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Abstract: Surveys on explainable artificial intelligence (XAI) are related to biology, clinical trials,
fintech management, medicine, neurorobotics, and psychology, among others. Prognostics and
health management (PHM) is the discipline that links the studies of failure mechanisms to system
lifecycle management. There is a need, which is still absent, to produce an analytical compilation
of PHM-XAI works. In this paper, we use preferred reporting items for systematic reviews and
meta-analyses (PRISMA) to present a state of the art on XAI applied to PHM of industrial assets.
This work provides an overview of the trend of XAI in PHM and answers the question of accuracy
versus explainability, considering the extent of human involvement, explanation assessment, and
uncertainty quantification in this topic. Research articles associated with the subject, since 2015 to
2021, were selected from five databases following the PRISMA methodology, several of them related
to sensors. The data were extracted from selected articles and examined obtaining diverse findings
that were synthesized as follows. First, while the discipline is still young, the analysis indicates a
growing acceptance of XAI in PHM. Second, XAI offers dual advantages, where it is assimilated as a
tool to execute PHM tasks and explain diagnostic and anomaly detection activities, implying a real
need for XAI in PHM. Third, the review shows that PHM-XAI papers provide interesting results,
suggesting that the PHM performance is unaffected by the XAI. Fourth, human role, evaluation
metrics, and uncertainty management are areas requiring further attention by the PHM community.
Adequate assessment metrics to cater to PHM needs are requested. Finally, most case studies featured
in the considered articles are based on real industrial data, and some of them are related to sensors,
showing that the available PHM-XAI blends solve real-world challenges, increasing the confidence
in the artificial intelligence models’ adoption in the industry.

Keywords: AI; explainable deep learning; machine learning; PHM; PRISMA; reliability; sensing and
data extraction; XAI

1. Introduction
1.1. General Progress in Artificial Intelligence

Artificial intelligence (AI) continues its extensive penetration into emerging markets,
driven by untapped opportunities of the 21st century and backed by steady and sizeable
investments. In the last few years, AI-based research shows much concentration in areas
such as large-scale machine learning (ML), deep learning (DL), reinforcement learning,
robotic, computer vision, natural language processing, and internet of thing [1].

According to the first AI experts report in the “One-hundred-year study on artificial
intelligence”, AI ability will be heavily embodied in education, healthcare, home robotics,
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safety, security, and transportation, as well as entertainment, in North American cities by
the 2030s [1].

The increasing data volume [2] and breakthrough in ML, coupled with the pressing
need to be more efficient and innovatively democratize AI to the global scene, are cur-
rently relevant. A survey conducted by McKinsey [3] (www.mckinsey.com, accessed on
25 November 2021) recorded an annual increase of 30% in AI investment from 2010 to
2013 and 40% from 2013 to 2016. In 2016, the total global investment amounted from 26
to 39 billion dollars by tech firms and external investments. In 2030, AI could potentially
be valued up to 15 trillion dollars in global gross domestic product growth thanks to
automation and product innovation, while reducing approximately seven trillion dollars in
operational costs [4]. AI-driven technology leads to an incremental change in labor market
requirement, where increasing technological ability, together with higher cognitive and
social-emotional skills, are needed to support AI-based infrastructures, whereas manual
and basic cognitive skills experience less demand [5].

AI is a technical discipline defined as the science of making computers do things that
would require intelligence if done by humans [6]. The reasoning of AI imitates natural laws
translated into working algorithms [7]. Some important fields in AI research include expert
systems, consisting of rule-based reasoning, case-based reasoning, and fuzzy systems,
along with ML models [8–10], such as an artificial neural network (ANN), support vector
machine, DL, and heuristic algorithms [11,12]. The availability of the parallel graphics
processing unit and open-source development tools unlock the door for literally everyone
to solve technical challenges, sometimes surpassing human performance [13,14]. These
abilities and specialized tools make AI so appealing in technically infused domains such as
computer vision [13], healthcare [6], image processing [7], and reliability engineering [11].

1.2. Artificial Intelligence in Prognostic and Health Management

ML, in general, and more specifically DL, are part of the reliability research landscape,
including prognostic and health management (PHM) [15–17]. PHM provides guidelines
and frameworks to safeguard the healthy state of assets. PHM minimizes risks, mainte-
nance costs, and workload, thus optimizing maintenance activities. PHM is defined by
standards of the Institute of Electrical and Electronics Engineers (IEEE) as “a maintenance
and asset management approach utilizing signals, measurements, models, and algorithms
to detect, assess, and track degraded health, and to predict failure progression” [18].
Accordingly, three types of PHM activities are distinguished: (i) prognostic, (ii) diagnostic,
and (iii) anomaly detection. Prognostic is the action of determining the remaining useful
life (RUL) or the leftover operational time of an asset before a failure [17]. Diagnostic is the
action of classifying a failure and, to some extent, discovering the detailed root cause of
this failure [19]. Anomaly detection consists of identifying unusual patterns going against
the normal behavior of operational indicators [20].

A considerable part of the literature supports the idea of AI as being at the forefront
in PHM studies [15,20]. To mention a few: (i) long short-term memory (LSTM) ANN
was employed in [21] with degradation image to estimate the RUL of rotating machinery;
(ii) a regression tree was used to predict the RUL of central heating and cooling plant
equipment in [22]; (iii) the combination of logistic regression with L2 SVM was proposed
for gas circulator unit prognostic [23,24]; (iv) random forest was utilized to diagnose fault
for semiconductor equipment failure in [25]; (v) convolutional and fully connected layers
with Softmax activation were considered in [26] to diagnose rotating machine issues; and
(vi) gradient-boosted decision trees outperformed other methods in the anomaly detection
of hard drives in [27].

1.3. Black-Box Artificial Intelligence Problem

Though very powerful, many AI methods are black boxes in nature, meaning that the
inner mechanism to produce outputs in these methods are unknown [28,29]. Obviously,
this opacity is an obstacle in AI penetration across many sensitive or high-stake areas such
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as banking, defense, finance, and medical areas, even in the common industry [30,31]. The
end-users and experts of the domain in question need the assurance that the model’s inner
process is understandable [32]. Such an opaqueness adds operational and confidentiality
hazards, bias, or nonethical outputs risks [33]. The lack of transparency discourages respon-
sible exploitation of AI decisions [34], model troubleshooting [35], and improvement [32].
Moreover, it further complicates the question of responsibility ownership in the case of
wrong decision [36]. Therefore, with the increasing scrutiny and regulation on AI usage, the
need to make AI methods as transparent as possible is pressing. This includes the general
data protection regulation in the European Union and the ethics guidelines for trustworthy
AI presented by the European Commission High-Level Expert Group on AI [37–39].

1.4. The Need for Explainable Artificial Intelligence

Explainable artificial intelligence (XAI) is a discipline dedicated in making AI methods
more transparent, explainable, and understandable to end-users, stakeholders, nonexperts,
and non-stakeholders alike to nurture trust in AI. The growing curiosity in XAI is mirrored
by the spike of interest in this search term since 2016 and the rising number of publications
throughout the years [38].

The Defense Advanced Research Projects Agency (DARPA) developed the XAI Pro-
gram in 2017, while the Chinese government announced the Development Plan for New
Generation of Artificial Intelligence in the same year, both promoting the dissemination of
XAI [40]. The general needs for XAI are as follows:

(i) Justification of the model’s decision by identifying issues and enhancing AI models.
(ii) Obedience of the AI regulation and guidelines in usage, bias, ethics, dependability,

accountability, safety, and security.
(iii) Permission for users to confirm the model’s desirable features, promote engagement,

obtain fresh insights into the model or data, and augment human intuition.
(iv) Allowance for users to better optimize and focus their activities, efforts, and resources.
(v) Support for the model development when it is not yet considered as reliable.
(vi) Encouragement for the cooperation between AI experts and external parties.

1.5. Common XAI Approaches

While there are many definitions linked to XAI, this work concentrates only on the
most employed notions of interpretability and explainability. On the one hand, inter-
pretability refers to the ability to provide human-understandable justification for the one’s
behavior. Thus, interpretable AI points to the model’s structures which are transparent and
readily interpretable. On the other hand, explainability describes an external proxy used to
describe the behavior of the model. Hence, explainable AI refers to post-hoc approaches uti-
lized for explaining a black-box model. The first definition explicitly distinguishes between
black-box and interpretable models. The second definition takes a broader connotation
where explainability is accented as a technical ability to describe any AI model in general
and not only black-box identification.

XAI approaches are classified according to an explanation scope [41]. Intrinsic models
are interpretable due to their simplicity such as in linear regression and logic analysis of
data (LAD), while post-hoc approaches interpret more complex nonlinear models [32,33].
Examples of post-hoc approaches are local interpretable model-agnostic explanations
(LIME) and Shapley additive explanations (SHAP).

An approach can be categorized as (i) AI-model specific or (ii) employable in any AI
model or model agnostic [14,42]. Class activation mapping (CAM), for example, can only
be utilized after CNN. Layer-wise relevance propagation (LRP) and gradient-weighted
CAM may be employed in any gradient-based models.

Therefore, the explanation by the XAI model can either cater to local data instances or
to the whole (global) dataset [41]. For example, SHAP may generate both local and global
explanations, while LIME is only suitable for local explanation.
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1.6. Review Motivation

The main objective of this work is to present an overview of XAI applications in PHM
of industrial assets by using preferred reporting items for systematic reviews and meta-
analyses (PRISMA, available online: www.prisma-statement.org, accessed on 4 October 2021)
guidelines [43]. PRISMA is an evidence-based guideline that ensures comprehensive-
ness, reducing bias, increasing reliability, transparency, and clarity of the review with
minimum items [44,45]. PRISMA is a 27-checklist guideline that needs to be satisfied
as best as possible for the best practice in systematic review redaction. However, in
the systematic review presented in the present study, items 12, 13e, 13f, 14, 15, 18–22,
and 24 of the PRISMA methodology were omitted as they were not dealt with here; see
prisma-statement.org/PRISMAstatement/checklist.aspx (accessed on 19 November 2021)
for details on these items.

The rationalities motivating the compilation of this review are the following:

(i) Global interest in XAI: According to our survey, the general curiosity toward XAI has
surged since 2016 [14]. Figure 1 shows the interest expressed for the term “explainable
AI” in Google searches, with 100 being the peak popularity for any term.

(ii) Specialized reviews: In the early years, several general surveys on XAI methods
were written [32,34]. More recently, as the discipline grows, more specialized works
emerged. Reviews on XAI have been related to drug discovery [31], fintech manage-
ment [35], healthcare [30,33,36], neurorobotics [39], pathology [28], plant biology [37],
and psychology [29]. Thus, it is necessary to produce an analytical compilation of
PHM-XAI works, which is still absent.

(iii) PHM nature and regulation: PHM is naturally related to high-investment and safety-
sensitive industrial domains. Moreover, it is pressing to ensure the use of well-
regulated AI in PHM. Hence, it is necessary for XAI to be promoted as much as
possible and its know-how disseminated for the benefit of PHM actors.
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The review goals are achieved by addressing the following points:

(i) General trend: This is related to an overview of the XAI approach employed, the
repartition of the mentioned methods according to PHM activities, and the type of
case study involved.

(ii) Accuracy versus explainability power: According to DARPA, the model’s accuracy
performance is inverse to its explainability prowess [40].

(iii) XAI role: This must assist or overload PHM tasks.
(iv) Challenges in PHM-XAI progress: Crosschecks were done with the general challenges

raised in [14,32,34,38] associated with:

(a) The lack of explanation evaluation metrics.
(b) The absence of human involvement for enhancing the explanation effectivity.
(c) The omission of uncertainty management in the studied literature.

www.prisma-statement.org
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The remainder of this paper is organized as follows: In Section 2, the methodology
is introduced, followed by the results presentation in Section 3. Then, the discussion is
elaborated in Section 4. Finally, the concluding remarks are presented in Section 5.

2. Methodology
2.1. Framework

A single person performed the search, screening, and data extraction of the articles
considered in this study. Thus, no disagreement occurred in all the steps mentioned. Only
peer-reviewed journal articles on PHM-XAI of industrial assets between 2015 and 2021 in
English language were selected.

2.2. Databases

Five publication databases consisting of ScienceDirect of Elsevier (until 17 February 2021),
IEEE Xplore (until 18 February 2021), SpringerLink (until 22 February 2021), Scopus (until
27 February 2021), and Association for Computing Machinery (ACM) Digital Library (until
28 May 2021) were explored. Advanced search was used, but since the database features
are different, a specific strategy was adopted. In IEEE Xplore, search was conducted in
the “abstract” and “document title” fields only as they are the most relevant options. The
database also authorizes search within the obtained results in the “search within results”
field. Wildcard was not used in IEEE Xplore even though it was permitted. Comprehensive
search in the “title”, “abstract”, and “keywords” fields were performed in ScienceDirect
and Scopus; “title”, “abstract”, and “author-specified keywords” fields for ScienceDirect;
and “search within article title”, “abstract”, and “keywords” fields for Scopus. However,
unlike Scopus, ScienceDirect does not support wildcard search; therefore, it was only
employed in Scopus. In SpringerLink, the “with all the words” field was utilized altogether
with wildcards. In ACM, both the ACM full-text collection and ACM guide for obtaining
the literature were examined. The “Search within” option in the “title”, “abstract”, and
“keywords” was executed with wildcard. Once performed, the screening of duplications
was performed by using the Zotero software (www.zotero.org, accessed on 4 October 2021).
The full research strategy is listed in Appendix A.

2.3. Steps of Our Bibliographical Review

The following screening steps were executed one after another for obtaining a result,
with each screening step starting in the title, then the abstract, and next the keywords:

(S1) Verify whether the article type is research or not.
(S2) Exclude non-PHM articles by identifying absence of commonly employed PHM terms

such as prognostic, prognosis, RUL, diagnostic, diagnosis, anomaly detection, failure,
fault, or degradation.

(S3) Discard non-XAI articles by identifying absence of commonly used XAI terms which
are explainable, interpretable, and AI.

(S4) Eliminate non-PHM-XAI articles by identifying the absence of both PHM and XAI
terms as, respectively, indicated in steps (ii) and (iii) above.

(S5) Remove articles related to medical applications or network security.

Then, the context of the articles was examined on the remaining works for final
screening and so to retain only the desired articles. The data extracted from the articles
were gathered in a Microsoft Excel file with each column corresponding to each investigated
variable. Directly retained variables were: “author”, “publication year”, “title”, “publisher”,
and “publication/journal name”. Further information extracted from the article context
analysis is as follows:

(i) PHM activity category: This corresponds to either anomaly detection, prognostic,
or diagnostic, with structural damage detection as well as binary failure prediction
being considered as diagnostic.

(ii) XAI approach employed: This is related to the category of the XAI method.

www.zotero.org
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(iii) Recorded performance: This is associated with the reported result. Some papers
clearly claim the comparability or the superiority of the proposed method over other
tested methods. In the case where comparison was not conducted, the reported
standalone results for accuracy, precision, F1 score, area under the receiving operating
characteristic curve (AUC) score, area under precision-recall curve (PRAUC) score,
or the Cohen kappa statistic score were referred to Table A4 in Appendix A and
classified as either “bad”, “fair”, “good”, and “very good”. When mixed performance
of good and very good was recorded for the same method, it was quantified as only
“good”. When a method was superior to the rest, it was classified as “very good”
unless detailed as only “good”. Some results were appreciated based on the problem
at hand, for example using the mean square error (MSE), root mean square error
(RMSE), and mean absolute error (MAE) as direct comparisons is not possible.

(iv) XAI role in assisting PHM task: This regards the role of XAI in strengthening PHM ability.
(v) Existence of explanation evaluation metrics: This is stated as presence or not of

a metric.
(vi) Human role in PHM-XAI works: This is considered as existence of the mentioned

role or not.
(vii) Uncertainty management: This is linked to if uncertainty management in any of the

stages of the PHM or XAI approaches increases the possibility for adoption by user
due to additional surety.

(viii) Case study type (real or simulated): Real was considered when the data of a case
study came from a real mechanical device, whereas simulated was considered when
data were generated utilizing any type of computational simulation.

2.4. Outputs

The outputs were presented in the following forms:

(i) Table: Selected and excluded articles with variables sought.
(ii) Pie chart: Summary of the PHM activity category, explanation metric, human role,

and uncertainty management.
(iii) Column graph: Summary of the PHM-XAI yearly trend, XAI approach employed,

recorded performance, and XAI role in assisting a PHM task.

3. Results
3.1. Framework

We selected 3048 papers from the databases according to the applied keywords with
their respective number (absolute frequency) as shown in Table A3 of Appendix A. Note
that 288 articles were screened out as duplicates. Out of the 2760 remaining, 25 papers
were screened out as they are editorial papers or documents related to news. Then,
70 papers were selected according to criteria (S1)–(S5) described in Section 2.3 (steps
of our bibliographical review) from the remaining 2735 articles. Lastly, only 35 papers
were selected as other 35 articles were deemed not relevant with the reviewed topic after
context verification. The final selected and excluded studies can be found, respectively,
in Tables A1 and A2 of Appendix A.

3.2. PRISMA Flow Diagram

As mentioned, the selected and excluded articles based on the criteria for inclusion
are disclosed, respectively, in Tables A1 and A2. The PRISMA flow diagram of the selection
and screening processes is displayed in Figure 2.

The repartition of the selected articles’ PHM domain as well as their publisher are
presented in Figures 3 and 4, respectively. The repartition of the excluded articles’ PHM
domain as well as their publisher are presented in Figures 5 and 6, respectively. As noted
from Figure 3, diagnostic research holds the biggest share in PHM-XAI articles. Figure 4
illustrates IEEE and Elsevier publishers as being the biggest sources of the accepted articles.
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Numerous unselected publications, though related to XAI, correspond to process
monitoring research, as shown in Figure 5. These works were excluded as they are closely
related to quality context rather than failure of products. Some works are focused on
products instead of the industrial assets. Furthermore, the anomaly described is seldom
associated with process disturbance rather than failure degradation. Studies concerning
the network security were also omitted. In addition, most of the excluded articles come
from the Elsevier and IEEE publishers as confirmed by Figure 6, further showing that these
publishers are the main sources of many XAI-related articles.

4. Discussion
4.1. General Trend

As shown in Table A1 of Appendix A and summarized in Figure 7, the accepted
articles according to the publication year show an upward trend, with a major spike in 2020,
indicating a growing interest in XAI from the PHM researchers. However, the number of
accepted articles is still very small, reflecting the infancy state of XAI in PHM, compared
to other research fields such as cyber, defense, healthcare, and network securities. XAI is
especially beneficial to the latter domains as it helps in fulfilling their primary functions
of protecting lives and assets—contrasted to PHM research, where it is predominantly
focused in facilitating financial decision making. In the healthcare field, for example, the
efforts to evaluate explanation quality are presently an active topic, which is not the case of
PHM [46]. The understanding of XAI is also limited in PHM, partly due to comprehensible
distrust in using AI in the first place, compounded with the amount of investment needed
to build AI systems that is yet to be proven in real life. In fact, manufacturing and energy
sectors, associated closely with PHM, are amongst the slowest in adopting AI [47]. Thus,
AI only thrives in PHM research. In brief, more exposure and advocation of XAI in PHM
are needed to nurture trust in the AI usage, improving day to day the operational efficiency
and enabling the overall safeguard of industrial assets and lives.
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Note that 70% of the included PHM-XAI works come from ScienceDirect and IEEE
Xplore as testified by Figure 4. Most of the excluded articles in the final stage also come
from the mentioned databases as shown in Figure 6. These observations suggest that these
two databases concentrate XAI-related works. It is commendable for a specialized journal
in other publishers to promote the use of XAI in PHM through dedicated symposiums and
special issues, which are still scarce.
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4.2. XAI

Interpretable models, rule- and knowledge-based models, and the attention mecha-
nism are the most employed methods as illustrated in Figure 8. These methods existed well
before XAI become mainstream. Then, their implementations became well documented
and common. Interpretable approaches consist of linear models widely used before the
introduction of nonlinear models. Rule- and knowledge-based models possess the traits of
expert systems which became widespread earlier and led to the popularity of AI [48]. The
attention mechanism was developed in the image recognition field to improve classification
accuracy [49].
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Other techniques such as model agnostic explainability and LRP are less explored but
are anticipated to permeate in the future due to their nature. They could be used with any
black-box models. Furthermore, the performance of the AI models is not altered by these
techniques. Model agnostic acts as an external method to the model to be explained while
LRP requires only the gradient flow of the network. LAD is another interesting technique
due to its potential combination with fault tree analysis that is seldom utilized in complex
risk management such as in the aerospace and nuclear industries. The lack of coverage in
LAD entails more investigation from the researchers on this topic.

The diagnostic domain occupies the majority share amongst the accepted works as pre-
sented in Figure 3. Looking at the XAI-assisted PHM column in Table A1 of Appendix A,
it can be deduced that XAI boosts diagnostic ability. Drawing a parallel between the infor-
mation from Figure 3 and Table A1, it may be inferred that XAI is particularly appealing to
diagnostic as it can be applied directly as a diagnostic tool or in addition to other methods.
XAI could provide additional incentive to diagnostic whose main objective is to discover
the features responsible for the failure as shown in Figure 9. This interesting point signifies
that the diagnostic tasks in these papers are dependent on XAI. Therefore, XAI is not
only a supplementary feature in diagnostics but also an indispensable tool. The same
phenomenon is observed in anomaly detection as presented in Figure 9. Knowing the
cause of anomaly could potentially avoid false alarms, preventing resource wastage. Thus,
XAI might be employed to execute PHM tasks and explain them.
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Table A1 reveals that some XAI approaches directly assist the PHM tasks achieving
excellent performance. Furthermore, the recorded PHM performance of both XAI and
non-XAI methods (works that depend on XAI for explanation only) are mostly very good
for diagnostics and prognostics, as depicted in Figure 10. In brief, no bad results were
recorded as confirmed by Figure 10. Whether the results are contributed by XAI or not, it
can safely be concluded that explainability does not affect the tasks’ accuracy in the studied
works. The outcomes and reported advantage of XAI as a PHM tool are important steps in
eradicating the skepticism and mistrust of the industry in the AI usage. These facts might
intensify the assimilation of AI in the industry.
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4.3. PHM

Real industrial data are mostly used in case studies to demonstrate the effectiveness
of XAI as reflected in Figure 11a. Furthermore, the studies reflect the outreach of XAI in
diverse technical sectors such as aerospace, automotive, energy, manufacturing, production,
and structural engineering fields. These positive outlooks prove that the available PHM-
XAI combinations are suitable to solve real-world industrial challenges with at least a good
performance, boosting the confidence in the AI models’ adoption.
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4.4. Lack of Current Studies
4.4.1. Human Role in XAI

A very small role was played by humans in the examined works as illustrated in
Figure 11b. Human participation is vital for evaluating the generated explanation, as
it is intended to be understood by them. This involvement helps in the assimilation of
other human-related sciences to PHM-XAI such as human reliability engineering (HRA),
psychology, or even healthcare, further enriching this new field [50]. Furthermore, human
involvement is encouraged for the development of interactive AI, where the expert’s opin-
ion strengthens or debates the generated explanation, presenting an additional guarantee
in AI performance.

4.4.2. Explainability Metrics

Note that the usage of explanation evaluation metrics is nearly nonexistent as pre-
sented in Figure 11c. The explanation evaluation method engineered for the PHM usage is
practically absent according to our study. These metrics are vital to the researchers and
developers when evaluating the explanation quality. It is recommended that adequate
assessment metrics for PHM explanation, considering security and safety risk, maintenance
cost, time, and gain are developed and adopted. Such metrics should require the collab-
oration of all PHM actors to satisfy the need of each level of hierarchy. From this angle,
XAI experts could be inspired by the work performed in the HRA domain, which studies
the human-machine interaction in reliability perspective [50]. An overview of explanation
metrics and methods is presented in [51], whereas the effectiveness of explanation from
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experts to nonexperts is studied in [52], and a metric to assess the quality of medical
explanation was proposed in [53].

4.4.3. Uncertainty Management

Various types of uncertainty management methods are adopted in different stages in
the studied works on the PHM-XAI area as detailed in Table A1. Nevertheless, note that,
in Figure 11d, much improvement is still required in this area. Uncertainty management
gives additional surety to users to adopt PHM-XAI methods compared to point estimation
models. Furthermore, uncertainty quantification is vital to provide additional security to
AI infrastructure against adversarial examples, either unintentionally or motivated by the
attack. This quantification might minimize the risk of wrong explanation being produced
from unseen data due to adversarial examples.

5. Conclusions

In this work, a state-of-the-art systematic review on the applications of explainable
artificial intelligence linked to prognostics and health management of industrial assets was
compiled. The review followed the guidelines of preferred reporting items for systematic
reviews and meta-analyses (PRISMA) for the best practice in systematic review report-
ing. After applying our criteria for inclusion to 3048 papers, we selected and examined
35 peer-reviewed articles, in the English language, from 2015 to 2021, about explainable
artificial intelligence related to prognostics and health management, to accomplish the
review objectives.

Several interesting findings were discovered in our investigation. Firstly, this review
found that explainable artificial intelligence is attracting interest in the domain of prog-
nostics and health management, with a spike in published works in 2020, though still
in its infancy phase. The interpretable model, rule- and knowledge-based methods, and
attention mechanism are the most widely used explainable artificial intelligence techniques
applied in the works of prognostics and health management. Secondly, explainable artifi-
cial intelligence is central to prognostics and health management, assimilated as a tool to
execute such tasks by most diagnostic and anomaly detection works, while simultaneously
being an instrument of explanation. Thirdly, it was discovered that the performance of
prognostics and health management is unaltered by explainable artificial intelligence. In
fact, the majority of works that related both approaches achieved excellent performance
while the rest produced only good results. However, there is much work to be conducted
in terms of human participation, explanation metrics, and uncertainty management, which
are nearly absent.

This overview discovered that most real, industrial case studies belonging to di-
verse technical sectors are tested to demonstrate the effectiveness of explainable artificial
intelligence, signifying the outreach and readiness of general artificial intelligence and
explainable artificial intelligence to solve real and complex industrial challenges.

The implications of this study are the following:

(i) PHM-XAI progress: Much unexplored opportunity is still available for prognos-
tics and health management researchers to advance the assimilation of explainable
artificial intelligence in prognostics and health management.

(ii) Interpretable models, rule- and knowledge-based models, and attention mechanism:
These are the most widely used techniques and more research involving other ap-
proaches could give additional insight into the prognostics and health management
community in terms of performance, ease of use, and flexibility of the explainable
artificial intelligence method.

(iii) XAI as PHM tool and instrument of explanation: explainable artificial intelligence
could be preferred or required within prognostics and health management compared
to standalone methods.
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(iv) PHM performance uninfluenced by XAI: The confidence of prognostics and health
management practitioners and end users in the artificial intelligence model’s adoption
should be boosted.

(v) Lack of human role, explanation metrics, and uncertainty management: Efforts
need to be concentrated in these areas amongst other in the future. Moreover, the
development of evaluation metrics that can cater prognostics and health management
needs is urgently recommended.

(vi) Mostly real case studies were tested: the confidence of prognostics and health man-
agement practitioners and end users in the artificial intelligence model’s adoption
should be increased.

The limitations of this study are stated below:

(i) This review does not classify explainable artificial intelligence methods in term of
their nature (post-hoc, local, or global explainability): New insights or patterns could
potentially be discovered by applying this classification.

(ii) The review does not explore in detail the subject of explainability metrics: This aspect
should be a standalone subject as it is a vast and emerging topic that involves the
explainable artificial intelligence methods, human factors, and the proper need for
the domain.
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Appendix A

Table A1. Analysis results of selected articles.

ID Authors and
Year Title

Publisher,
Publication

Name
PHM

Activity XAI Approach Performance XAI Assist
PHM Metric Human Role Uncertainty

Management Case Study

1
[54]

Wong et al.,
2015

On equivalence of
FIS and ELM for

interpretable
rule-based
knowledge

representation

IEEE, IEEE
Transactions on

Neural
Networks and

Learning
Systems

Diagnostic
Rule- and

knowledge-
based

Accuracy: 85.14%
Good Yes No No No

Real—
Circulating cooling

water system for
turbine.

(energy sector)

2
[55]

Wu et al.,
2018

K-PdM:
KPI-oriented

machinery
deterioration

estimation
framework for

oredictive
maintenance using

cluster-based
hidden

Markov model

IEEE,
IEEE Access Prognostic

Rule- and
knowledge-

based

RMSE: 14.28
Very Good No No No

Probabilistic
state transition

model

Simulated—
Turbofan engine

(aerospace)

3
[56]

Massimo et al.,
2018

Unsupervised
classification of
multichannel

profile data using
PCA: An

application to an
emission control

system

Elsevier,
Computers and

Industrial
Engineering

Diagnostic Cluster-
based

MSE: 2.127 × 10−5

to 5.809 × 10−3

Very Good
Yes No Yes No

Real—Emission
control system
(automotive,
environment)

4
[57]

Mathias et al,
2019

Forecasting
remaining useful
life: Interpretable

deep learning
approach via
variational

Bayesian inference

Elsevier,
Decision
Support
Systems

Prognostic Interpretable
model

MAE: 13.267
Better than other

methods,
except LSTM

No No No
Uncertainty in

model
parameters

Simulated—
Turbofan engine

(Aerospace)

5
[58]

Imene et al.,
2019

Fault isolation in
manufacturing

systems based on
learning algorithm

and fuzzy rule
selection

Springer,
Neural

Computing
and

Applications

Diagnostic
Rule- and

knowledge-
based

Accuracy: 97.01%
Very Good Yes No No

Probabilistic
classification by

Bayes
decision rule

Real—
Rotary kiln

(civil engineering)
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Table A1. Cont.

ID Authors and
Year Title

Publisher,
Publication

Name
PHM

Activity XAI Approach Performance XAI Assist
PHM Metric Human Role Uncertainty

Management Case Study

6
[59]

Kerelous et al.,
2019

Interpretable logic
tree analysis: A

data-driven fault
tree methodology

for causality
analysis

Elsevier,
Expert Systems

with
Applications

Diagnostic LAD
Mean and standard
errors are less than

2% and 1%
Very good

Yes No Yes FTA—Expert
opinion

Simulated—
Actuator system
(manufacturing,

energy, production,
chemical)

7
[60]

Rajendran
et al., 2019

Unsupervised
wireless spectrum
anomaly detection
with interpretable

features

IEEE, IEEE
Transactions on
Cognitive Com-

munications
and

Networking

Anomaly
detection Autoencoder

Generally better
than

other tested
methods

Yes No No

Probabilistic
classification

error by
discriminator

Real—software
defined radio

spectrum
simulated—

synthetic data
(communication)

8
[61]

Wang et al.,
2019

An attention-
augmented deep
architecture for

hard drive status
monitoring in

large-scale storag
systems

ACM, ACM
Transactions on

Storage

Prognostic,
diagnostic

Attention
mechanism

Prognostic
precision:

94.5–98.3%
Generally, better

than other methods.
No comparison in

diagnostic

Diag: Yes
Prog: No No No No

Real—
Hard drive

(information
technology)

9 [62]
Le et al., 2019

Visualization and
explainable

machine learning
for efficient

manufacturing and
system operations

ASTM,
Smart and

Sustainable
Manufacturing

Systems

Diagnostic Others N/A 1 Yes No Yes No
Simulated—

turbofan
(aerospace)

10
[63]

Langone et al.,
2020

Interpretable
anomaly prediction:

Predicting
anomalous
behavior in
industry 4.0
settings via

regularized logistic
regression tools

Elsevier,
Data and

Knowledge
Engineering

Anomaly
detection

Interpretable
model

Kappa: 0.4–0.6
AUC: 0.6–0.8

F1: 0.3–0.5
PRAUC: 0.2–0.4

Good

Yes No No
Statistical

feature
extraction

Real—
High-pressure
plunger pump

(chemical)

11
[64]

Peng et al.,
2020

A dynamic
structure-adaptive
symbolic approach

for slewing
bearings life

prediction under
variable working

conditions

Sage,
Structural

Health
Monitoring

Prognostic Interpretable
model

RMSE: 18.19
Better than

previous methods
Yes No No No

Real—
Slewing bearings

(rotating machinery,
energy,

manufacturing)
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Table A1. Cont.

ID Authors and
Year Title

Publisher,
Publication

Name
PHM

Activity XAI Approach Performance XAI Assist
PHM Metric Human Role Uncertainty

Management Case Study

12 [65]
Ritto et al., 2020

Digital twin,
physics-based

model, and
machine learning

applied to damage
detection in
structures

Elsevier,
Mechanical

Systems and
Signal

Processing

Diagnostic Interpretable
model

Accuracy:
74.8–93.3%

Good
No No No No

Not specified—
Spring mass system

(wind
turbine, energy)

13 [66]
Rea et al., 2020

Progress toward
interpretable

machine learning
based disruption
predictors across

tokamaks

Taylor and
Francis, Fusion

Science and
Technology

Diagnostic Interpretable
model N/A No No No Physic-based

indicator

Real DIII—D and
JET tokamaks

(energy)

14
[67]

Murari et al.,
2020

Investigating the
physics of tokamak
global stability with

interpretable ML
tools

MDPI,
Applied
Sciences

Anomaly
detection

Mathematic
equation

Success Rate > 90%
Very Good No No No No

Type unspecified—
Tokamak
(energy)

15
[68]

Zhou et al.,
2020

Fault diagnosis of
gas turbine based

on partly
interpretable
convolutional

neural networks

Elsevier,
Energy Diagnostic Tree-based

Accuracy: 95.52%
Better than other
tested methods

Yes No No No
Simulated—

Gas turbine model
(energy)

16
[69]

Zhou et al.,
2020

Addressing noise
and skewness in

interpretable
health-condition

assessment by
learning model

confidence

MDPI,
Sensors Diagnostic

Rule- and
knowledge-

based

F1 Score: 0.8005
Very Good No No No No

Real—
Aircraft structure.

(aerospace)

17
[70]

Jianbo et al.,
2020

Knowledge
extraction and

insertion to deep
belief network for

gearbox fault
diagnosis

Elsevier,
Knowledge-

Based
Systems

Diagnostic
Rule- and

Knowledge-
based

Accuracy: 92.33
Very Good Yes No No No

Real—
Gearbox

(manufacturing,
energy, automotive)

18
[71]

Conde et al.,
2020

Isotonic boosting
classification rules

Springer,
Advances in

Data Analysis
and

Classification

Diagnostic
Rule- and

knowledge-
based

Total
Misclassification

Probability (TMP):
0.036-0.164
Good and

comparable to
other methods

Yes No No No

Real—
Induction motor
(manufacturing,

energy, production)
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Table A1. Cont.

ID Authors and
Year Title

Publisher,
Publication

Name
PHM

Activity XAI Approach Performance XAI Assist
PHM Metric Human Role Uncertainty

Management Case Study

19
[72]

Antonio et al.,
2020

Using an
autoencoder in the

design of an
anomaly detector

for smart
manufacturing

Elsevier,
Pattern

Recognition
Letters

Anomaly
detection Autoencoder

Precision:
77.8–100%
Accuracy:
94.9–100%

Same as the
previous

best method

Yes No No No

Simulated—
Continuous batch

washing equipment
(industrial laundry)

20 [73]
Abid et al., 2020

Robust
interpretable deep

learning for
intelligent fault

diagnosis of
induction motors

IEEE,
IEEE

Transactions on
Instrumenta-

tion and
Measurement

Diagnostic Filter-based

Accuracy:
99.95% ± 0.05%
Better than other

tested methods and
previous works

Yes No No No

Real—
Electrical and

mechanical motor
(Manufacturing,

Energy, Production)

21 [74]
Liu et al., 2020

Tscatnet: An
interpretable
cross-domain

intelligent
diagnosis model

with antinoise and
few-shot learning

capability

IEEE,
IEEE

Transactions on
Instrumenta-

tion and
Measurement

Diagnostic Filter-based
Accuracy: 100%
Better than other
tested methods

Yes No No No

Real—Bearing,
drive train

(manufacturing,
energy, production)

22 [75]
Li et al., 2020

Waveletkernelnet:
an interpretable

deep neural
network for
industrial
intelligent
diagnosis.

IEEE,
IEEE

Transactions on
Systems, Man,

and
Cybernetics:

Systems

Diagnostic Filter-based
Accuracy:

92.61–99.91%
Better than other
tested methods

Yes No No No

Real—Bearing,
drive train

(manufacturing,
energy, production)

23
[76]

Chen et al.,
2020

Vibration signals
analysis by
explainable

artificial
intelligence
approach:

Application on
bearing faults

diagnosis

IEEE,
IEEE Access Diagnostic Attention

mechanism N/A No No No No

Real—
Rolling bearing
(manufacturing,

energy, production)

24 [77]
Sun et al., 2020

Vision-based fault
diagnostics using
explainable deep

learning with class
activation maps

IEEE,
IEEE Access Diagnostic Attention

mechanism
Accuracy: 95.85%
Precision: 100%

Very good
No No No No

Real—
Base-excited

cantilever
beam, water pump

system
(manufacturing,

energy, production)
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Table A1. Cont.

ID Authors and
Year Title

Publisher,
Publication

Name
PHM

Activity XAI Approach Performance XAI Assist
PHM Metric Human Role Uncertainty

Management Case Study

25 [78]
Oh et al., 2020

VODCA:
Verification of

diagnosis using
CAM-based
approach for

explainable process
monitoring

MDPI, Sensors Diagnostic Attention
mechanism

Accuracy:
78.4–99.5%

Good
Yes No No

True positive
and true
negative

indicators

Simulated—
Ford motor and
real—sapphire

grinding
(automotive,
production)

26
[79]

Sreenath et al.,
2020

Fouling modeling
and prediction

approach for heat
exchangers using

deep learning

Elsevier,
International

Journal of Heat
and Mass
Transfer

Failure
Prediction Model agnostic

Accuracy:
99.80–99.92%

Very good
No No No No

Simulated—
Heat-exchanger

model
(manufacturing,

energy, production)

27
[80]

Hong et al.,
2020

Remaining useful
life prognosis for
turbofan engine

using explainable
deep neural

network with
dimensional

reduction

MDPI, Sensors Prognostic Model
Agnostic

RMSE: 10.41
Very good No No No No

Simulated—
Turbofan engine

(aerospace)

28
[81]

Grezmak et al.,
2020

Interpretable
convolutional

neural network
through layer-wise

relevance
propagation for
machine fault

diagnosis

IEEE,
IEEE Sensors

Journal
Diagnostic LRP Accuracy: 100%

Very good No No No No

Real—
Induction motor
(manufacturing,

energy, production)

29
[82]

Ming et al.,
2020

ProtoSteer: Steering
deep sequence

model with
prototypes

IEEE,
IEEE

Transactions on
Visualization

and Computer
Graphics

Diagnostic Others N/A Yes No Yes No
Real—

Vehicle fault log
(automotive)

30
[83]

Chen et al.,
2020

Frequency-
temporal-logic-

based bearing fault
diagnosis and fault
interpretation using

Bayesian
optimization

&ANN

Elsevier,
Mechanical

Systems and
Signal

Processing

Diagnostic Others

Better error
percentage, error

rate and robustness
than other

tested methods

Yes No No No
Real—Bearings
(manufacturing,

energy, production)
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Table A1. Cont.

ID Authors and
Year Title

Publisher,
Publication

Name
PHM

Activity XAI Approach Performance XAI Assist
PHM Metric Human Role Uncertainty

Management Case Study

31
[84]

Steenwinckel
et al., 2021

FLAGS: A
methodology for

adaptive anomaly
detection and root
cause analysis on

sensor data streams
by fusing expert
knowledge with
machine learning

Elsevier,
Future

Generation
Computer
Systems

Anomaly
detection,
diagnostic

Rule- and
knowledge-

based

Accuracy: 75%
Good in anomaly

detection,
no result for
diagnostic

Yes, for both No Yes
FMEA and

FTA—Expert
opinion

Real—Train
(transportation)

32
[85]

Zhang et al.,
2021

A new interpretable
learning method for

fault diagnosis of
rolling bearings

IEEE,
EEE

Transactions on
Instrumenta-

tion and
Measurement

Diagnostic Cluster- based
Accuracy:
99.3–100%
Very good

Yes No No No

Real—
Rolling bearing
(manufacturing,

energy, production)

33
[86]

Onchis et al.,
2021

Stable and
explainable deep
learning damage

prediction for
prismatic cantilever

steel beam

Elsevier,
Computers in

Industry
Diagnostic Model

Agnostic

Accuracy for 19%
damage: 75–92%
Accuracy for 43%
damage: 85–95%

Good

Yes, by LIME
only

Stability-fit
compensa-
tion index

(SFC)—
Quality

indicator
of the ex-

planations

No Yes

Real—
Prismatic

cantilever steel
beam

(civil engineering,
structural

engineering)

34 [87]
Kim et al., 2021

An explainable
convolutional

neural network for
fault diagnosis in

linear motion guide

IEEE,
IEEE

Transactions on
Industrial

Informatics

Diagnostic Attention
mechanism

Accuracy:
99.59–99.71%

Very good
No No No No

Real—
Linear motion

guide
(manufacturing,

energy, production)

35
[88]

Ding et al.,
2021

Stationary
subspaces

autoregressive with
exogenous terms
methodology for

degradation trend
estimation of

rolling and slewing
bearings

Elsevier,
Mechanical

Systems and
Signal

Processing

Prognostic Others

MAE: 0.0375–0.0414
RMSE:

0.0482–0.0659
Better than other

methods and
comparable to

previous works

Yes No No No

Real—
Rolling and slewing

bearings
(manufacturing,

energy, production)

1 N/A = Item not included in the studied work.
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Table A2. Excluded articles according to the publication year.

ID Authors, Date Title Publisher, Publication Name Exclusion Reason

1 [89]
Kumar et al., 2016

Adaptive cluster tendency visualization
and anomaly detection for streaming data

ACM, ACM Transactions on Knowledge
Discovery from Data Non-PHM-XAI implementation/case study

2 [90]
Bao et al., 2016

Improved fault detection and diagnosis
using sparse global-local preserving

projections

Elsevier,
Journal of Process Control Process monitoring and anomaly detection

3 [91]
Kozjek et al., 2017

Interpretative identification of the faulty
conditions in a cyclic manufacturing

process

Elsevier,
Journal of Manufacturing Systems Process monitoring and diagnosis

4 [92]
Ragab et al., 2017

Fault diagnosis in industrial chemical
processes using interpretable patterns

based on logical analysis of data

Elsevier,
Expert Systems with Applications Process monitoring and fault diagnosis

5 [93]
Tang et al., 2018

Fisher discriminative sparse
representation based on DBN for fault

diagnosis of complex system

MDPI,
Applied Science Process monitoring and fault diagnosis

6 [94]
Luo et al., 2018

Knowledge-data-integrated sparse
modeling for batch process monitoring Elsevier, Chemical Engineering Science Process anomaly detection and diagnosis

7 [95]
Puggini et al., 2018

An enhanced variable selection and
Isolation Forest based methodology for

anomaly detection with OES data

Elsevier,
Engineering Applications of Artificial

Intelligence
Process anomaly detection and diagnosis

8 [96]
Cheng et al., 2018

Monitoring influent measurements at
water resource recovery facility using

data-driven soft sensor approach

IEEE,
IEEE Sensors Journal Process anomaly detection

9 [97]
Zhang et al., 2018

Weakly correlated profile monitoring
based on sparse multi-channel functional

principal component analysis

Taylor and Francis,
IISE Transactions Process monitoring

10 [98]
Luo et al., 2018

Industrial process monitoring based on
knowledge-data integrated sparse model
and two-level deviation magnitude plots

ACS, Industrial and Engineering
Chemistry Research

Process monitoring, anomaly detection
and diagnosis

11 [99]
Vojíř et al., 2018

EasyMiner.eu: web framework for
interpretable machine learning based on

rules and frequent item sets

Elsevier,
Knowledge-Based Systems

Only development version offers
anomaly detection

12 [100]
Du et al., 2019

A condition change detection method for
solar conversion efficiency in solar cell

manufacturing processes

IEEE,
IEEE Transactions on

Semiconductor Manufacturing
Process monitoring and anomaly detection

13 [101]
Keneniet et al., 2019

Evolving rule-based explainable artificial
intelligence for unmanned aerial vehicles

IEEE,
IEEE Access

Interpret why agent deviate from its mission, not
because of system failure
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Table A2. Cont.

ID Authors, Date Title Publisher, Publication Name Exclusion Reason

14 [102]
Wang et al., 2019

Dynamic soft sensor development based
on convolutional neural networks

ACS,
Industrial and Engineering Chemistry

Research
Process modelling

15 [103]
Wang et al., 2019

Explicit and interpretable nonlinear soft
sensor models for influent surveillance at

a full-scale wastewater treatment plant

Elsevier,
Journal of Process Control Process monitoring and variable prediction

16 [104]
Liu et al., 2019

Intelligent online catastrophe assessment
and preventive control via a stacked

denoising autoencoder
Elsevier, Neurocomputing Black-box

17 [105]
Bukhsh et al., 2019

Predictive maintenance using tree-based
classification techniques: a case of

railway switches

Elsevier,
Transportation Research Part C

Predict maintenance need, activity type and
maintenance trigger status

18 [106]
Ragab et al., 2019

Deep understanding in industrial
processes by complementing human

expertise with interpretable patterns of
machine learning

Elsevier,
Expert Systems with Applications Process monitoring and fault diagnosis

19 [107]
Luo et al., 2019

Sparse robust principal component
analysis with applications to fault

detection and diagnosis

ACS, Industrial and Engineering
Chemistry Research Process monitoring, fault detection and diagnosis

20 [108]
Jie et al., 2020

Process abnormity identification by fuzzy
logic rules and expert estimated

thresholds derived certainty factor

Elsevier, Chemometrics and Intelligent
Laboratory Systems Process anomaly diagnosis

21 [109]
Sajedi et al., 2020

Dual Bayesian inference for
risk-informed vibration-based diagnosis

Wiley, Computer-Aided Civil and
Infrastructure Engineering

Uncertainty interpretation, not
model’s interpretation

22 [110]
Sun et al., 2020

ALVEN: Algebraic learning via elastic net
for static and dynamic nonlinear

model identification

Elsevier, Computers and Chemical
Engineering Process monitoring and variable prediction

23 [111]
Henriques et al., 2020

Combining k-means and XGBoost
models for anomaly detection using

log datasets

MDPI,
Electronics Anomaly in project, not engineered system

24 [112]
Gorzałczany et al., 2020

A modern data-mining approach based
on genetically optimized fuzzy systems

for interpretable and accurate smart-grid
stability prediction

MDPI, Energies Electrical grid demand stability in financial
perspective

25 [113]
Müller et al., 2020

Data or interpretations impacts of
information presentation strategies on

diagnostic processes

Wiley, Human Factors and Ergonomics in
Manufacturing and Service Industries

Experiment with operator effectivity following
quality of interpretability
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Table A2. Cont.

ID Authors, Date Title Publisher, Publication Name Exclusion Reason

26 [114]
Shriram et al., 2020

Least squares sparse principal component
analysis and parallel coordinates for

real-time process monitoring

ACS, Industrial and Engineering
Chemistry Research Process monitoring and diagnosis

27 [115]
Alshraideh et al., 2020

Process control via random forest
classification of profile signals: an
application to a tapping process

Elsevier,
Journal of Manufacturing Processes Process monitoring and anomaly detection

28 [116]
Minghua et al., 2020

Diagnosing root causes of intermittent
slow queries in cloud databases

ACM,
Proceedings of the VLDB Endowment

Diagnosing slow query due to lack of resources,
not failure

29 [117]
Shaha et al., 2020

Performance prediction and
interpretation of a refuse plastic fuel fired

boiler

IEEE,
IEEE Access Performance prediction

30 [118]
Kovalev et al., 2020

SurvLIME: a method for explaining
machine learning survival models

Elsevier,
Knowledge-Based Systems Medical survival model

31 [119]
Kovalev et al., 2020

A robust algorithm for explaining
unreliable machine learning survival

models using the Kolmogorov.Smirnov
bounds

Elsevier,
Neural Networks Medical survival model

32 [120]
Karn et al., 2021

Cryptomining detection in container
clouds using system calls and explainable

machine learning

IEEE, IEEE Transactions on Parallel and
Distributed Systems Network attack

33 [121]
Gyula et al., 2021

Decision trees for informative process
alarm definition and alarm-based fault

classification

Elsevier, Process Safety and
Environmental Protection Process monitoring and anomaly detection

34 [122]
Zaman et al., 2021

Fuzzy heuristics and decision tree for
classification of statistical feature-based

control chart patterns
MDPI, Symmetry Process monitoring and diagnosis

35 [123]
Li et al., 2021

DTDR-ALSTM: Extracting dynamic
time-delays to reconstruct multivariate

data for improving attention-based LSTM
industrial time series prediction models

Elsevier,
Knowledge-Based Systems Process monitoring and variable prediction
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Table A3. Search strategy.

Database and Date
Number of
Extracted

Papers
Search Field and Keywords Filters Applied

IEEE
Xplore

18/02/21
144

Using ‘Document Title’:

1. Document Title: explainable OR Document Title: interpretable, Search within results: diagnostic
2. Document Title: explainable OR Document Title: interpretable, Search within results: prognostic
3. Document Title: explainable OR Document Title: interpretable, Search within results: diagnosis
4. Document Title: explainable OR Document Title: interpretable, Search within results: prognosis
5. Document Title: explainable OR Document Title: interpretable, Search within results: anomaly detection
6. Document Title: explainable OR Document Title: interpretable, Search within results: RUL
7. Document Title: explainable OR Document Title: interpretable, Search within results: remaining useful life
8. Document Title: explainable AI OR Document Title: explainable machine learning OR Document Title:

explainable deep learning OR Document Title: XAI, Search within results: prognostic
9. Document Title: explainable AI OR Document Title: explainable machine learning OR Document Title:

explainable deep learning OR Document Title: XAI, Search within results: diagnostic
10. Document Title: explainable AI OR Document Title: explainable machine learning OR Document Title:

explainable deep learning OR Document Title: XAI, Search within results: diagnosis
11. Document Title: explainable AI OR Document Title: explainable machine learning OR Document Title:

explainable deep learning OR Document Title: XAI, Search within results: prognosis
12. Document Title: explainable AI OR Document Title: explainable machine learning OR Document Title:

explainable deep learning OR Document Title: XAI, Search within results: anomaly detection
13. Document Title: explainable AI OR Document Title: explainable machine learning OR Document Title:

explainable deep learning OR Document Title: XAI, Search within results: RUL
14. Document Title: explainable AI OR Document Title: explainable machine learning OR Document Title:

explainable deep learning OR Document Title: XAI, Search within results: remaining useful life
15. Document Title: interpretable AI OR Document Title: interpretable machine learning OR Document Title:

interpretable deep learning OR Document Title: XAI, Search within results: diagnostic
16. Document Title: interpretable AI OR Document Title: interpretable machine learning OR Document Title:

interpretable deep learning OR Document Title: XAI, Search within results: prognostic
17. Document Title: interpretable AI OR Document Title: interpretable machine learning) OR Document Title:

interpretable deep learning OR Document Title: XAI, Search within results: prognosis
18. Document Title: interpretable AI OR Document Title: interpretable machine learning) OR Document Title:

interpretable deep learning OR Document Title: XAI, Search within results: diagnosis
19. Document Title: interpretable AI OR Document Title: interpretable machine learning) OR Document Title:

interpretable deep learning OR Document Title: XAI, Search within results: anomaly detection
20. Document Title: interpretable AI OR Document Title: interpretable machine learning) OR Document Title:

interpretable deep learning OR Document Title: XAI, Search within results: RUL
21. Document Title: interpretable AI OR Document Title: interpretable machine learning) OR Document Title:

interpretable deep learning OR Document Title: XAI, Search within results: remaining useful life

Journals, Early Access Article,
Specify Year Range:

2015–2021
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Table A3. Cont.

Database and Date
Number of
Extracted

Papers
Search Field and Keywords Filters Applied

Using ‘Abstract’:
22. Abstract: explainable AI OR Abstract: explainable machine learning OR Abstract: explainable deep learning OR

Abstract: XAI, Search within results: prognostic
23. Abstract: explainable AI OR Abstract: explainable machine learning OR Abstract: explainable deep learning OR

Abstract: XAI, Search within results: diagnostic
24. Abstract: explainable AI OR Abstract: explainable machine learning OR Abstract: explainable deep learning OR

Abstract: XAI, Search within results: diagnosis
25. Abstract: explainable AI OR Abstract: explainable machine learning OR Abstract: explainable deep learning OR

Abstract: XAI, Search within results: prognosis
26. Abstract: explainable AI OR Abstract: explainable machine learning OR Abstract: explainable deep learning OR

Abstract: XAI, Search within results: anomaly detection
27. Abstract: explainable AI OR Abstract: explainable machine learning OR Abstract: explainable deep learning OR

Abstract: XAI, Search within results: RUL
28. Abstract: explainable AI OR Abstract: explainable machine learning OR Abstract: explainable deep learning OR

Abstract: XAI, Search within results: remaining useful life
29. Abstract: interpretable AI OR Abstract: interpretable machine learning) OR Abstract: interpretable deep learning

OR Abstract: XAI, Search within results: prognostic
30. Abstract: interpretable AI OR Abstract: interpretable machine learning) OR Abstract: interpretable deep learning

OR Abstract: XAI, Search within results: diagnostic
31. Abstract: interpretable AI OR Abstract: interpretable machine learning) OR Abstract: interpretable deep learning

OR Abstract: XAI, Search within results: prognosis
32. Abstract: interpretable AI OR Abstract: interpretable machine learning) OR Abstract: interpretable deep learning

OR Abstract: XAI, Search within results: diagnosis
33. Abstract: interpretable AI OR Abstract: interpretable machine learning) OR Abstract: interpretable deep learning

OR Abstract: XAI, Search within results: anomaly detection
34. Abstract: interpretable AI OR Abstract: interpretable machine learning) OR Abstract: interpretable deep learning

OR Abstract: XAI, Search within results: RUL
35. Abstract: interpretable AI OR Abstract: interpretable machine learning) OR Abstract: interpretable deep learning

OR Abstract: XAI, Search within results: remaining useful life

Science Direct
17/02/21 607

Using ‘Title, abstract or author-specified keywords’:

36. (“explainable” OR “interpretable”) AND (“prognostic” OR “diagnostic” OR “prognosis” OR “diagnosis” OR
“anomaly detection” OR “RUL” OR “remaining useful life”)

37. (“explainable AI” OR “explainable machine learning” OR “explainable deep learning” OR “XAI”) AND
(“prognostic” OR “diagnostic” OR “anomaly detection” OR “RUL” OR “remaining useful life”)

38. (“explainable AI” OR “explainable machine learning” OR “explainable deep learning” OR “XAI”) AND
(“prognosis” OR “diagnosis” OR “anomaly detection” OR “RUL” OR “remaining useful life”)

39. (“interpretable AI” OR “interpretable machine learning” OR “interpretable deep learning” OR “XAI”) AND
(“prognostic” OR “diagnostic” OR “anomaly detection” OR “RUL” OR “remaining useful life”)

40. (“interpretable AI” OR “interpretable machine learning” OR “interpretable deep learning” OR “XAI”) AND
(“prognosis” OR “diagnosis” OR “anomaly detection” OR “RUL” OR “remaining useful life”)

Article type: Research Articles,
Subject areas: Engineering and

Computer Science, Years:
2015–2021
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Table A3. Cont.

Database and Date
Number of
Extracted

Papers
Search Field and Keywords Filters Applied

Springer
Link

22/02/21
291

Using ‘With all the words’:

41. “explainable” OR “interpretable” AND “prognos”
42. “explainable” OR “interpretable” AND “prognos”
43. “explainable” OR “interpretable” AND “diagnos”
44. “explainable” OR “interpretable” AND “diagnos”
45. “explainable” OR “interpretable” AND “RUL”
46. “explainable” OR “interpretable” AND “RUL”
47. “explainable” OR “interpretable” AND “remaining useful life”
48. “explainable” OR “interpretable” AND “remaining useful life”
49. “explainable” OR “interpretable” AND “anomaly detection”
50. “explainable” OR “interpretable” AND “anomaly detection”

Content Type: Article,
Discipline: Computer Science or

Engineering,
Language: English,

Show documents published:
2015–2021

ACM Digital Library
28/05/21 75

Using ‘Publication Title, Abstract and Keywords’:

51. Publication Title: explainable or interpretable AND Publication Title: (prognos OR diagnos OR “anomaly
detection” OR RUL OR “remaining useful life”

52. Abstract: explainable or interpretable AND Abstract: (prognos OR diagnos OR “anomaly detection” OR RUL OR
“remaining useful life”

53. Keywords: explainable or interpretable AND Keywords: (prognos OR diagnos OR “anomaly detection” OR RUL
OR “remaining useful life”

Publications: Journal, Content
Type: Research Article,

Publication Date:
2015–2021

Scopus
27/02/21 1931

54. (“explainable” OR “interpretable”) AND (“prognostic” OR “diagnostic” OR “prognosis” OR “diagnosis” OR
“anomaly detection” OR “RUL” OR “remaining useful life”)

Limited to: Article,
Publication stage: Final,

Subject Area: Engineering and
Comput Science,

Language: English,
Exclude: Medical, Published

from: 2015–2021
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Table A4. Value and classification of the indicated metric.

Metric
Value

<50% 50–75% 75–90% 90–100%

Accuracy Bad Fair Good Very good
Precision Bad Fair Good Very good

Metric
Value

0.00–0.20 0.21–0.40 0.41–0.6 0.61–1.00

F1 Bad Fair Good Very good
AUC Bad Fair Good Very good

PRAUC Bad Fair Good Very good
Kappa Bad Fair Good Very good
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