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Abstract: Driving in an adverse rain environment is a crucial challenge for vision-based advanced
driver assistance systems (ADAS) in the automotive industry. The vehicle windshield wiper removes
adherent raindrops that cause distorted images from in-vehicle frontal view cameras, but, additionally,
it causes an occlusion that can hinder visibility at the same time. The wiper-occlusion causes
erroneous judgments by vision-based applications and endangers safety. This study proposes behind-
the-scenes (BTS) that detects and removes wiper-occlusion in real-time image inputs under rainy
weather conditions. The pixel-wise wiper masks are detected by high-pass filtering to predict the
optical flow of a sequential image pair. We fine-tuned a deep learning-based optical flow model with
a synthesized dataset, which was generated with pseudo-ground truth wiper masks and flows using
auto-labeling with acquired real rainy images. A typical optical flow dataset with static synthetic
objects is synthesized with real fast-moving objects to enhance data diversity. We annotated wiper
masks and scenes as detection ground truths from the collected real images for evaluation. BTS
outperforms by achieving a 0.962 SSIM and 91.6% F1 score in wiper mask detection and 88.3% F1
score in wiper image detection. Consequently, BTS enhanced the performance of vision-based image
restoration and object detection applications by canceling occlusions and demonstrated it potential
role in improving ADAS under rainy weather conditions.

Keywords: windshield wiper; object detection; optical flow; data synthesis; advanced driver assis-
tance systems; adverse rain

1. Introduction

Recently, the automotive industry has focused on the implementation of autonomous
vehicles mounted with only cameras, which, like human drivers, primarily depend on
visual perception [1,2], as image data have proven to be the richest source of raw data for
advanced driver assistance systems (ADAS) to automate driving tasks through significant
advancements in vision-based deep learning methods. One of the autonomous driving
market-leading companies, Tesla’s Autopilot, relies primarily on cameras to perceive its en-
vironment without radar and LiDAR sensors [3]. As a result, adaptive cruise control (ACC),
automatic emergency braking (AEB), lane keeping assistance (LKA), and many other ADAS
tasks leverage vision-based tasks, such as object detection, classification, tracking, and
depth estimation [4]. However, vehicles generally experience meteorological phenomena,
such as rain, so visual data from mounted cameras often suffer quality degradation because
of rain streaks, rain accumulation, or adherent raindrops. In terms of images, rain streaks
generate bright straight lines that partially occlude the foreground and background. Rain
accumulation comprises multiple layers of rain streaks and creates effects similar to fog
or haze that blur the image content. Adherent raindrops are created directly on a camera
lens or vehicle windshield and distort images with relatively larger regions than other
rain effects. Recently, Tesla also addressed the issue of error-causing debris in images in a
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hardware manner [5]. Failure in recognition or detection resulting from impaired images
may cause erroneous decisions or control, which is dangerous in terms of safety. There-
fore, coping with the effects of rainy weather conditions is indispensable for enhancing
vision-based systems in vehicles.

Deraining [6–16], a software method to remove rain effects, have shown promising
research results, but there are constraints in applying them to real environments because
of gaps in rain effects. Most approaches are trained based on unrealistic synthetic or
synthesized datasets because obtaining precise ground truth data regarding relatively
small rain objects is a difficult process. Empirically, the actual impacts of rain effects on
driving can vary, as illustrated in Figure 1. Rain streaks are barely visible in the captured
images, and rain accumulation occurring at a distance has less influence on near objects. The
experimental dataset shows that two of the rain effects are not crucial in actual images from
driving under rainy weather conditions as much as deraining open datasets. Instead, for an
adherent raindrop on a windshield, created in front of the in-vehicle camera, the spherical
and transparent droplets cause severe image degradation, such as distortion in both open
and experimental datasets. Modeling realistic synthetic adherent raindrops is complicated
because the transparent fluid interacts with the surroundings with unpredictable patterns.
Therefore, these intractable properties make the adherent object a difficult challenge for
clarifying image visibility.

Figure 1. Difference in rain effects between open datasets and experimental dataset: (a–f) deraining
open datasets [10,11,15]; (g–l) our experimental dataset. Rain streaks (1st column) are mostly invisible
in the images in the experimental data compared with the open dataset. Rain accumulation (2nd col-
umn) occurs at a far distance with no specific impacts on nearer objects. Instead, both artificial and
actual adherent raindrops (3rd column) distort the images and deteriorate visibilities. Best viewed
with zoom-in.

Although vision-based deraining approaches struggle with troublesome objects, vehi-
cles have removed rain simply with a physical device, a windshield wiper, since 1903. This
is one of the reasons why frontal view cameras for ADAS are integrated interior of vehicles
to avoid ADAS performance degradation by the debris under rainy weather conditions.
Nevertheless, although this intuitive and robust device brings clear visibility to an image,
it creates unintentional occlusions, as shown in Figure 2. As the wiper operates upward
and downward to remove adherent raindrops, it truncates or occludes objects in the image,
such as vehicles and road features. If the frontal vehicle is completely occluded and never
seen in sequential frames, a vision-based recognition application would misjudge the
existence, location, size, or class of the object and cause faulty decisions in ADAS tasks.
Likewise, if wiper-occlusions cause other vision-based applications, such as lane detection,
drivable area detection, traffic sign detection, and many others, to output erroneous results
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to ADAS tasks, vehicles would make wrong decisions in lateral and longitudinal controls
that endanger safety. As a result, the windshield wiper is the critical object that obstructs
the visibility of camera sensors and causes fatal occlusions in images, and this should be
resolved in driving environments.

Figure 2. Problematic wiper effects in an experimental image sequence for time frames: (a) the frontal
vehicle (solid red) is visible; (b) the wiper truncates the vehicle; (c) the wiper completely occludes the
vehicle (dashed red) to wipe the adherent raindrop (solid blue); (d) the vehicle is back to visible, and
the adherent raindrop is cleared (dashed blue). Best viewed with zoom-in.

Even though wipers occlude images and deteriorate vision-based performances, only
one study has been conducted on removing the wiper [17]. In the past decade, vision-based
deep learning methods for driving have demonstrated practical advancements by lever-
aging various open datasets. However, most datasets [18–20] capture images with ideal
visibility under clear weather conditions, and a few datasets [21,22] include rainy scenes
for data diversity, while windshield wipers have been excluded [23]. As previous studies
have reported, employing real data for training and evaluation is crucial for implementing
practical solutions compatible with actual driving environments. Therefore, it is important
to obtain actual windshield wiper data to compensate for the absence of a dataset.

Auto-labeling is an approach for obtaining approximate data to improve the effi-
ciency of annotation. For auto-labeling windshield wipers, general vision-based object
detection [24,25], and segmentation [26] trained with wiper-free datasets are unsuitable
because the wiper is a total stranger for these approaches, which produce impracticable
and dissatisfactory results. In contrast, a state-of-the-art optical flow estimation network
[27] outputs plausible results regarding an unseen object because the method infers by
extracting not only object-wise features but also pixel-wise displacements of an image
sequence. In other words, it is suitable for auto-labeling pixels related to the wiper, which
have relatively larger displacements than other pixels. However, the network was trained
with optical flow datasets [18,28–30] consisting of static synthetic images and flow data,
and its ability with fast-moving wipers is inaccurate and unstable; therefore, improving
the data diversity by adding dynamic objects of a real domain is required for precise
windshield wiper detection to cancel occlusions in unseen data.

We propose a behind-the-scenes (BTS) for windshield wiper-occlusion canceling by
leveraging optical flow to maintain clear visibility of images while driving under rainy
weather conditions. The main purpose of BTS is to extract the mask of a windshield
wiper, a relatively fast-moving object in an image, by exploiting the predicted optical flows
from a sequential image pair. Our method facilitates the extension of data diversity in
optical flow datasets, pixel-wise detection of actual windshield wipers, and restoration of
wiper-occlusion regions, as depicted in Figure 3.
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Figure 3. Processing pipeline of inference task: (stage 1) takes two sequential input images (Io
t , Io

t+1);
(stage 2) predicts optical flow (Fo

t+1); (stage 3) extracts binary wiper mask (Mo
t+1); (stage 4) restores

the wiper-occlusion region in the image (Ir
t+1); (stage 5) outputs object detection image (Id

t+1). Best
viewed with zoom-in.

Real image data under rainy weather conditions were collected by driving a camera-
mounted vehicle in a metropolitan city in Korea to address the absence of windshield wiper
images. For data diversity, we acquired data considering various locations, precipitations,
and seasons. Hand-crafted ground truth masks were generated only to evaluate the pre-
dicted wiper masks and scenes, while pseudo-ground truth masks and flows were extracted
by auto-labeling using a pre-trained optical flow model. The idea of data synthesis is to
mount a virtual wiper on a virtual camera lens of a synthetic dataset to implement inten-
tional occlusions. Therefore, we overwrote the pseudo-data to MPI-Sintel [30], a commonly
used optical flow dataset, by sampling data according to various synthesis scenarios.

We employed the RAFT [27] as a baseline to fine-tune the pre-trained weight of the
network with our synthesized dataset containing diverse data. BTS takes two sequential
images to infer pixel-wise optical flows, and a flow threshold classifies fast-moving wiper
flows, similar to a high-pass filter. The structure similarity index measure (SSIM) and
binary classification metrics were applied to evaluate the wiper mask detection (WMD)
and wiper scene detection (WSD). Our contributions are as follows.

• Acquisition of a real dataset of driving under adverse rainy weather conditions using
windshield wipers;

• Implementation of a fine-tuning optical flow-based model with a synthesized dataset
to detect precise windshield wiper-occlusion regions;

• Conception and realization of wiper-free rain images for autonomous driving datasets.

The remainder of this paper is organized as follows: Section 2 describes prior studies
related to this research. Section 3 explains the methodology and processes for acquiring
a new dataset and synthesizing the data. Section 4 reports the quantitative and quali-
tative evaluation results and demonstrates the extensibility and utility of vision-based
applications. Section 5 discusses the results, limitations, and future work. We close this
paper with the conclusions in Section 6. Video demonstration of BTS can be found in the
supplementary material.

2. Related Work
2.1. Deraining
2.1.1. Model-Driven Approaches

Until 2017, model-driven approaches were the prominent methods that rely on a
statistical analysis of rain models and build a cost function to optimize. Kang et al. proposed
a framework by formulating rain removal as an image decomposition into low/high-
frequency parts based on morphological component analysis [6]. Luo et al. employed
discriminative sparse coding [7], while Li et al. used patch priors based on Gaussian
mixture models (GMM) to accommodate the orientations and scales of rain streaks [8]. You
et al. exploited spatio-temporal derivatives of raindrops to remove adherent raindrops and
restore the region by retrieving information from the image [9]. Despite these efforts, these
approaches are inaccurate for real images because the actual rain shapes are inconsistent,
especially in driving environments.
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2.1.2. Data-Driven Approaches

With advancements in deep learning, such as convolutional neural networks (CNNs)
or generative adversarial networks (GANs), data-driven methods have begun to solve more
complicated tasks and improve deraining performance. Yang et al. constructed a CNN-
based multi-task deep learning architecture that progressively detects and removes rain
streaks and rain accumulation [11]. Li et al. achieved significant performance improvement
by preserving useful information in previous stages that can provide benefits in later stages
for rain removal [12]. Zamir et al. and Chen et al. developed image restoration models
that perform deraining more precisely than prior studies with respect to rain streaks and
accumulation [13,14]. For adherent raindrops, Qian et al. employed a GAN by injecting
visual attention into generative and discriminative networks to find, remove, and restore
raindrop regions [15]. Liu et al. leveraged the motion differences between background and
obstructing elements, i.e., raindrops, using optical flow and reconstructed decomposed
background/obstruction layers [31]. However, these approaches utilize limited datasets in
which images are different from real images.

2.1.3. Deraining Datasets

Although deep learning-based approaches have enhanced deraining, performance
degradation occurs when real rainy images are applied. In general, studies involving
rain streaks and rain accumulation employ open datasets, such as Rain12 [8], Rain100L
and Rain100H [11], Rain800 [16], Rain14000 [7], or MPID [32], in which synthetic and
synthesized rain images occupy large portions because it is impossible to obtain rainy/clean
image pairs from a natural scene. Furthermore, few adherent raindrop datasets exist for
the same reason; therefore in [15], two pieces of glass, sprayed and clean, were used to
acquire artificial real data. Nevertheless, unrealistic factors remain in the data, hindering
their performance with respect to unseen real data.

2.2. Driving in Rainy Weather Conditions
2.2.1. Deraining in Driving

Hnewa et al. employed various deraining models to real captured images under
rainy conditions [33] from the BDD100K dataset to test how the models perform regarding
domain mismatch. Then, they applied representative object detection methods, Faster
R-CNN [34] and YOLO [24] trained with images under clear weather conditions, to the out-
puts from the deraining models. Their results demonstrate that deraining methods generate
additional erroneous information in images, which degrades object detection performance.

As mentioned previously, Qian et al. removed adherent raindrops with a GAN [15],
but its performance creates artifacts in our data as a result of domain mismatch. Fine-tuning
may improve the performance, but it requires adherent raindrop mask ground truth data,
which are difficult to obtain. Porav et al. made their stereo camera setup a bi-partite
chamber with a clear acrylic panel in front of the lenses, with one section sprayed with
water droplets using an internal nozzle, to create plausible adherent raindrop data [35].
Hirohashi et al. estimated the optical flows of occluded regions using a CNN rather than
detecting raindrops [36]. Despite the efforts to generate realistic raindrops, the actual
raindrops on a bent windshield of a moving vehicle have different features that these
methods are unable to detect correctly.

2.2.2. Wiper Removal

Adherent raindrops commonly appear on the windshield of an actual vehicle, and
windshield wipers are mandatory devices to remove them, with apparent advantages and
disadvantages. Although wipers clear adherent raindrops, they cause occlusion in the
image data. Lin et al. classified wipers by training a principal component analysis (PCA)
with extracted wiper masks from captured data using a constant camera position [17]. Dalal
et al. suggested a hardware manner to remove actual wipers by replacing with pulsed laser
to irradiate debris to clean a windshield [5]. To the best of our knowledge, our model is the



Sensors 2021, 21, 8081 6 of 21

first deep learning-based method to detect actual windshield wipers in real-time camera
inputs; none of the previous methods aimed to detect the object. Although recent object
detection [15,37,38] has shown excellent performance in driving environments, predicting a
rectangular bounding box as a model for a large and bent wiper results in a great amount of
non-target information in the box. Panoptic segmentation [26,39,40] classifies all pixels as
independent objects but requires expensive efforts for annotation. Optical flow is another
pixel-wise methodology applicable for moving object detection because it utilizes image
sequences and [27] shows plausible adaptation to unseen data.

2.2.3. Autonomous Driving Datasets

Open datasets have driven significant developments in vision-based autonomous
driving tasks. The quality, quantity, and diversity of data from various sensor modalities
contribute intuitively to related techniques. Most datasets [18–20,41,42] contain data under
clear weather conditions, while some [21,22,43–45] provide data on driving in the rain.
However, the distribution of rain data is small compared with other weather conditions. In
addition, although most of them recorded image data through in-vehicle cameras, there are
no images with windshield wipers because they were excluded [23]. Because of the absence
of windshield wiper data, we acquired datasets using real road-driving experiments under
inclement rain conditions.

2.3. Optical Flow
2.3.1. Deep Learning-Based Approaches

Optical flow estimates the displacement vectors of all pixels in two images and
is used for visual surveillance, robot navigation, image interpolation, or physical and
metrological applications. Fischer et al. presented an end-to-end optical flow estimation
network using CNNs and generated a synthetic dataset to train supervised learning-based
networks [28]. Ilg et al. stacked the network to improve the overall quality and introduced
a subnetwork specialized for small motions [46]. Other researchers [47,48] employed
a pyramid down/up-sampling architecture to estimate the refined flows, especially in
occluded regions. Recently, Teed et al. built multi-scale 3D correlation volumes for all
pixels and iteratively updated a flow field using a recurrent unit to produce precise results
for optical flow datasets and reasonable estimation of unseen real data [27]. We employed
the network as the baseline of our system and fine-tuned its pre-trained weight to detect
windshield wiper masks by providing a synthesized dataset.

2.3.2. Optical Flow Datasets

Generating a precise pixel-wise ground-truth optical flow from real data is challenging
because matching pixels between sequential images and obtaining displacement vectors is
nearly impossible. For this reason, most optical flow datasets are composed of synthetic
data, including FlyingChairs [28], FlyingThings3D [29], and MPI-Sintel [30]. Menze et al.
provided optical flow data from real images by collecting highly dynamic scenes from
the KITTI dataset and extracting disparity maps using LiDAR and CAD models to move
3D point clouds to obtain the flow ground truth [49]. To address this painstaking work,
Sun et al. rendered 2D synthetic data with learnable hyperparameter control properties,
and their results were comparable to or better than methods with existing datasets [50].
Motivated by this idea, we synthesized images and flows of wipers into a prior optical
flow dataset to improve data diversity and leverage it to fine-tune a pre-trained model to
precisely detect fast-moving objects.

3. Approach
3.1. System Overview

We propose behind-the-scenes (BTS), a wiper-occlusion canceling model that detects
windshield wipers in captured images from an in-vehicle frontal view camera sensor
while driving in adverse rain environments. As depicted in Figure 4, we acquired real
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image data by driving ourselves because of the limited data diversity of prior optical flow
datasets. We annotated hundreds of ground truth wiper masks for evaluation using only
a software tool. The pseudo-data were sampled and subsequently synthesized within
Sintel to cause intentional occlusions. We employ a supervised learning-based optical flow
network, RAFT [27], as our baseline to leverage its reasonable performance with respect to
unseen real data and the facility of applying various fine-tuning schedules. We follow the
same training/fine-tuning schedules as RAFT to demonstrate the effectiveness of our data
synthesis approach. BTS outperforms in wiper mask and scene detection by +0.025 SSIM,
+9.4%p F1-WMD, and +7.6%p F1-WSD in terms of the prior best-performing model of
RAFT, achieving 0.962 SSIM, 91.6% F1-WMD, and 88.3% F1-WSD. Vision-based image
restoration and object detection applications demonstrate the importance and extensibility
of BTS by leveraging precise wiper masks to remove occlusions and enable detection.

Figure 4. Training pipeline of BTS: (stage 1) data acquisition: we acquired real image data under
rainy weather conditions, including windshield wipers; (stage 2) data synthesis: pseudo-ground
truth wiper mask and flow data are generated from the collected data using auto-labeling, after which
we conduct data synthesis to improve the data diversity of typical optical flow data; (stage 3) training:
RAFT baseline [27], a supervised learning-based optical flow network, is adopted to fine-tune its
pre-trained models with our synthesized dataset, SintelWipers.

3.2. Data Acquisition
3.2.1. Hardware Setup

We mounted a camera (Stereolabs ZED2 [51]) in the cockpit of our autonomous vehicle
(a commercial model of KIA Niro HEV). The vehicle has a customized battery system to
supply a stable voltage to the camera to capture high-resolution videos in real-time. The
camera was mounted at the approximate center of the cockpit and close to the windshield,
as depicted in Figure 5, and the camera Euler angles (yaw, pitch, and roll) were set near
zero initially by monitoring calibration data from its built-in IMU sensor to record the
general frontal view. The videos were stored on a laptop (Acer Predator Triton 500) which
the camera was connected.

Figure 5. Hardware setup for data acquisition: (a) experimental vehicle; (b) the camera in the cockpit
to capture the frontal view of driving under rainy weather conditions.
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3.2.2. Recording Environment

We extracted images from the recorded videos and acquired more than 150 k images
at a resolution of 1080 × 1920 with a 30-Hz frame rate under rainy weather conditions in
two urban areas (Songdo and Dongchun) and a motorway located in Incheon Metropolitan
City, South Korea. In addition, we collected images in different environments, including
various locations, precipitation conditions, and seasons, for data diversity. As summa-
rized in Figure 6, Songdo downtown contains many skyscrapers and broad roads, while
Dongchun has more industrial infrastructure such as factories. The Incheon Airport motor-
way contains the broadest road with bridges, underpasses, and overpasses. Rain intensity
(precipitation) is the most crucial factor for images because a higher intensity increases
both adherent raindrops and wiper speeds that distort and occlude the images. In addition,
a fast wiper is captured as a bent-shaped object.

According to the Korea Meteorological Administration reports, our dataset con-
tains image data under daily precipitation totals of 12.4 mm (27 August 2020), 47.7 mm
(19 November 2020), and 56.2 mm (3 April 2021), while the maximum hourly precipita-
tion ranged from 9.0 mm/h to 13.5 mm/h. Our data were collected during the daytime
between 09:00 and 16:00 in three different seasons: spring (April), summer (August), and
fall (November). We divided the datasets into WipersSpring, WipersSummer, and WipersFall
and exploited them for different purposes.

Pseudo-ground truth wiper data for training and ground truth wiper scene for the
quantitative evaluation were generated from WipersSpring. Hand-crafted ground truth
wiper data for the quantitative evaluation were generated from WipersSummer and test
images were selected from WipersSummer and WipersFall.

Figure 6. Recording environments: (a) Songdo downtown area; (b) Incheon Airport motorway;
(c) Dongchun industrial area. Satellite images (1st column) and sample images (2nd–5th columns) of
the three areas show the infrastructure differences.

3.2.3. Hand-Crafted Ground Truth

The main purpose of the ground truth is only to evaluate our prediction results
regarding the wiper mask and scene, so we annotated the corresponding ground truths. We
manually classified 34,960 images into true or false for wiper scenes based on the existence
of severe truncation or occlusion by windshield wipers, and 6029 images were labeled
as wiper scenes in the WipersSpring dataset. The ground truth data were utilized to
evaluate wiper scene detection (WSD). As depicted in Figure 7, we annotated wiper pixels
of 215 images in WipersSummer using a software annotation tool, PixelAnnotation [52],
with a graphical tablet, WACOM CTL-672, to extract accurate and precise ground truth for
objective pixel-wise evaluation of wiper mask detection (WMD). Because the hand-crafted
annotation process took approximately 1 h to generate five ground truth wiper masks, we
adopted auto-labeling to generate pseudo-ground truth for data synthesis 100 times faster.
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Figure 7. Hand-crafted ground truth wiper mask generation: (a) original image; (b) manual markings;
generated (c) binary mask; (d) RGB mask; (e) concatenated original image (a) and binary mask (c).
Best viewed with zoom-in. Songdo downtown area; Incheon Airport motorway; Dongchun industrial
area. Satellite images (1st column) and sample images (2nd–5th columns) of the three areas show the
infrastructure differences. Best viewed with zoom-in.

3.3. Data Synthesis
3.3.1. Pseudo-Ground Truth

The pseudo-ground truth in data synthesis is leveraged to address the limited data di-
versity of typical optical flow datasets and improve the wiper detection accuracy efficiently.
Prior optical flow datasets, such as FlyingChairs [28], FlyingThings3D [29], Sintel [30], and
KITTI 2015 [49], contain static object movements and small occlusion regions, which are
entirely different from the actual images with windshield wipers. Hence, adding the absent
large fast-moving objects increases data diversity. However, obtaining ground truth flow
vector information in real data is nearly impossible, and generating hand-crafted pixel-wise
wiper masks is a time-consuming and inefficient task. Therefore, we applied auto-labeling
to efficiently acquire pseudo-ground truth masks and flows of actual windshield wipers
and synthesized the data into a prior dataset to improve the data diversity in a simple but
robust method.

We initially searched for the optimized flow vector magnitude threshold for heuristi-
cally classifying wipers out of predicted optical flows in WipersSpring, and the optimized
range was measured between 25.0 and 50.0 for an image size of 360 × 640. By applying the
thresholds to pre-trained models, raft-things was selected as the most applicable model for
auto-labeling based on qualitative analysis. We selected images with no objects existing
for applying auto-labeling. Then, we heuristically classified 199 plausible data to the
pseudo-ground truth wiper masks and flows among the inaccurate auto-labeled outputs,
as shown in Figure 8. Even though the ground truth contained inaccurate pixel or flow
estimation, we leveraged the data without any post-processing to demonstrate the effects
of utilizing pseudo-data.

3.3.2. Synthesis Scenario

Applying appropriate scenarios for sampling pseudo-ground truth for data synthesis
is essential to our proposed method for enhancing data diversity. Unlike slow-moving
objects in other typical optical flow datasets, Sintel is derived from a 3D animated short film
composed of dynamic objects captured by a virtual shooting camera in 23 scenes of image
sequences. Significantly, longer sequences are suitable for applying diverse sequential or
random combinations of pseudo-data. Our idea is to mount virtual wipers to the virtual
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shooting camera lens to create similar occlusions by synthesizing the pseudo-ground truth
wiper data into Sintel.

Figure 8. Pseudo-ground truth generation: (a) original images; (b) predicted optical flow by auto-
labeling; (c) threshold filtered flow; (d) extracted RGB masks.

We built various synthesis scenarios based on the combinations of sequences, which
were classified in terms of wiper appearances instead of applying the original sequences
of wipers. The wipers generally appeared in three different temporal parts of the image
sequences during a single wiper cycle, and we classified them as starting (S), returning (R),
and ending (E) states, as illustrated in Figure 9a.

The starting state contains the most extended image sequence because of the relatively
slow movement as the wipers begin operating upward from the initial resting state. The
shapes of the wipers are less distorted because the camera shutter speed is sufficient to
capture its original shape, and thus the occluding area is smaller than the others. However,
after a few frames, the returning state includes images of more distorted shapes and larger
occlusions as the wipers move downward faster than in the previous state. Finally, the
most abnormal shapes are observed in the ending state because the wipers return to the
initial point at a much faster speed, so the slower camera shutter speed catches a severely
distorted shape.

Figure 9. Data synthesis scenario examples: (a) original wiper image sequence; (b) original Sintel [30];
synthesized with the scenario of (c) single sequence; (d) single ending; (e) sequential sequence; (f) random;
(g) random sequence. A general wiper image sequence can be divided into starting, returning, and
ending states according to the wiper movement. For convenience, we denote each state’s image
sequence set as a capital letter (S, R, and E) and a single wiper image as a small letter with apostrophe
(s’, r’, and e’). For instance, the synthesized image sequence of (f) is composed of 1 × (starting image
set) + 1 × (returning image) + 2 × (starting image) + 1 × (returning image) + 1 × (starting image) + 1
× (ending image set)+ 2 × (starting image). Each row includes ten sequential image samples to show
the differences between synthesis scenarios in the original Sintel. Best viewed with zoom-in.
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Therefore, we leveraged the features of wipers in different states to create various data
synthesis scenarios. Synthesizing wiper data sequences was implemented based on the idea
of mimicking mounting a wiper onto a virtual shooting camera that moves independently,
regardless of the original spatio-temporal features. In addition, we randomly injected
single wiper data into other sequences to simulate unnatural wiper sequences for data
diversity. As a result, as illustrated in Figure 9, we implemented five different synthesis
scenarios in the original Sintel (Figure 9b). A single sequence (Figure 9c) synthesized a single
wiper sequence to parts of the original scene to mimic one wiper cycle. In a single ending
(Figure 9d), we randomly sampled a single ending state wiper image and synthesized one
image among the scenes. A sequential sequence (Figure 9e) sampled sets of the sequential
states and attached them to the entire scene, as in a typical wiper cycle. To ignore temporal
features, the random (Figure 9f) scenario sampled sequence or an image randomly and
synthesized all images in a scene, while random sequence (Figure 9g) randomly sampled
an image sequence of the states to rearrange the order of temporal features. The actual
samples of the sequential sequence and random scenarios are depicted in Figure 10.

Figure 10. Examples of actual synthesized images and flows in Sintel [30] with scenarios: (a) sequen-
tial sequence synthesized image sequences of returning and ending states sequentially; (b) random
synthesized random single images among the states.

4. Experiments
4.1. Implementation Details

We adopted the Pytorch implementation of supervised learning-based RAFT as the
baseline of our system because other networks such as FlowNet 2.0 [46] and PWC-Net [47]
cannot adapt to the unseen real domain data. Our final model, BTS, restored the weight
of the pre-trained RAFT’s model, raft-things, which were trained with FlyingChairs and
FlyingThings3D. We then fine-tuned the weight with our synthesized dataset, SintelWipers,
which includes 2 × 1064 images (clean and final) and 1041 flows (flow) in the training
dataset. The model was trained with two TITAN RTX GPUs based on the following training
schedule and parameters, as summarized in Table 1. Furthermore, the vector magnitude
threshold was set to 25.0, and the optimized value for the models was obtained from a
threshold search. BTS was quantitatively and qualitatively evaluated in terms of models
by comparing to pre-trained models of RAFT, which were trained with the typical datasets
such as FlyingChairs, FlyingThings3D, Sintel, and KITTI 2015, and in terms of different
data synthesis scenarios.

Table 1. Training Schedule for BTS.

Schedule Dataset #Iterations Batch
Size Crop Size Learning

Rate
Weight
Decay

1 FlyingChairs 100 k 12 386 × 496 0.0004 0.0001
2 FlyingThings3D 100 k 6 400 × 720 0.000125 0.0001
3 SintelWipers 100 k 6 368 × 768 0.000125 0.00001
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Images in WipersSummer and WipersFall were utilized for the quantitative and quali-
tative evaluations. For the quantitative evaluation, the structural similarity index measure
(SSIM) [53] and binary classification (BC) were utilized to assess the image similarity and
pixel-wise matching accuracy of the binary wiper mask detection (WMD) and accuracy of
the wiper scene detection (WSD). However, our data are imbalanced because one object
class occupies 17.1% (8,472,972 pixels) of the entire set. Therefore, the F1-score in binary
classification is considered as the objective indicator because it is the harmonic mean of
recall and precision calculated with the true positive (TP), false negative (FN), and false
positive (FP) as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1 = 2 × Precision × Recall
Precision + Recall

(1)

4.2. Quantitative Evaluation

BTS outperformed the other models in both SSIM and binary classification evaluations
while producing 15 frames per second, as summarized in Table 2. An average SSIM of
0.962 and a standard deviation of 0.027 demonstrated the similarity of the overall results
to the ground truth with respect to luminance, contrast, and structure. Furthermore, the
highest harmonic mean F1-scores manifested how the model is balanced in precision and
recall. By fine-tuning our method with the KITTI dataset with the same training schedule
as raft-kitti, the fine-tuning results were significantly improved compared with raft-kitti.

Table 2. Experimental results of SSIM and binary classification (wiper mask and scene detection) in terms of models.

Model Dataset

Wiper Mask Detection (WMD) Wiper Scene Detection (WSD)

SSIM Binary Classification Binary Classification

Average Std. Dev. Precision Recall F1 Score Precision Recall F1 Score

raft-chairs C 0.833 0.112 63.4 13.7 22.5 74.5 25.6 38.1
raft-things C + T 0.937 0.087 88.3 76.9 82.2 76.8 85.0 80.7
raft-sintel C + T + S 0.934 0.094 92.8 71.6 80.8 73.6 84.7 78.8
raft-kitti C + T + S/K 0.884 0.079 75.7 53.7 62.8 68.9 73.0 70.9

BTS C + T + Sw 0.962 0.027 87.6 96.0 91.6 87.4 89.2 88.3
BTS-kitti C + T + Sw/K 0.890 0.075 68.8 79.4 72.5 85.8 84.1 84.9

Datasets: FlyingChairs (C), FlyingThings3D (T), Sintel (S), KITTI (K), SintelWipers (Sw)

Raft-chairs scored the worst and seemed unable to overcome the domain mismatch
because the model was trained with unrealistic and steady-moving synthetic objects dif-
ferent from the target object. Instead, raft-things, trained with more complex and diverse
3D objects, made significant improvements of +10.4%p SSIM, +59.7%p F1-WMD, and
+42.6%p F1-WSD by adapting to the real domain. Even though raft-sintel was trained
more with dynamic, diverse, and sequential frames of synthetic data, the performance was
degraded. In contrast, fine-tuning with driving environment-based KITTI deteriorated by
−18%p F1-WMD. However, by replacing Sintel with our generated synthetic datasets for
fine-tuning, SintelWiper made the model much more accurate and balanced, proven by
the +10.8%p F1-WMD and +7.6%p F1-WSD compared with raft-things. Higher F1 scores
were accomplished by significantly improving recall in WMD and WSD. This means that
BTS detects the pixels of wipers that other models missed, especially wipers in the ending
states, which can be compared intuitively in the qualitative results.

Moreover, the optical flow estimation EPE errors of BTS on the original datasets were
slightly increased to less than +0.27%p, which is still an acceptable performance compared
with the others, as summarized in Table 3. The experiment demonstrated that BTS is
capable of manipulating the optical flow and wiper datasets.
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Table 3. Experimental results of end-point-error (EPE) on original optical flow datasets.

Model
Sintel (Train) KITTI 2015 (Train)

Clean Final F1-Epe F1-All

raft-chairs 2.24 4.51 9.85 37.6
raft-things 1.46 2.78 5.00 17.4
raft-sintel 0.75 1.22 1.21 5.6
raft-kitti 4.55 6.15 0.63 1.5

BTS 0.93 1.49 4.37 13.5
BTS-kitti 5.41 6.68 0.67 1.7

As summarized in Table 4, we observed the influences of various sampling scenarios
for data synthesis using combinations of the starting, returning, and ending states men-
tioned in Section 3.3.2. By comparing partial and complete proportions of synthesis, more
data led to improved performance. Interestingly, a single sequence caused an adverse
effect that worsened the performance compared with applying nothing to the original
data. According to the results, sampling sequential frames was generally beneficial for
improving recall and maintaining a balance precision of 88.1% F1-WMD. Random sam-
pling predicted slightly more wiper pixels to score +1.1%p higher F1-WMD. Therefore, we
leveraged sequential and random sampling combinations to achieve the best performance,
with 0.926 SSIM, 91.6% F1-WMD, and 88.3% F1-WSD. The numerical gaps and effectiveness
in terms of the various factors in different scenarios are intuitive in qualitative evaluations.

Table 4. Results of raft-things fine-tuned with various data synthesis scenarios.

Proportion Method

Wiper Mask Detection (WMD) Wiper Scene Detection (WSD)

SSIM Binary Classification Binary Classification

Average Std. Dev. Precision Recall F1 Precision Recall F1

Partial
Orig. Sintel 0.934 0.094 92.8 71.6 80.8 73.6 84.7 78.8
Single seq. 0.922 0.095 93.4 62.9 75.2 71.8 76.5 74.1
Single end. 0.938 0.070 0.924 74.1 82.2 95.2 76.0 84.5

Complete
Sequential 0.953 0.045 0.886 87.7 88.1 90.8 80.1 85.1
Random 0.956 0.032 0.879 90.5 89.2 91.3 82.6 86.7

Rand. Seq. 0.962 0.027 0.876 96.0 91.6 87.4 89.2 88.3

Reference model: raft-sintel (original Sintel), raft-things + synthesized Sintel with scenarios

4.3. Qualitative Evaluation

The predicted wiper mask for each model was overlapped with the original image
for an intuitive qualitative comparison, as depicted in Figure 11. As anticipated from the
quantitative evaluation, raft-chairs showed unstable and inaccurate performance. Raft-
kitti detected more parts of wipers than raft-chairs, but the model often classified the
background as a wiper and vice versa. Raft-sintel and raft-things had minute differences in
the numbers, but the visualized results showed noticeable differences in shape completion.
Even though raft-sintel was trained with an additional synthetic dataset that included more
dynamic and sequential images, the model failed to cope with the real domain, in contrast
to raft-things.

BTS demonstrated outstanding performance regardless of the speed of the wipers, as
categorized by the bounding boxes in Figure 11. In the starting state, raft-things, raft-sintel,
and raft-kitti were detected plausibly when BTS tended to classify a narrow background
region inside the wiper for more precise shape completion. The wipers in the returning
state seemed tricky for other models to adapt to at faster speeds, whereas BTS was detected
accurately. As mentioned, the fastest wiper appears as a severely distorted object with a
large occlusion in the image. Although the intractable wiper deteriorated other models,
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BTS precisely detected the abnormal-shaped object and classified the background inside
the wiper.

Figure 11. Qualitative results in terms of model: (a) original image; (b) ground truth wiper masks;
wiper detection results by (c) raft-chairs; (d) raft-things; (e) raft-sintel; (f) raft-kitti; (g) proposed BTS.
Our methods demonstrates significant improvement compared with the performance of pre-trained
models of RAFT. Starting state (blue), returning state (green), and ending state (red) are categorized
by bounding boxes. Best viewed with zoom-in.

In Figure 12, we compare images of the ending state to demonstrate how the proposed
data synthesis method significantly improved the prior models. The remarkable advance-
ments are intuitively shown by comparing our results with those of raft-sintel, which
proves the effectiveness of data diversity. The numerical gaps in the quantitative evalua-
tions visualized the apparent performance gaps. Synthesizing wiper sequences improved
the pre-trained models to adapt to the wipers in relatively slower movements, such as start-
ing and returning states. Randomly sampling wiper sequences advanced the detection of
the deteriorated shapes of wipers. Consequently, data synthesis by harmonizing sequential
and random sampling of wiper sequences achieved precise and dominant performance.

Figure 12. Qualitative results in data synthesis scenario: (a) original images; (b) ground truth
wiper masks; wiper detection results by (c) raft-sintel; (d) raft-things; fine-tuned with scenario of
(e) sequential sequence scenario; (f) random; (g) random sequence (BTS). (c,d) models were trained
with the original Sintel dataset, while (e–g) models fine-tuned the reference model, raft-things, with
various synthesis scenarios. BTS copes with the intractable severely distorted object resulting from
the fast speeds of wipers. The results show the effectiveness of data diversity by our data synthesis
strategies. Best viewed with zoom-in.
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4.4. Applications
4.4.1. Image Restoration

Our main purpose of image restoration is to remove wiper-occlusions in images,
restore information behind the wipers, and obtain clear visibility. We utilized a flow-based
video completion application, FGVC [54], which requires masks of target regions as input
data and leverages information of image sequences for restoring the regions. We employed
binary masks generated by raft-things and BTS to compare the effectiveness of precise
binary masks for assigning target regions to restore.

As illustrated in Figure 13a, wipers occluded meaningful pixels of objects such as
vehicles, traffic signs, and road features in the scenes. The images are improper to be fed
as input data into other vision-based algorithms to provide sufficient information due to
the wiper-occlusions. Image restoration results utilizing raft-things generated artifacts
(Figure 13b), while BTS produced comparable outputs (Figure 13d). Assigning accurate
target masks for restoration of reconstructed building walls and signs, BTS contributed to
avoiding artifacts, such as mirrored and blurred vehicle wheels, while it contributed to
the network to produce clearer restored outputs by guiding precise region information.
Consequently, leveraging BTS into image restoration enabled the utilization of all images
with wiper-occlusion regions by visualizing objects, such as vehicles and road features that
were previously behind-the-scenes. The restored images can be utilized as refined input
data to other vision-based models for ADAS tasks, such as object detection.

Figure 13. Image restoration results: (a) original images; (b) restored results with masks from raft-
things; (c) comparisons between raft-things and BTS; (d) restored results with masks from BTS. The
results demonstrate the importance of mask accuracy by reducing artifacts in the restored regions
in (c), such as distorted buildings (1st and 2nd row), mirrored objects (3rd row), and a blurred vehicle
wheel (4th row), as shown in the red boxes. Best viewed with zoom-in.

4.4.2. Object Detection

Object detection is one of the core applications in ADAS because it outputs bounding
boxes for surrounding objects to provide core information regarding confidence, location,
size, number, and existence. Therefore, erroneous detection results may cause inaccurate
decisions by ADAS to endanger safety. We tested a representative vision-based 2D object
detection network, YOLOv4 [24], using the restored images generated by the FGVC and
BTS to demonstrate how the misjudgments of detection were improved.

Since it is impossible to obtain corresponding ground truth images and requires
expensive efforts to annotate bounding boxes of objects due to wiper-occlusions, we
presented the test images with truncated or occluded objects whose predicted bounding
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boxes were qualitatively inaccurate. As illustrated in Figure 14, the network struggled to
detect truncated or occluded vehicles with the original images with wipers. Truncated
objects were predicted with less confidence or separated into more than two bounding
boxes, while occluded objects did not have a chance to be detected. However, after restoring
the images with precise wiper masks, the truncated and occluded objects became visible
and were detected accurately. The quantitative evaluation demonstrated improvements
of object detection by 199.9% to original images and 31.2% to restored images with raft-
things, as summarized in Table 5. These improvements enable enhancement in lateral
and longitudinal controls such as ACC or AEB, thereby contributing to safer and more
precise driving performances under rainy weather conditions by removing truncations or
occlusions by wipers in image input data.

Figure 14. Object detection results: (a) original image sequence; (b) object detection before image
restoration; (c) result comparisons; (d) object detection after image restoration. The wiper truncates
(blue dashed box) or occludes (green dashed box) frontal objects, which causes erroneous object
detection results regarding prediction properties of objects. Best viewed with zoom-in.

Table 5. Quantitative results: average precision (AP) comparison of object detection.

Image Type Model for
Mask Generation

Average Precision (AP, %)
@ IoU = 0.5

original none 23.30

restored raft-things 53.26
BTS 69.87

5. Discussion

We achieved the detection of vehicle windshield wipers driving under rainy weather
conditions, leveraging a synthesized optical flow dataset with generated pseudo-ground
truth wiper data by auto-labeling acquired real datasets. Although the proposed method
exploits optical flow for pixel-wise object detection, the brightness constancy assumption,
which can deteriorate the optical flow functionality, was not considered. Empirically,
the brightness under rainy weather conditions is stable compared with that under clear
weather conditions because of the absence of the sun. Therefore, we tested our method,
which was fine-tuned with rainy data only, to unseen images captured on a sunny day
where fatal backlighting occurred. Figure 15 shows that our method is robust enough to
detect wipers in brighter weather and backlit situations. If an image is either too bright or
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dark, software-manner image recovery, such as deep learning-based high dynamic range
(HDR) [55] can resolve the visibility to reduce potential errors.

Figure 15. Wiper detection results in backlit situations under clear weather conditions: original wiper
images and corresponding detected wiper masks (white area). Despite the solid backlit situation
in clear weather conditions, our model accommodates adverse brightness conditions and shows
plausible detection results. Best viewed with zoom-in.

Even though our datasets recorded ordinary driving circumstances for hours to cap-
ture various truncations or occlusions, there were no abnormal cases. However, it could be
a concern when a wiper completely occludes an object in sequential frames. If our method
provides such images to image restoration as inputs, the images would be recovered as if
the object never existed. Assuming that such a situation occurred in the frames in Figure 14,
where an object moving from right to left through two lanes with a width of 2.75 m each
was occluded completely for three sequential frames, its velocity can be calculated using
the following parameters: frame rate (f ), number of frames (n), and distance (d).

v =
f × d

n
=

30 Hz × ( 2.75 m
lane × 2lanes)

3 f rames
=

55 m
s

= 198 km/h (2)

The object should move at 198 km/h (approximately 123.8 mph) in the image through
the calculation, which is uncommon and illegal in most driving environments so the
authors believe that complete occlusions for sequential frames rarely occur. However, it
would be a limitation of BTS if the case of a fast-moving object at the speed appears.

Although the proposed method accommodates minor errors in the input images,
limitations exist under heavy rain in the night-time. Higher hourly precipitation increases
the number of adherent raindrops on a windshield that merge into larger droplets before the
wipers operate. As a result, severe image deterioration occurs as a result of unpredictable
light refraction and reflection in the droplets caused by countless random light sources
in the darkness, including traffic lights, vehicle head/rear lamps, and street lamps. The
authors believe that the complicated features of objects is one reason why classical hardware
is still applied to vehicles in the 21st century. Resolving the complexity adherent raindrops
for removal is our next step to overcome heavy rain without existence of wipers.

The proposed method focuses on simple, efficient, and robust real-time wiper de-
tection for driving under rainy weather conditions. As illustrated in the application
demonstration in Section 4.4, our method plays an essential role by proving compatibility,
utility, ability, and extensibility to other vision-based tasks commonly used in ADAS in
vehicles for pursuing safety such as panoptic segmentation [56], as depicted in Figure 16.
We can expand data diversity by obtaining clear frontal views in datasets that incorporate
driving under rainy conditions by restoring wiper-occluding images instead of skipping
wiper frames.
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Figure 16. Panoptic segmentation result with leveraging BTS: (a) original wiper-occluded image;
(b) restored image with a wiper mask from BTS; (c) panoptic segmentation result. BTS demonstrates
the compatibility with other vision-based tasks, such as panoptic segmentation.

In addition, we expect to leverage our model to auto-label pseudo-ground truth for
panoptic segmentation to observe capabilities and to apply various software techniques,
such as pre-/post-processing, to develop our method in future work to search for a break-
through. Developing the detection of unintentional occluding objects for vision-based
tasks in various industries, including surveillance, anomaly detection, autonomous ve-
hicles, and unmanned aerial vehicles (UAV), offers promising future applications for the
proposed method.

6. Conclusions

In this study, we developed a novel real-time windshield wiper-occlusion canceling
model, BTS, for driving under adverse rain conditions by leveraging optical flow for data
synthesis with pseudo-ground truth using auto-labeling. The purpose of the proposed
technique is to provide a deep learning-based optical flow model to provide a precise
mask for a fast-moving wiper that occurs in massive occlusion of image data. We acquired
150 k real images of driving in rainy environments in a metropolitan city in South Korea
to augment a prior dataset for fine-tuning and to obtain hand-crafted ground truth wiper
masks and scenes for objective evaluation. We synthesized the fast-moving object onto
synthetic image sequences as if a virtual wiper was mounted on a virtual camera. We
achieved accurate pixel-wise wiper mask detection by scoring an average of 0.962 (+0.025)
with a standard deviation of 0.027 (−0.050) in SSIM, and an F1-score of 91.6% (+9.4%p)
in binary classification, while wiper image scene detection showed an F1-score of 88.3%
(+7.6%p). BTS demonstrated significant enhancements by applying it to vision-based
applications to provide precise occluding regions for generating wiper-free images to
enable object detection on previously invisible images. The proposed method also proved
the compatibility, utility, ability, and extensibility to other vision-based applications can be
leveraged to enhance their performance under adverse rain environments.

Supplementary Materials: The following are available at https://youtu.be/jDad7m_ZxuY,
Video S1: Behind-the-scenes (BTS) demonstration.
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