLocation, *leaf) == true) {
25 *root = *leaf;
26 break;
27 }
28 }
29 }
/* collect the result in a list of string */
30 List<string> res;
31 For (auto s in stabbedCQ) {
32 s.push(Event);
33 res.Append(Node.evaluate());
34 }
35 return res;
36 }
37 }
38 Else {
39 continue;
40 }

Sensors 2021, 21, 8013 9 of 16

Sensors 2021, 21, x FOR PEER REVIEW 8 of 16

the target object event coming into the data distribution service topic was treated sequen-
tially in the working memory, which managed all external events entered prior to the
starting of the Rete network. Second, it was examined against the alpha node of all rules
that did not include a sliding window for the highest priority event in the working
memory. Third, we examined an alpha node with a temporal condition. A rule with a time
condition was executed at the trigger time, which is the point where the node condition
was checked for the event contained in the buffer.

As can be observed in Figure 7, when there was no hash index for the ‘EnemyVessel’
beta node, alpha nodes 3, 4, and 5 were examined consecutively. When a hash index was
created, it was directly stabbed to alpha node 2 with respect to beta node 1. Since a hash
index was used, all events were classified using buckets in the hash table, indicating the
entity type of each event. The node-stabbing process using the hash index was imple-
mented based on Algorithm 2. Node stabbing was processed with intersect () for the event
location, as shown in Algorithm 2.

Figure 7. Hash indexing for beta nodes.

Algorithm 2. Event Stabbing (e).
1 Input: Event //Tested event with its attributes;
2 Output: List<String> //Result of Event evaluation;

 /* Copy the input into Working Memory queue */
3 mainWM.pushEvent(Event);

/* stab the event */
4 If (IsNotEmpty(mainWM)) {

/* Define the entity hash */
5 List<Node*> stabbed;
6 While (ScalarNode != NULL) {
7 If (ScalarNode[i].test(Event)) {
8 stabbed.push(ScalarNode-i);
9 }
10 }
11 EntityHash = EntityNodeList[stabbed];
12 EntityNode.pushEvent(Event);

/* spatial node stabbing */
13 *SpatialTree = SpatialIndex[EntityHash];
14 *root = *SpatialTree;
15 EventLocation<int, int> = {Event.Latitude, Event.Longitude};
16 List<Node*> stabbedCQ;
17 While (*root != NULL) {
18 If (IsALeaf(*root)) {
19 stabbedCQ.push(*root);
20 *root = NULL;
21 }
22 Else {
23 For (auto *leaf in *root.leaf) {

Figure 7. Hash indexing for beta nodes.

Stabbing events based on entity types using hash indices were O(1). Events did not
require individual execution for every rule because we used the CQ node index. The
existing Rete algorithm was O(n) when there were n CQ nodes, whereas stabbing by the
hash index was processed as O(log n).

4. Performance Evaluation

We present a scenario for a performance evaluation test using Drool. The performances
of the two methods changed when the number of rules and the number of target objects to
be examined increased.

4.1. Hashing Index of Rete Node

The performance comparison experiment was performed on a PC using a Windows
10 64-bit operating system, Intel i5 3.2 GHz 64-bit processor, 16 GB memory, and Visual
Studio C++. A virtual target dataset was created and tested because access to real data was
impossible owing to military security. For the properties of artificially generated events,
the range of properties, data types, and values were set, as shown in Table 1.

Table 1. Object initialization parameters.

No. Attribute Data Type Value Meaning

1 Event Id Integer 1–∞ Event id

2 Time Long Long 0–∞ Event time

3 Speed Float −30–200 Object speed (m/s)

4 Elevation Float 0–10 Object elevation (10 m)

5 IFF Boolean True, False Friend or Foe

6 Latitude Float 115–136 Latitude location

7 Longitude Float 15–46 Longitude location

8 Object Type String fighter, destroyer, etc. Object type or mode

9 Object Id Integer ∞ Object id of current event

The test scenario was established for the following three factors: First, the number of
rules was varied, and various types of rules were tested. Second, different types of target
objects were tested by varying the number of target objects. Third, a performance test was
carried out according to the change in movement patterns and types of target objects. The
CQ area expressed in the rule used a radar-based circle, a sonar-based sector, and a square
of a hazardous area. Table 2 shows a scenario in which the ratio of radar, sonar, and square
was different for the number of rules from 50 to 100.

Sensors 2021, 21, 8013 10 of 16

Table 2. Scenarios according to the number and type of rules.

No. Rules Radar Sonar Plot Dist

1 50 34% 32% 34%
2 60 41% 28% 30%
3 70 44% 27% 28%
4 80 43% 25% 31%
5 90 42% 24% 33%
6 100 25% 25% 50%

For the second factor influencing the performance test evaluation, test scenarios were
created according to the distribution and types of target objects. Target objects were
classified into air, water, and underwater objects, and the uniform distribution and non-
uniform distribution of each object were tested. In the case of non-uniform distribution, air,
water, and underwater were set to 60%, 20%, and 20%, respectively. Table 3 shows that the
possible range of speed, flight altitude or depth of water, and enemy and ally are different
depending on the entity type.

Table 3. Speed, altitude, and IFF ranges of target objects.

No. Entity Type Speed (m/s) Elevation (m) IFF

1 Enemy Aircraft 10–100 10–100 FALSE

2 Ally Aircraft 10–100 10–100 TRUE

3 Enemy Vessel 3–100 0–10 FALSE

4 Ally Vessel 3–100 0–10 TRUE

6 Enemy Submarine 0–100 −10–0 FALSE

7 Ally Submarine 0–100 −10–0 TRUE

The third factor in the performance comparison experiment is the movement pattern
of the target objects. In order to measure the rule processing performance for a given CQ, a
meaningful tactical movement pattern, not a random movement pattern, is targeted. Repre-
sentative movement patterns of target objects were tested for approach, detour, U-turn, and
turning. In addition, as a movement path scenario combining basic movement patterns,
the U-turn after approach, detour after approach, and turn after approach scenarios were
also considered. Figure 8 shows the movement pattern scenario for the sectoral CQ region.
In addition to the sectoral CQ, test evaluation scenarios were created for the circular CQ
and the rectangular CQ.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 16

of a hazardous area. Table 2 shows a scenario in which the ratio of radar, sonar, and square
was different for the number of rules from 50 to 100.

Table 2. Scenarios according to the number and type of rules.

No. Rules Radar Sonar Plot Dist
1 50 34% 32% 34%
2 60 41% 28% 30%
3 70 44% 27% 28%
4 80 43% 25% 31%
5 90 42% 24% 33%
6 100 25% 25% 50%

For the second factor influencing the performance test evaluation, test scenarios were
created according to the distribution and types of target objects. Target objects were clas-
sified into air, water, and underwater objects, and the uniform distribution and non-uni-
form distribution of each object were tested. In the case of non-uniform distribution, air,
water, and underwater were set to 60%, 20%, and 20%, respectively. Table 3 shows that
the possible range of speed, flight altitude or depth of water, and enemy and ally are dif-
ferent depending on the entity type.

Table 3. Speed, altitude, and IFF ranges of target objects.

No. Entity Type Speed (m/s) Elevation (m) IFF
1 Enemy Aircraft 10–100 10–100 FALSE
2 Ally Aircraft 10–100 10–100 TRUE
3 Enemy Vessel 3–100 0–10 FALSE
4 Ally Vessel 3–100 0–10 TRUE
6 Enemy Submarine 0–100 −10–0 FALSE
7 Ally Submarine 0–100 −10–0 TRUE

The third factor in the performance comparison experiment is the movement pattern
of the target objects. In order to measure the rule processing performance for a given CQ,
a meaningful tactical movement pattern, not a random movement pattern, is targeted.
Representative movement patterns of target objects were tested for approach, detour, U-
turn, and turning. In addition, as a movement path scenario combining basic movement
patterns, the U-turn after approach, detour after approach, and turn after approach sce-
narios were also considered. Figure 8 shows the movement pattern scenario for the sec-
toral CQ region. In addition to the sectoral CQ, test evaluation scenarios were created for
the circular CQ and the rectangular CQ.

Figure 8. Scenarios of movement patterns of target objects. Figure 8. Scenarios of movement patterns of target objects.

4.2. Performance Testing on the Number of Rules and the Number of Target Objects

When the target objects were non-uniformly distributed in a two-dimensional space,
a performance test was conducted. When the number of rules increased, there was a

Sensors 2021, 21, 8013 11 of 16

negligible change in the processing time of the rules when using indexes for Rete nodes.
Nonetheless, when the node index was not used, the processing time increased as the
number of target objects increased. Figure 9 shows that the processing time increases when
the number of non-uniform target objects increases. The execution time on the y-axis is in
seconds (s), and it took 60 s for 4500 targets for 100 rules when no node index was used.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 16

4.2. Performance Testing on the Number of Rules and the Number of Target Objects
When the target objects were non-uniformly distributed in a two-dimensional space,

a performance test was conducted. When the number of rules increased, there was a neg-
ligible change in the processing time of the rules when using indexes for Rete nodes.
Nonetheless, when the node index was not used, the processing time increased as the
number of target objects increased. Figure 9 shows that the processing time increases
when the number of non-uniform target objects increases. The execution time on the y-
axis is in seconds (s), and it took 60 s for 4500 targets for 100 rules when no node index
was used.

Figure 9. Performance effect of the number of objects on a non-uniform object distribution.

Figure 10 shows the experimental results for the performance effect of the number of
rules for the case of non-uniformly distributed target objects. When a node index was
used, an increase in the number of rules did not significantly affect the performance. How-
ever, when the number of rules increased in the absence of a node index, the performance
significantly deteriorated.

Figure 10. Performance effect of the number of rules on a non-uniform object distribution.

Figure 11 shows the experimental results of the performance effect of the number of
target objects when the target objects were evenly distributed. When the distribution was
uniform, the processing time was longer as the number of objects increased. Figure 12
shows that rule processing time becomes longer when the number of rules increases uni-
formly in the absence of a node index.

Figure 9. Performance effect of the number of objects on a non-uniform object distribution.

Figure 10 shows the experimental results for the performance effect of the number of
rules for the case of non-uniformly distributed target objects. When a node index was used,
an increase in the number of rules did not significantly affect the performance. However,
when the number of rules increased in the absence of a node index, the performance
significantly deteriorated.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 16

4.2. Performance Testing on the Number of Rules and the Number of Target Objects
When the target objects were non-uniformly distributed in a two-dimensional space,

a performance test was conducted. When the number of rules increased, there was a neg-
ligible change in the processing time of the rules when using indexes for Rete nodes.
Nonetheless, when the node index was not used, the processing time increased as the
number of target objects increased. Figure 9 shows that the processing time increases
when the number of non-uniform target objects increases. The execution time on the y-
axis is in seconds (s), and it took 60 s for 4500 targets for 100 rules when no node index
was used.

Figure 9. Performance effect of the number of objects on a non-uniform object distribution.

Figure 10 shows the experimental results for the performance effect of the number of
rules for the case of non-uniformly distributed target objects. When a node index was
used, an increase in the number of rules did not significantly affect the performance. How-
ever, when the number of rules increased in the absence of a node index, the performance
significantly deteriorated.

Figure 10. Performance effect of the number of rules on a non-uniform object distribution.

Figure 11 shows the experimental results of the performance effect of the number of
target objects when the target objects were evenly distributed. When the distribution was
uniform, the processing time was longer as the number of objects increased. Figure 12
shows that rule processing time becomes longer when the number of rules increases uni-
formly in the absence of a node index.

Figure 10. Performance effect of the number of rules on a non-uniform object distribution.

Figure 11 shows the experimental results of the performance effect of the number of
target objects when the target objects were evenly distributed. When the distribution was
uniform, the processing time was longer as the number of objects increased. Figure 12
shows that rule processing time becomes longer when the number of rules increases
uniformly in the absence of a node index.

Sensors 2021, 21, 8013 12 of 16
Sensors 2021, 21, x FOR PEER REVIEW 12 of 16

Figure 11. Performance effect of the number of objects on a uniform object distribution.

Figure 12. Performance effect of the number of rules on a uniform object distribution.

The results of the performance evaluation experiment showed that the method that
used the index for the Rete node was reduced to a log function compared to the method
that did not use the index. Let the number of target objects be N, the number of nodes in
the Rete network be V, and the number of links be E. When the index for the Rete node is
not used, the time complexity of the stabbing algorithm for CQ is expressed as O(n* (|V|
+ |E|)). When creating an index for CQ in the Rete network, the stabbing algorithm is
described as O(log2(n* (|V| + |E|))) because it follows the time complexity of R* tree.

4.3. Performance Comparison Test with Drool
A performance comparison evaluation experiment was conducted with Drool, which

is a commercial rule-processing tool implemented based on the Rete algorithm. A perfor-
mance comparison experiment was performed on the same rules and target objects. A
comparative experiment was conducted to measure processing time for Drool and the
Rete node indexing technique presented in this paper. The measurement time in Table 4
is in milliseconds, and the performance improvement rate is calculated as:

Rate = (TRete − TModifiedRete)/TModifiedRete × 100%. (1)

As an example of the processing time performance improvement rate improvement
method, if 100 s is reduced to 50 s, it is calculated as (100 − 50)/50 = 100%.

Figure 11. Performance effect of the number of objects on a uniform object distribution.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 16

Figure 11. Performance effect of the number of objects on a uniform object distribution.

Figure 12. Performance effect of the number of rules on a uniform object distribution.

The results of the performance evaluation experiment showed that the method that
used the index for the Rete node was reduced to a log function compared to the method
that did not use the index. Let the number of target objects be N, the number of nodes in
the Rete network be V, and the number of links be E. When the index for the Rete node is
not used, the time complexity of the stabbing algorithm for CQ is expressed as O(n* (|V|
+ |E|)). When creating an index for CQ in the Rete network, the stabbing algorithm is
described as O(log2(n* (|V| + |E|))) because it follows the time complexity of R* tree.

4.3. Performance Comparison Test with Drool
A performance comparison evaluation experiment was conducted with Drool, which

is a commercial rule-processing tool implemented based on the Rete algorithm. A perfor-
mance comparison experiment was performed on the same rules and target objects. A
comparative experiment was conducted to measure processing time for Drool and the
Rete node indexing technique presented in this paper. The measurement time in Table 4
is in milliseconds, and the performance improvement rate is calculated as:

Rate = (TRete − TModifiedRete)/TModifiedRete × 100%. (1)

As an example of the processing time performance improvement rate improvement
method, if 100 s is reduced to 50 s, it is calculated as (100 − 50)/50 = 100%.

Figure 12. Performance effect of the number of rules on a uniform object distribution.

The results of the performance evaluation experiment showed that the method that
used the index for the Rete node was reduced to a log function compared to the method
that did not use the index. Let the number of target objects be N, the number of nodes in
the Rete network be V, and the number of links be E. When the index for the Rete node is
not used, the time complexity of the stabbing algorithm for CQ is expressed as O(n* (|V|
+ |E|)). When creating an index for CQ in the Rete network, the stabbing algorithm is
described as O(log2(n* (|V| + |E|))) because it follows the time complexity of R* tree.

4.3. Performance Comparison Test with Drool

A performance comparison evaluation experiment was conducted with Drool, which
is a commercial rule-processing tool implemented based on the Rete algorithm. A perfor-
mance comparison experiment was performed on the same rules and target objects. A
comparative experiment was conducted to measure processing time for Drool and the Rete
node indexing technique presented in this paper. The measurement time in Table 4 is in
milliseconds, and the performance improvement rate is calculated as:

Rate = (TRete − TModifiedRete)/TModifiedRete × 100%. (1)

As an example of the processing time performance improvement rate improvement
method, if 100 s is reduced to 50 s, it is calculated as (100 − 50)/50 = 100%.

Sensors 2021, 21, 8013 13 of 16

Table 4. Performance improvement ratios for uniform distribution of target objects.

Number of Rule Nodes Objects
Average Time (ms)

Improvement Rate
Indexed Rete Original

50
500 220 409 85%

2500 1.071 1.448 35%
4500 2.143 2.211 3%

60
500 226 521 130%

2500 1.163 1.444 24%
4500 2.183 2.500 14%

70
500 245 662 170%

2500 1.041 1.512 45%
4500 2.303 2.736 18%

80
500 222 762 243%

2500 1.061 1.893 78%
4500 1.631 2.958 81%

90
500 226 913 303%

2500 1.237 2.183 76%
4500 2.450 3.463 45%

100
500 246 1.057 329%

2500 1356 2.169 59%
4500 3.042 3.599 18%

The increase in the rule processing time when the distribution of target objects was
uniform is significant compared to when the distribution was non-uniform. A comparison
with Drool was measured solely for a uniform distribution. The processing time of Drool
required more than 3.5 s when 100 rules and 4500 target objects were used. As shown
in Figure 13, the node index method presented in this study, compared to that of Drool,
showed superior performance when the number of objects was small. When the number of
rules was 100, the node index method achieved a performance improvement of 329%, 59%,
and 18% for 500, 2500, and 4500 objects, respectively.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 16

Table 4. Performance improvement ratios for uniform distribution of target objects.

Number of Rule Nodes Objects
Average Time (ms)

Improvement Rate
Indexed Rete Original

50
500 220 409 85%

2500 1.071 1.448 35%
4500 2.143 2.211 3%

60
500 226 521 130%

2500 1.163 1.444 24%
4500 2.183 2.500 14%

70
500 245 662 170%

2500 1.041 1.512 45%
4500 2.303 2.736 18%

80
500 222 762 243%

2500 1.061 1.893 78%
4500 1.631 2.958 81%

90
500 226 913 303%

2500 1.237 2.183 76%
4500 2.450 3.463 45%

100
500 246 1.057 329%

2500 1356 2.169 59%
4500 3.042 3.599 18%

The increase in the rule processing time when the distribution of target objects was
uniform is significant compared to when the distribution was non-uniform. A comparison
with Drool was measured solely for a uniform distribution. The processing time of Drool
required more than 3.5 s when 100 rules and 4500 target objects were used. As shown in
Figure 13, the node index method presented in this study, compared to that of Drool,
showed superior performance when the number of objects was small. When the number
of rules was 100, the node index method achieved a performance improvement of 329%,
59%, and 18% for 500, 2500, and 4500 objects, respectively.

Figure 13. Performance comparison with Drool according to the number of rules.

When the target objects were evenly distributed in the performance comparison ex-
periment with Drool, the performance effect of the number of rules was lower than the
effect of the number of target objects. As can be observed in Figure 14, when the number
of target objects is 4500 for 100 rules, Drool exceeds 3.5 s, and the node index method
requires more than 3 s. Based on the experimental results, the increase in the number of
rules had an insignificant effect on performance. This may be attributed to the non-

Figure 13. Performance comparison with Drool according to the number of rules.

When the target objects were evenly distributed in the performance comparison
experiment with Drool, the performance effect of the number of rules was lower than the
effect of the number of target objects. As can be observed in Figure 14, when the number of
target objects is 4500 for 100 rules, Drool exceeds 3.5 s, and the node index method requires
more than 3 s. Based on the experimental results, the increase in the number of rules had
an insignificant effect on performance. This may be attributed to the non-application of the
compiled structure and index of the rules. Nonetheless, it was concluded that an increase

Sensors 2021, 21, 8013 14 of 16

in the number of target objects had a greater impact on performance because it appeared
as an increase in processing load, whether it was a Drool or a node index.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 16

application of the compiled structure and index of the rules. Nonetheless, it was con-
cluded that an increase in the number of target objects had a greater impact on perfor-
mance because it appeared as an increase in processing load, whether it was a Drool or a
node index.

Figure 14. Performance effect of the number of objects on uniform object distribution compared to
Drool.

5. Conclusions
When there are many CQ rules with spatiotemporal conditions and many target ob-

jects input in real time, the Rete method for rule processing also has a problem with poor
performance. In order to solve the overhead of searching for spatiotemporal CQs one by
one in the Rete node link structure, a hash index technique for spatiotemporal CQ is pro-
posed. For the proposed spatiotemporal CQ index, a CQ index with a hash bucket bound
to an entity type is created. It has been demonstrated that the implementation of node
indexing can reduce the rule search overhead by filtering out beta events that are unre-
lated to the continuous query space.

The execution times of the node indexing method proposed in this study and the
existing tool (Drool) were measured by varying the number of rules and the number of
target objects when the target objects were evenly distributed. When 100 rules were used,
the performance improvement rate was 329% and 18% when the number of objects was
500 and 4500, respectively. The performance improvement rate of the node index method
did not exceed that of Drool when the number of objects increased. This is because Drool
is an optimized tool proven to offer excellent performance when the number of objects is
substantial.

In the future, when the number of objects exceeds 4000, additional performance im-
provement will be required by introducing object indexing and buffering of objects by
rule. Next, the effectiveness of the spatiotemporal CQ index on the uncertainty of dynam-
ically input real-time events should be verified, and the complex mass function [32]
should be applied to determine the interference effects.

Author Contributions: Conceptualization, M.H.R. and B.H.; methodology, M.H.R., B.H., and S.L.;
validation, M.H.R., B.H. and S.L.; formal analysis, M.H.R., B.H. and D.L.; resources, D.L. and H.S.;
writing—original draft preparation, M.H.R., B.H. and S.L.; writing—review and editing, B.H. and
H.S.; supervision, B.H.; project administration, D.L.; funding acquisition, W.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Agency for Defense Development, Korea (UD190003DD).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Figure 14. Performance effect of the number of objects on uniform object distribution compared
to Drool.

5. Conclusions

When there are many CQ rules with spatiotemporal conditions and many target
objects input in real time, the Rete method for rule processing also has a problem with
poor performance. In order to solve the overhead of searching for spatiotemporal CQs
one by one in the Rete node link structure, a hash index technique for spatiotemporal CQ
is proposed. For the proposed spatiotemporal CQ index, a CQ index with a hash bucket
bound to an entity type is created. It has been demonstrated that the implementation of
node indexing can reduce the rule search overhead by filtering out beta events that are
unrelated to the continuous query space.

The execution times of the node indexing method proposed in this study and the
existing tool (Drool) were measured by varying the number of rules and the number of
target objects when the target objects were evenly distributed. When 100 rules were used,
the performance improvement rate was 329% and 18% when the number of objects was
500 and 4500, respectively. The performance improvement rate of the node index method
did not exceed that of Drool when the number of objects increased. This is because Drool
is an optimized tool proven to offer excellent performance when the number of objects
is substantial.

In the future, when the number of objects exceeds 4000, additional performance
improvement will be required by introducing object indexing and buffering of objects
by rule. Next, the effectiveness of the spatiotemporal CQ index on the uncertainty of
dynamically input real-time events should be verified, and the complex mass function [33]
should be applied to determine the interference effects.

Author Contributions: Conceptualization, M.H.R. and B.H.; methodology, M.H.R., B.H. and S.L.;
validation, M.H.R., B.H. and S.L.; formal analysis, M.H.R., B.H. and D.L.; resources, D.L. and H.S.;
writing—original draft preparation, M.H.R., B.H. and S.L.; writing—review and editing, B.H. and
H.S.; supervision, B.H.; project administration, D.L.; funding acquisition, W.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Agency for Defense Development, Korea (UD190003DD).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: As a result of military security concern, we can only present the
artificially generated data in Figshare at https://doi.org/10.6084/m9.figshare.16817635.

https://doi.org/10.6084/m9.figshare.16817635

Sensors 2021, 21, 8013 15 of 16

Acknowledgments: Since this work is part of National Defense Project, source code of this work is
not published.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Merilinna, J. A mechanism to enable spatial reasoning in jboss drools. In Proceedings of the 2014 International Conference on

Industrial Automation, Information and Communications Technology, Bali, Indonesia, 28–30 August 2014; pp. 135–140.
2. Beckmann, N.; Kriegel, H.P.; Schneider, R.; Seeger, B. The R*-tree: An efficient and robust access method for points and rectangles.

In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data (SIGMOD ‘90), Atlantic City, NJ,
USA, 23–25 May 1990; Association for Computing Machinery: New York, NY, USA, 1990; pp. 322–331.

3. Dong, T.; Shi, J.; Fan, J.; Zhang, L. An Improved Rete algorithm Based on Double Hash Filter and Node Indexing for Distributed
Rule Engine. IEICE Trans. Inf. Syst. 2013, 96, 2635–2644. [CrossRef]

4. Ship Self Defense System. Available online: https://man.fas.org/dod-101/sys/ship/weaps/mk-1.htm (accessed on
9 October 2021).

5. Roy, J. Rule-based expert system for maritime anomaly detection. In Proceedings of the Sensors, and Command, Control,
Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IX, Orlando, FL, USA, 5
May 2010; Volume 7666, p. 76662N.

6. Friedlander, G.D. World War II: Electronics and the US Navy Radar, sonar, loran, and infrared techniques. IEEE Spectr. 1967, 4,
56–70. [CrossRef]

7. Data Distribution Service. Available online: https://www.omg.org/omg-dds-portal (accessed on 9 October 2021).
8. Oracle Continuous Query Language. Available online: https://docs.oracle.com/middleware/12212/osa/cql-reference/toc.htm

(accessed on 9 October 2021).
9. Chen, J.; DeWitt, D.J.; Tian, F.; Wang, Y. NiagaraCQ: A scalable continuous query system for Internet databases. In Proceedings of

the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD ‘00), Dallas, TX, USA, 16–18 May 2000;
Association for Computing Machinery: New York, NY, USA, 2000; pp. 379–390.

10. Lim, H.-S.; Lee, J.-G.; Lee, M.-J.; Song, I.-Y. Continuous query processing in data streams using duality of data and queries. In
Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data (SIGMOD ‘06), Chicago, IL, USA,
27–29 June 2006; Association for Computing Machinery: New York, NY, USA, 2006; pp. 313–324.

11. Prabhakar, S.; Xia, Y.; Kalashnikov, D.V.; Aref, W.G.; Hambrusch, S.E. Query indexing and velocity constrained indexing: Scalable
techniques for continuous queries on moving objects. In IEEE Trans. Comput. 2002, 51, 1124–1140. [CrossRef]

12. Gyllstrom, D.; Wu, E.; Chae, H.J.; Diao, Y.; Stahlberg, P.; Anderson, G. SASE: Complex event processing over streams. arXiv 2006,
arXiv:cs/0612128.

13. Wu, E.; Diao, Y.; Rizvi, S. High-performance complex event processing over streams. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data (SIGMOD ‘06), Chicago, IL, USA, 27–29 June 2006; Association for Computing
Machinery: New York, NY, USA, 2006; pp. 407–418.

14. Mozafari, B.; Zeng, K.; Zaniolo, C. High-performance complex event processing over XML streams. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data (SIGMOD ‘12), Scottsdale, AZ, USA, 20–24 May 2012;
Association for Computing Machinery: New York, NY, USA, 2012; pp. 253–264.

15. Schultz-Møller, N.P.; Migliavacca, M.; Pietzuch, P. Distributed complex event processing with query rewriting. In Proceedings of
the Third ACM International Conference on Distributed Event-Based Systems (DEBS ‘09), Nashville, TN, USA, 6–9 July 2009;
Association for Computing Machinery: New York, NY, USA, 2009. Article 4. pp. 1–12.

16. Akdere, M.; Çetintemel, U.; Tatbul, N. Plan-based complex event detection across distributed sources. In Proceedings of the
VLDB ‘08, Auckland, New Zealand, 24–30 August 2008; pp. 66–77.

17. Xiao, F. CaFtR: A Fuzzy Complex Event Processing Method. Int. J. Fuzzy Syst. 2021, 1–14. [CrossRef]
18. Ray, C.; Grancher, A.; Thibaud, R.; Etienne, L. Spatio-Temporal Rule-based Analysis of Maritime Traffic. In Proceedings of

the Third Conference on Ocean & Coastal Observation: Sensors and Observing Systems, Numerical Models and Information
(OCOSS), Nice, France, 28–31 October 2013.

19. Drools Complex Event Processing. Available online: https://docs.jboss.org/drools/release/6.2.0.CR3/drools-docs/html/
DroolsComplexEventProcessingChapter.html (accessed on 11 November 2021).

20. Liu, D.; Gu, T.; Xue, J.P. Rule Engine based on improvement Rete algorithm. In Proceedings of the 2010 International Conference
on Apperceiving Computing and Intelligence Analysis Proceeding, Chengdu, China, 17–19 December 2010; pp. 346–349.

21. Yu, M.; Bambacus, M.; Cervone, G.; Clarke, K.; Duffy, D.; Huang, Q.; Li, J.; Li, W.; Li, Z.; Liu, Q.; et al. Spatiotemporal event
detection: A review. Int. J. Digital Earth 2020, 13, 1339–1365. [CrossRef]

22. Oracle Complex Event Processing Visualizer. Available online: https://docs.oracle.com/cd/E28280_01/doc.1111/e14302.pdf
(accessed on 11 November 2021).

23. Liang, Y.; Lee, J.; Hong, B.; Kim, W. Rule-based Complex Event Processing on Tactical Moving Objects. In Proceedings of the 2018
IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 7–10 December 2018.

24. Liang, Y.; Hong, B.; Lee, J.; Kim, W. A Framework of Spatio-Temporal Continuous Query Rule-based Complex Event Processing
for RealTime Risk Analysis and Decision Making. Database Res. KIISE 2020, 36, 74–92.

http://doi.org/10.1587/transinf.E96.D.2635
https://man.fas.org/dod-101/sys/ship/weaps/mk-1.htm
http://doi.org/10.1109/MSPEC.1967.5217171
https://www.omg.org/omg-dds-portal
https://docs.oracle.com/middleware/12212/osa/cql-reference/toc.htm
http://doi.org/10.1109/TC.2002.1039840
http://doi.org/10.1007/s40815-021-01118-6
https://docs.jboss.org/drools/release/6.2.0.CR3/drools-docs/html/DroolsComplexEventProcessingChapter.html
https://docs.jboss.org/drools/release/6.2.0.CR3/drools-docs/html/DroolsComplexEventProcessingChapter.html
http://doi.org/10.1080/17538947.2020.1738569
https://docs.oracle.com/cd/E28280_01/doc.1111/e14302.pdf

Sensors 2021, 21, 8013 16 of 16

25. Bhargavi, R.; Pathak, R.; Vaidehi, V. Dynamic complex event processing—adaptive rule engine. In Proceedings of the 2013
International Conference on Recent Trends in Information Technology (ICRTIT), Chennai, India, 25–27 July 2013; pp. 189–194.

26. Buchmann, A.; Koldehofe, B. Complex Event Processing. It-Inf. Technol. 2009, 51, 241. [CrossRef]
27. Jun, C.; Chi, C. Design of complex event-processing IDS in internet of things. In Proceedings of the 2014 Sixth International

Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, China, 10–11 January 2014; pp. 226–229.
28. Complex Event Processing. Available online: https://en.wikipedia.org/wiki/Complex_event_processing (accessed on

11 November 2021).
29. Rahman, M.H.; Hong, B.; Kim, W. Hash indexing on RETE nodes for fast executing of spatiotemporal continuous query processing

rules. Database Res. KIISE 2021, 37, 21–36.
30. Teymourian, K.; Rohde, M.; Paschke, A. Knowledge-based processing of complex stock market events. In Proceedings of the 15th

International Conference on Extending Database Technology (EDBT ‘12), Berlin, Germany, 27–30 March 2012; Association for
Computing Machinery: New York, NY, USA, 2012; pp. 594–597.

31. Komazec, S.; Cerri, D.; Fensel, D. Sparkwave: Continuous schema-enhanced pattern matching over RDF data streams. In
Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems (DEBS ‘12), Hamilton New Zealand,
25–29 June 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 58–68.

32. Forgy, C.L. Rete: A fast algorithm for the many patterns/many object pattern match. Readings in Artificial Intelligence and
Databases. Morgan Kaufmann 1989, 547–559.

33. Xiao, F. CEQD: A Complex Mass Function to Predict Interference Effects. IEEE Trans. Cybern. 2021, 1–13. [CrossRef]

http://doi.org/10.1524/itit.2009.9058
https://en.wikipedia.org/wiki/Complex_event_processing
http://doi.org/10.1109/TCYB.2020.3040770

	Introduction
	Spatiotemporal Continuous Query Rule Processing
	Stream Processing Rules of Target Objects
	Spatiotemporal Continuous Query Rules

	Rete Node Indexing and Stabbing Algorithms
	Hashing Index of Rete Node
	Stabbing Algorithm for Continuous Query Events

	Performance Evaluation
	Hashing Index of Rete Node
	Performance Testing on the Number of Rules and the Number of Target Objects
	Performance Comparison Test with Drool

	Conclusions
	References

