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Abstract: Bounding box estimation by overlap maximization has improved the state of the art
of visual tracking significantly, yet the improvement in robustness and accuracy is restricted by
the limited reference information, i.e., the initial target. In this paper, we present DCOM, a novel
bounding box estimation method for visual tracking, based on distribution calibration and overlap
maximization. We assume every dimension in the modulation vector follows a Gaussian distribution,
so that the mean and the variance can borrow from those of similar targets in large-scale training
datasets. As such, sufficient and reliable reference information can be obtained from the calibrated
distribution, leading to a more robust and accurate target estimation. Additionally, an updating
strategy for the modulation vector is proposed to adapt the variation of the target object. Our method
can be built on top of off-the-shelf networks without finetuning and extra parameters. It yields
state-of-the-art performance on three popular benchmarks, including GOT-10k, LaSOT, and NfS
while running at around 40 FPS, confirming its effectiveness and efficiency.

Keywords: visual tracking; bounding box estimation; overlap maximization; distribution calibration

1. Introduction

Generic visual tracking is a long-standing topic in the field of computer vision and
has attracted increasing attention in recent decades. Despite significant progress in recent
years [1–11], visual tracking remains challenging due to numerous factors such as very
limited online training samples, large appearance variation, and heavy background clutters.
In general, the single-object tracking task can be divided into two sub-tasks, i.e., localization
and bounding box estimation, which aim at localizing the target roughly and predicting
the precise bounding box, respectively.

In order to build an accurate tracker, the bounding box estimation branch is of great
importance, since it is responsible for generating the final bounding box directly. The
previous works on bounding box estimation can be roughly grouped into three categories:
(1) multi-scale searching methods, (2) direct bounding box regression, and (3) bounding box
estimation by overlap maximization. For the first category, conventional methods [12–14]
could only obtain the scale of the bounding box based on the localization models, which
have difficulty in estimating accurate bounding box when length–width ratio changes. For
the second category, Siamese network-based methods [2,15,16] are able to predict the center,
width, and length of the bounding box directly by regression. However, these Siamese
tracking approaches often struggle at target localization due to the lack of online learn-
ing [17]. For the third category, bounding box estimation by overlap maximization [17] is
able to be used to improve the performance of discriminative model-based trackers [18–20]
and have shown state-of-the-art results on multiple public benchmarks [21–23]. Yet, the key
reference information in [17], also called modulation vector, which is used to provide prior
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knowledge of the target, merely depends on the initial frame. This limits the robustness
and accuracy of the trackers, since such reference information is biased to the initial state
of the target and becomes less reliable as the frame grows, especially when the target
undergoes significant variation.

To this end, we propose a novel bounding box estimation method for visual tracking,
termed as DCOM, which is based on distribution calibration and overlap maximization.
Inspired by [24], by taking advantage of large-scale labeled training data, we generate
extra reference information by calibrating the biased distribution of the initial reference
information. Specifically, we assume that every dimension in the modulation vectors
follows a Gaussian distribution and observe from Table 1 that targets of similar classes
and close sizes usually share similar mean and variance of the feature representations in
reference information (the visualization examples of targets of similar classes and close sizes
are given in Figure 1). Therefore, the mean and variance of the Gaussian distribution can
be transferred across similar targets with close sizes. Then, we estimate the statistics from
adequate training datasets [21,22] in advance and reuse the statistics to better estimate the
distribution of reference information. More reliable and sufficient reference information can
be generated from the calibrated distribution, avoiding the bias and potentially achieving
more diversity of reference information. Additionally, we propose a simple yet effective
updating strategy of the modulation vector to adapt the variation of the target object in
online tracking. Our method is able to be built on top of off-the-shelf networks without
fine-tuning and extra parameters.

Figure 1. Visualization examples of targets of similar classes and close sizes, which are selected from
car-1, car-6, and car-20 on the training set of LaSOT.

Table 1. The mean similarity (mSim) and variance similarity (vSim) between the modulation vector
of car-1 the size of 200× 125 and those of other target objects from the LaSOT dataset.

Video Name Target Size mSim vSim

car-6 200× 125 97% 95%
car-6 50× 40 82% 71%
car-20 260× 125 92% 88%
bus-17 60× 50 69% 57%
boat-8 200× 90 48% 32%
spider-19 200× 280 36% 14%
kangaroo-18 90× 205 40% 18%
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In summary, our contributions are three-fold.

1. We propose a novel bounding box estimation method for visual tracking, called
DCOM, which is based on distribution calibration and overlap maximization. We
are the first to exploit large-scale tracking datasets on the online tracking stage by
distribution calibration, creating an effective way to obtain sufficient and reliable
reference information.

2. We propose a simple yet effective updating strategy of the modulation vector to
improve robustness in bounding box estimation in online tracking, which cannot be
implemented in previous methods.

3. Experimental results on three popular benchmarks including GOT-10k [21], La-
SOT [22], and NfS [23] show that DCOM is able to improve existing state-of-the-art of
trackers without bells and whistles.

2. Related Work

In this section, we introduce the previous bounding box estimation methods for visual
tracking, which can generally be divided into three groups, i.e., multi-scale searching
methods (MSS), direct bounding box regression (BBR), and bounding box estimation by
overlap maximization (OM). Table 2 lists the above methods used in modern trackers.

Table 2. Modern trackers and the used bounding box estimation methods.

Tracker Venue MSS BBR OM Other

KCF [25] TPAMI2015
SAMF [12] ECCV2014 X
DSST [13] TPAMI2017 X
MDNet [26] CVPR2016 X
SiamFC [14] ECCV2016 X
ECO [5] CVPR2017 X
EAST [27] ICCV2017 X
SiamRPN [15] CVPR2018 X
SiamRPN++ [2] CVPR2019 X
SiamMASK [28] CVPR2019 X
ATOM [17] CVPR2019 X
DiMP [18] ICCV2019 X
DCFST [20] ECCV2020 X
KYS [29] ECCV2020 X
SiamCAR [30] CVPR2020 X
SiamRCNN [31] CVPR2020 X
AlphaRefine [32] CVPR2021 X

2.1. Multi-Scale Searching Methods

Multi-scale searching methods are mainly utilized in traditional trackers. SAMF first
introduced the multi-scale search strategy, where the final scale of the target object is
selected from a scaling pool according to the response maps. DSST proposed to learn
individual discriminative correlation filters for multi-scale searching efficiently. SiamFC
and ECO employed SAMF and DSST to estimate the bounding box, respectively. Such
methods are conceptionally simple yet computationally expensive due to the construction
of image pyramids. Moreover, the prediction is coarse, since the length–width ratio is fixed.

2.2. Direct Bounding Box Regression

In the last decades, deep learning has developed significantly and been used in many
tasks, such as detection [33], recognition [34], and localization [20]. Direct bounding box
regression is also a deep-learning-based method. MDNet [26] and SiamRPN [15] are two
representative trackers that both regress the bounding box directly. MDNet trained a bound-
ing box regressor in the first frame following the settings in object detection [35]. SiamRPN
utilized the RPN-based mechanism to obtain a precise bounding box. SiamRPN++ and
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SiamRCNN both employed an RPN-based method in SiamRPN, while SiamCAR em-
ployed an anchor-free bounding box regression. MDNet and the Siamese-based trackers
only rely on the initial frame for bounding box regression, and online updating is not
helpful for them considering the risk of error accumulation. Conversely, our approach
enables an effective way to generate sufficient reference information and update online by
distribution calibration.

2.3. Bounding Box Estimation by Overlap Maximization

ATOM [17] proposed an IoU-based approach, which learns to predict overlap between
candidate boxes and groundtruth. In online tracking, more precise bounding box can be
estimated by maximizing the overlap w.r.t. candidate boxes via gradient-ascent. DiMP [18]
and DCFST [20] both employed this method and obtained state-of-the-art performance
on multiple benchmarks. Nevertheless, this strategy proposed to generate the reference
information only from the first frame, leading to a biased bounding box estimation during
the tracking stage and failing to update effectively. Thus, we propose to exploit large-scale
tracking datasets to handle the above issues and enhance bounding box estimation by
distribution calibration and overlap maximization.

2.4. Other Methods

EAST [27] treated the tracking problem as a decision process and selected the optimal
policy for bounding box estimation. The scaling action pool is fixed, and thus such
estimation is rough. SiamMASK [28] predicted a mask of the target besides the bounding
box. However, it has to be trained with extra segmentation datasets and still cannot handle
the issues in the direct bounding box regression method. AlphaRefine [32] combined
multiple bounding box estimation methods, including those in SiamRPN, SiamCAR, and
SiamMASK, to boost the tracking performance, which needs much more training datasets
and cannot update online effectively.

3. Proposed Approach

In this section, we first provide an overview of the proposed DCOM in Section 3.1. Our
bounding box estimation method, DCOM, is composed of three parts, including the overlap
maximization module (Section 3.2), the distribution calibration module (Section 3.3), and
the updating strategy (Section 3.4). Finally, we discuss the differences between DCOM and
other bounding box estimation methods in Section 3.5.

3.1. Overview

An overview of DCOM is shown in Figure 2. The reference branch receives the
reference image and the bounding box of the target object as the inputs, and it outputs a
modulation vector as the initial reference information. The distribution calibration module
receives the statistics from the base clips and the original modulation vector as inputs,
followed by an updating module. The updating strategy generates the final modulation
vectors according to the IoU and the calibrated distribution of the reference information.
The new modulation vectors are then employed in the test branch to predict the overlap
between the candidate box and the groundtruth. The overlap maximization module is
used to refine the final bounding box.

3.2. Preliminary

Bounding box estimation by overlap maximization [17], which is based on IoU-
Net [36], is the baseline of our approach. For the reference branch, given the backbone
features X0 of the initial frame and the target bounding box annotation B0, the method
obtains the modulation vector through a convolutional layer, a PrPool layer, and a fully
connected layer, that is, m0 = c(X0, B0), where m0 ∈ R1×1×D. For the test branch, the
method first extracts the backbone features Z of the current test frame. Then, given the
initial bounding box estimate B generated by the localization branch, the method employs
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two convolutional layers and a PrPool layer to obtain the feature representation of the
target, i.e., F = z(Z, B), where F ∈ RK×K×D, and K is the spatial size. F is then modulated
by m0 through a channel-wise multiplication, generating the target-specific representation
for IoU prediction. The baseline finally uses a multi-layer perception (MLP) to obtain the
predicted IoU between B0 and B. The above process is formulated by

IoU(B) = MLP(c(X0, B0) · z(Z, B)). (1)

CNN PrPool FC

CNN PrPool MLP IoU

Base Clips
Statistics 
Extraction

Distribution 
Calibration

Modulation 
Vector

Overlap 
Maximization

Updating
Strategy

Reference Branch

Test Branch

256×1×1

5×256×5×5

5×256×1×1

5×1

T=50

15000

Figure 2. An overview of the proposed DCOM. The CNN module is composed of the backbone network and an extra
convolution layer, and the MLP (multi-layer perception) consists of three fully connected layers.

3.3. Bounding Box Estimation by Distribution Calibration

Since the modulation vector in the baseline only depends on the initial frame, the
reference information is biased to the initial state of the target and less reliable as the
frame grows, especially when the target undergoes severe variations, failing to provide
accurate bounding box estimations continuously in online tracking. Therefore, we propose
to enhance bounding box estimation with distribution calibration for visual tracking, that
is, generating reliable and diverse reference information via distribution calibration.

We take inspiration from few-shot learning with distribution calibration [24] and
propose our distribution calibration module over the modulation vector. We assume every
dimension in the modulation vectors follows a Gaussian distribution, and from Table 1,
we observe that targets of similar classes and close sizes usually share similar mean and
variance. Based on such observations, we are able to make use of the statistics from large-
scale training datasets with accurate annotations to calibrate the distribution of modulation
vectors in online tracking. Based on the new distribution, reliable and sufficient reference
information can be obtained directly. Note that modern trackers only use the large-scale
tracking datasets for offline training of the networks but cannot take advantage of such
groundtruth information in online tracking effectively. On the contrary, for the first time,
our approach enables exploiting the large-scale tracking datasets on the online stage for
more precise bounding box estimation, which can alleviate the issue of scarcity of data in
online tracking.

Statistics extraction. Based on the observation from Table 1, targets with similar
sizes tend to share similar mean and variance of the feature representations in reference
information. Therefore, for each video of the training datasets, we divide the frames into
multiple clips according to the target sizes. In each clip, we have

|ht − h0|/h0 < 0.05, |wt − w0|/w0 < 0.05, (2)

where h and w are the height and width of the target, and [h0, w0] is the target size in
the first selected frame of the clip. To avoid noise, clips from all videos, where the frame
number is greater than 50, are selected as base clips.
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Then, given the annotations, we obtain the modulation vectors of all frames in base
clips through the reference branch. The mean of every dimension in the vector for each
base clip is calculated as follows:

µi =
∑ni

j=1 mj

ni
, (3)

where ni is the frame number of the i-th base clip. The covariance matrix Σi for the
modulation vectors from the ith base clip is given by

Σi =
1

ni − 1

ni

∑
j=1

(mj − µi)(mj − µi)
>. (4)

Distribution calibration via statistics transfer. We obtain the modulation vector of
the initial target, m0, through the reference branch. Similar to [24], we transform m0 into
m̃0 using Tukey’s ladder of powers transformation [37] to make the distribution more
Gaussian-like.Then, we select the top k base clips where the Euclidean distance between
m̃0 and µi is closest. Formally, we have

Sb = {i | topk({−||µi − m̃0||2 | i ∈ Cb})}, (5)

where Sb and Cb is the selected set and universe of the base clips, respectively, and topk(·)
is the operator to select the top k elements from the input set. Finally, we calibrate the mean
and covariance of the distribution as follows:

µ′ =
∑i∈Sb

µi + m̃0

k + 1
, Σ′ =

∑i∈Sb
Σi

k
. (6)

Bounding box estimation. In order to provide sufficient and reliable reference in-
formation for precise bounding box estimation, we leverage the calibrated the mean and
covariance of the distribution to generate a set of extra modulation vectors by sampling
from the calibrated Gaussian distribution as follows:

G0 = {m0,j |m0,j ∼ N (µ′, Σ′)}M
j=1, (7)

where M is the total number of sampled modulation vectors. For the current test frame,
given the coarse target location from the localization branch and target size from the
previous frame, we obtain the rough bounding box first and then generate N candidate
bounding boxes B ∈ RN×4 by adding Gaussian noise to the rough bounding box. Then,
the predicted IoUs are obtained by the test branch and the modulation vectors, i.e.,

I = {Ip | Ip = MLP(mp · z(Z, B)), mp ∈ G0 ∪ {m0}}M+1
p=1 , (8)

where Ip ∈ RN×1. For simplicity, we obtain I = [I1
>, I2

>, ..., IM+1
>]>, where I ∈ RN(M+1)×1.

It is noted that m0 always contributes to the prediction since it contains the groundtruth in-
formation of the target. The refined bounding boxes B̃ ∈ RN×4 is estimated by maximizing
each predicted IoU in I w.r.t. B using five gradient ascent iterations with a step length of 1.
Finally, based on B̃ and I, we obtain the bounding box estimation by taking the mean of
the three bounding boxes with highest IoU, i.e., B̂ ∈ R1×4 and I ∈ R.

3.4. Updating Strategy for Reference Information.

As the tracking frame grows, the reference information from the initial frame becomes
less reliable, especially when the target undergoes severe appearance variations such as
deformation, which may cause the drift problem of the tracker. Thus, it is necessary
to update the reference information during online tracking. Based on the distribution
calibration module, we propose a simple yet effective strategy to update the reference
information, i.e., the modulation vectors.
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To achieve a good balance between efficiency and accuracy, we update every T frames,
where T is the updating interval. Specifically, given the estimated B̂t and It in current
test frame t, we observe that, though the target can be localized with a high confidence
via the localization branch, the predicted bounding box is not precise enough when
θ1 < It < θ2, where θ1 and θ2 are two thresholds. When It ≤ θ1, the target can hardly
be tracked successfully, and we initialize the reference information with that of initial
target, i.e., m0. When It ≥ θ2, the modulation vector is kept unchanged for efficiency.
When θ1 < It < θ2, based on B̂t, we obtain the new modulation vector mt of current frame
via the reference branch. Then, we perform distribution calibration w.r.t. mt by substituting
m0 in Equations (5) and (6). Given the calibrated mean and covariance of new reference
information, i.e., µ′t and Σ′t, we update the modulation vectors by sampling from the new
Gaussian distribution as follows:

Gt = {mt,j |mt,j ∼ N (µ′t, Σ′t)}M
j=1. (9)

As such, compared with the baseline, we are able to obtain more reliable reference
information for robust bounding box estimation in the whole process of visual tracking.
Note that, if the modulation vector is updated without the distribution calibration, i.e.,
Gt only contains mt, tracking performance will not be improved, since mt based on
the estimated B̂t is less reliable. We present the main steps of the updating strategy in
Algorithm 1.

Algorithm 1: Updating strategy for reference information

Data: Current test frame t, updating interval T, estimated bounding box B̂t, and estimated
IoU It.

Result: Updated Gt
1 Initialization of G0 according to Equations (5)–(7);
2 while t mod T == 0 do
3 if It ≤ θ1 then
4 Initialize Gt with G0.
5 end
6 if θ1 < It < θ2 then
7 Obtain mt based on B̂t;
8 Perform distribution calibration w.r.t. mt;
9 Generate Gt according to Equation (9).

10 end
11 end

3.5. Discussion

Comparison with direct bounding box regression. DCOM and the BBR methods are
totally different in two aspects. First, BBR methods obtain the estimated box mainly
by a regression network/module, which is trained only in the offline process or the
first frame, while DCOM obtains the bounding box via an overlap maximization and
a distribution calibration module, which benefit from the training datasets in both offline
and online process. Second, most BBR methods are tightly coupled with a Siamese-based
pipeline, which lacks the process of online discriminative localization, while DCOM is
lightweight and can be combined with modern discriminative localization methods easily
for robust tracking.

Comparison with bounding box estimation by overlap maximization. Although
DCOM shares the same overlap maximization module as that of ATOM, they are different
in generating and updating reference information. First, ATOM generates the reference
information only from the first frame, causing a biased bounding box estimation in online
tracking. Second, such reference information is fixed and cannot be updated effectively,
since the new reference information provided only by the tracking results is less reliable,
and its error will accumlate. To this end, our DCOM improves ATOM in two ways. On
the one hand, we make use of the large-scale tracking datasets, which can only be used in
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offline training in previous methods to provide extra reference information via distribution
calibration. On the other hand, DCOM enables a simple yet effective strategy to update
reference information according to the updated distribution besides the tracking results.
Thus, the reference information in DCOM is more sufficient and less biased for precise
bounding box estimation compared with ATOM.

4. Experimental Results

To show the universality of our method, we replace the baseline bounding box estima-
tion method in ATOM [17] and DiMP [18] with the proposed DCOM, while keeping the
localization branch and the hyperparameter settings unchanged, denoted as ATOM-DCOM
and DiMP-DCOM, respectively. We first provide implementation details and then carry
out ablation studies to analyse the effect of the sub-modules of our method. Extensive
experiments are conducted to evaluate the proposed ATOM-DCOM and DiMP-DCOM
and compare their performances against plenty of state-of-the-art trackers on three public
benchmarks: LaSOT [22], GOT-10k [21], and NfS [23]. Finally, we provide qualitative
comparisons with the baseline trackers.

4.1. Implementation Details

ATOM-DCOM and DiMP-DCOM employ ResNet-18 and ResNet-50 [33] as the back-
bone networks, respectively. Note that our method is built on top of off-the-shelf networks
including feature extractor, overlap maximization modules, and localization modules in
ATOM [17] and DiMP [18] without extra parameters. We compute in advance and store
the statistics for modulation vectors (D = 256) from the training sets of GOT-10k [21] and
LaSOT [22]. The total number of base clips is 15,000. M, N, and k in Section 3.3 are set to
5, 9, 3, respectively. We set T = 50, θ1 = 0.5, and θ2 = 0.8 in the updating strategy. Both
ATOM-DCOM and DiMP-DCOM is evaluated on three datatsets including LaSOT [22],
GOT-10k [21], and NfS [23]. Due to the stochastic nature of DCOM, all results are reported
as the average over five runs. We take advantage of the parallel computing in PyTorch
to improve the efficiency. On a single Titan RTX GPU, ATOM-DCOM, and DiMP-DCOM
achieve real-time speeds of 54 and 38 FPS, respectively.

4.2. Ablation Study

We stack the proposed sub-modules, i.e., the distribution calibration module (DC)
and the updating strategy (Up) on the baseline, i.e., overlap maximization module, step-
to-step to prove the effectiveness of our method. The evaluations are performed on both
ATOM-DCOM and DiMP-DCOM on the LaSOT test dataset. Results are shown in Table 3.
In Baseline+Noise, we generate G0 by adding Gaussian noise to m0 instead of DC, causing
degraded results. In Baseline+Up, Gt only contains mt(t ≥ 0) without extra reference
information. This only obtains similar performance to the baseline because bounding box
estimation is mainly dependent on m0 instead of mt, which is not reliable enough. In
Baseline+DC, AUC and precision scores are improved by over 1.0% in ATOM-DCOM
and over 0.6% in DiMP-DCOM, respectively. The performance is further improved by the
updating strategy, confirming the efficacy of the proposed sub-modules.

Table 3. Ablation study of the sub-modules on LaSOT.

ATOM-DCOM DiMP-DCOM

Method AUC Prec. AUC Prec.

Baseline 0.515 0.479 0.568 0.535
Baseline+Noise 0.498 0.463 0.542 0.511

Baseline+Up 0.513 0.477 0.568 0.536
Baseline+DC 0.526 0.490 0.574 0.542

Baseline+DC+Up 0.536 0.501 0.583 0.549
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4.3. Results on LaSOT Dataset

LaSOT [22] is a large-scale benchmark for long-term single-object tracking. The
test set consists of 280 high-quality sequences. The AUC (area-under-the-curve) score
and the precision score are listed in Table 4. The success plots and precision plots are
shown in Figure 3. ATOM-DCOM and DiMP-DCOM obtain AUC scores of 0.536 and 0.583,
respectively, outperforming ATOM and DiMP by 2.1% and 1.5%, respectively. The results
show that our bounding box estimation method can bring consistent improvement in terms
of AUC and precision scores. Compared with the BBR methods SiamBAN and SiamCAR,
DiMP-DCOM shows a large margin of over 6%, confirming that our updating strategy is
especially effective in long-term tracking.
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Figure 3. Comparisons with state-of-the-art trackers on LaSOT [22] in terms of precision plots and
success plots. All the figures are drawn by the official toolkit.

Table 4. Comparisons with the state-of-the-art trackers on LaSOT.

Tracker Backbone AUC Prec.

ECO [5] VGG-m 0.324 0.302
MDNet [26] VGG-m 0.397 0.370
SiamRPN++ [2] ResNet-50 0.496 0.467
MAML [1] ResNet-18 0.523 -
SiamCAR [30] ResNet-50 0.516 0.493
SiamBAN [16] ResNet-50 0.514 0.491
ATOM [17] ResNet-18 0.515 0.479
DiMP [18] ResNet-50 0.568 0.535

ATOM-DCOM ResNet-18 0.536 0.501
DiMP-DCOM ResNet-50 0.583 0.549
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4.4. Results on GOT-10k Dataset

GOT-10k [21] is a large-scale and high-diversity benchmark for generic object tracking
in the wild. Fair comparisons are ensured with the protocol, because all approaches use
the same training and testing data provided by the dataset. The evaluation metrics include
success plots, average overlap (AO), success rate exceeding 0.5 (SR0.5), and success rate
exceeding 0.75 (SR0.75). The results are listed in Table 5. ATOM-DCOM and DiMP-DCOM
outperform ATOM and DiMP by 1.6% and 1.2% in terms of AO, and 1.7% and 2.0% in
terms of SR0.5, respectively, showing the effectiveness of our method.

Table 5. Comparisons with the state-of-the-art trackers on GOT-10k.

SiamRPN++ SiamCAR ATOM DiMP ATOM-DCOM DiMP-DCOM

AO 0.517 0.579 0.556 0.611 0.572 0.623
SR0.50 0.616 0.677 0.634 0.717 0.651 0.737
SR0.75 0.325 0.437 0.402 0.492 0.407 0.493

4.5. Results on NfS Dataset

We evaluate our approaches on the 30 FPS version of NfS dataset [23], which consists
of 100 challenging videos. AUC scores are shown in Table 6 and the success plots are
shown in Figure 4. It can be seen that ATOM-DCOM and DiMP-DCOM achieve AUC
scores of 0.616 and 0.640, respectively, outperforming ATOM and DiMP by 2.6% and
2.0%, respectively.
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Figure 4. Comparisons with state-of-the-art trackers on NfS [23] in terms of success plots.

Table 6. Comparisons with the state-of-the-art trackers on NfS.

ECO SiamRPN++ ATOM DiMP ATOM-DCOM DiMP-DCOM

AUC 0.466 0.620 0.590 0.620 0.616 0.640

4.6. Computational Performance

Table 7 lists the mean FPSs of our DiMP-DCOM and ATOM-DCOM and other state-
of-the-art trackers on LaSOT. The mFPSs of the other trackers are the same as those in
their original papers. The reported tracking speed contains the whole online tracking steps
including image loading, feature extraction, target localization, bounding box estimation,
and the updating stage. Although both DiMP-DCOM and ATOM-DCOM run 4 ∼ 5 FPS
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slower than their baselines due to the extra computation in distribution calibration, they
can still run at real-time speeds. Note that we calculate the statistics of the base clip in
advance to avoid double-counting in the online process. We also fully exploit the parallel
computing in PyTorch to improve the efficiency when calibrating distribution, generating
new reference information and maximizing overlap. DiMP-DCOM runs at a slower speed
compared with the BBR methods SiamBAN and SiamCAR, because they lack the process
of online update.

Table 7. The mean FPSs of our DiMP-DCOM and ATOM-DCOM and other state-of-the-art trackers
on LaSOT.

Tracker DiMP-DCOM DiMP SiamBAN SiamCAR ECO SiamFC

mFPS 38 43 40 52 6 26

Tracker ATOM-DCOM ATOM MAML SiamRPN++ MDNet CFNet

mFPS 54 58 42 35 1 36

4.7. Qualitative Results

Although GOT-10k is a short-term benchmark, the variations of the target are severe,
and thus it is challenging for precise bounding box estimation; our method provides more
sufficient and less biased reference information compared with DiMP and ATOM, leading
to a more robust performance. To visualize the bounding box regression quality of our
method in online tracking, we show the tracking results of DiMP-DCOM, DiMP [18], and
ATOM [17] on the challenging sequences from GOT-10k [21] in Figure 5. Three frames of
GOT-Test-005, GOT-Test-018, GOT-Test-026, GOT-Test-055, and GOT-Test-141 sequences are
shown in the figures. It can be seen that the bounding boxes of target objects are able to be
predicted robustly by DiMP-DCOM when undergoing radical variations, e. g., in GOT-Test-
018. Note that, in complex scenes such as GOT-Test-026 and GOT-Test-141, DiMP-DCOM
will be less impacted negatively by the distractors with the help of the updating strategy,
while the other two representative tracking methods, DiMP and ATOM, tend to drift in
these scenes only with the limited reference information.

Figure 5. Cont.
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Figure 5. Visualization tracking results of DiMP-DCOM (green), DiMP (blue), and ATOM (red) on
the challenging sequences from GOT-10k [21]. We can see that DiMP-DCOM shows stronger ability
of bounding box estimation and better accuracy throughout tracking. Best viewed with zooming in.

5. Conclusions

In this paper, we propose a novel bounding box estimation method for visual tracking,
which is based on distribution calibration and overlap maximization. By taking advan-
tage of large-scale training datasets, our method enables generating reliable and diverse
reference information during online tracking. Additionally, a simple yet effective updat-
ing strategy of the modulation vector is designed for robust online tracking. DCOM is
able to improve the state of the art of discriminative trackers by enhancing bounding
box estimation. Experiments on three popular benchmarks show the effectiveness of
our approach.
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