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Abstract: In this study, we propose a long short-term memory (LSTM)-based user identification
method using accelerometer data from smart shoes. In general, for the user identification with
human walking data, we require a pre-processing stage in order to divide human walking data into
individual steps. Next, user identification can be made with divided step data. In these approaches,
when there exist partial data that cannot complete a single step, it is difficult to apply those data
to the classification. Considering these facts, in this study, we present a stack LSTM-based user
identification method for smart-shoes data. Rather than using a complicated analysis method, we
designed an LSTM network for user identification with accelerometer data of smart shoes. In order to
learn partial data, the LSTM network was trained using walking data with random sizes and random
locations. Then, the identification can be made without any additional analysis such as step division.
In the experiments, user walking data with 10 m were used. The experimental results show that the
average recognition rate was about 93.41%, 97.19%, and 98.26% by using walking data of 2.6, 3.9, and
5.2 s, respectively. With the experimental results, we show that the proposed method can classify
users effectively.

Keywords: stack LSTM; user identification; smart shoes

1. Introduction

With the development of wearable devices, big data, and artificial intelligence, human
activity recognition has been greatly developed [1,2]. Among them, human walking data
include intrinsic information for human activity recognition and can be utilized in various
applications such as health care, sports game analysis, human behavior analysis [3–9].

In order to recognize human behavior using wearable devices, many studies have
been made using smart bands [10,11], smartphones [12–16], and smart shoes [17–26].

Wearable devices such as smart bands and smartphones can be used to recognize
human behavior to a certain level of performance [10–16]. However, there were limitations
in using human direct walking information. Hence, smart shoes are becoming essential
sensors for distinguishing user behaviors [17–26]. Since smart shoes can reflect human
walking information touching the ground directly, we can gather relatively useful infor-
mation to analyze user behaviors. In order to classify human behaviors, we can analyze
accelerometer data, pressure data, and gyroscope data from smart shoes.

Smart shoes also play an important role in identifying users using human walking data.
In [22,23], user-identification methods based on smart shoes data have been presented.
In [22], user identification was performed using null-space-based linear discriminant
analysis(NLDA) after dividing each step based on pressure data and accelerometer data.
Extending the results in [22], in [23], a deep-learning-based approach was proposed for the
step detection and classification using three kinds of data (pressure data, accelerometer
data, and gyroscope data). In the previous results, user identification has been performed
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based on the step detection. Hence, when there exists partial data that cannot complete a
single step, it is difficult to apply those data to the classification.

In this study, we propose a stack LSTM-based [27,28] user identification method
using accelerometer data from smart shoes. An LSTM-based identification network was
designed without any complicated analysis of human gait or walking phases. With the
learning of accelerometer data directly, partial data that cannot complete a single step can
be used for the user identification in the proposed method. By training the designed LSTM
network using accelerometer data with various window sizes and locations, the walking
characteristics of users were trained to the designed LSTM network, and user identification
with partial data can be performed. The experimental results were derived from the walking
data of 16 users, and it was shown that the proposed method identifies users effectively.

The remainder of this article is organized as follows. In Section 2, we summarize
related works regarding smart shoes and walking data analysis. In Section 3, we present
the LSTM-based user identification method using accelerometer data. In Section 4, experi-
mental results are given for the proposed method. In Section 5, experimental results are
compared to the previous results. The conclusion follows in Section 6.

2. Related Works
2.1. Smart Shoes

In this study, we used the “Footlogger” insole sensor module for smart shoes devel-
oped by 3L Labs Co., Ltd. (Seoul, Korea). This includes a tri-axial accelerometer, eight
pressure sensors, and a gyroscope inside the insole sensor module. Using a Bluetooth con-
nection between the smartphone and the smart shoes, we can collect data in the smartphone.
Figure 1 shows the structure of the insole sensor module.

Figure 1. The Footlogger smart insole.

Recently, various studies using smart shoes have been conducted [17–23]. Three types
of walking activities were classified in [17] using smart-shoes data. In [19], stride counting
and walking distance estimation in human walking were performed.

Generally, pressure sensors are closely related to step detection and are used for
recognizing step detection [16,17,19,22,23]. Figure 2 shows the gait step cycle. In this study,
we utilized only accelerometer data, and no further analysis of step detection was required.
Figure 3 shows the exemplary walking data of three individuals.
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Figure 2. Phases of a typical gait cycle.

Figure 3. Exemplary accelerometer data for the experiment.

2.2. Walking Data Analysis

As gait analysis provides essential information for human behavior recognition, there
have been many studies regarding walking data analysis [17–26]. Various wearable sensors
have been used for analyzing walking types [17], predicting related diseases [24], measuring
walking distance [19], and estimating walking speeds [20].

Recently, there have been many research studies regarding user identification based
on walking data analysis [16,22,23]. In [16], user identification was performed using ac-
celerometer and gyroscope data obtained from smartphones. The walking period was
extracted from the walking data, and each set of walking data was divided based on the
walking period. The divided walking data was given as an input to the recurrent neural
network (RNN) for user identification.

User-identification methods based on smart shoes data have been presented in [22,23].
In [22], pressure data and accelerometer data were used to identify users. After processing
the pressure data, each step was divided. User identification was performed using the
divided steps based on NLDA and a one-nearest neighborhood (NN) classifier. Extending
the results of [22], in [23], three kinds of data (pressure data, accelerometer data, and
gyroscope data) were used for the classification. First, classification results were extracted
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using a convolutional neural network (CNN) and RNN based on the walking data. Then,
the final classification was performed considering the results of the CNN and RNN.

In the previous studies, step detection was required for user classification. In this
article, we present a user-identification method based on LSTM utilizing accelerometer
data as the input to the classification system. The entire user-identification process was
conducted without step detection or gait analysis, and a simple LSTM model is presented
for the classification.

2.3. LSTM Model

LSTM model is a sequential model that processes sequence data such as natural-
language and time-series data overcoming the vanishing gradient problem of RNN [27].
Figure 4a shows a typical model of an LSTM cell structure. As in Figure 4b, LSTM were
trained N times in order to have an output h for the input x. Due to these characteristics,
LSTM is useful for the learning of various lengths of data.

(a) A typical LSTM cell architecture

(b) LSTM cell with N time repetition

Figure 4. General LSTM architecture.

Stack LSTM is an extension of general LSTM models and files up the LSTM layer in
order to process complicated models [28]. Figure 5 shows an exemplary model of a stack
LSTM network.
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Figure 5. Stack LSTM architecture.

3. LSTM-Based User Identification with Random Window Sizes and Random Locations

In this study, we propose an LSTM-based user identification method using accelerom-
eter data of smart shoes. In particular, we present a classification method that can learn
partial data that and does not require gait analysis before learning. Accelerometer data with
random window sizes and random locations can be directly used as the input for learning
and classification. Neither step detection nor gait analysis is required in the proposed
method. Additionally, partial data that cannot complete a single step or more steps can be
used for the classification.

Individuals have different walking speeds, stride lengths, and other unique char-
acteristics. To allow the LSTM model to learn such characteristics without the need for
preprocessing, walking data with various sizes and different locations should be given as
inputs to the LSTM model.

Considering these facts, in the proposed method, we applied learning data with
variable window sizes and random locations to the stack LSTM model. Through this,
the stack LSTM model can learn partial data with different sizes and locations. Hence,
partial data can be used for the classification without any step detection.

Figure 6 shows the overall LSTM architecture of the proposed method. In the proposed
method, we utilized a 2-layer stack LSTM model. Learning data with random size and
location were given as an input to the stack LSTM model. A certain number of features
to identify users were extracted from the stack LSTM model, and user identification was
made using a fully connected layer.

Figure 6. Stack LSTM network with an input of a random size and random location for the user identification.

3.1. Input Data Selection Based on Variable Window Size for the LSTM Network

In the proposed method, partial data were selected from a random location with a
random size for learning, as shown in Figure 7. The selected data were utilized as inputs
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to the designed stack LSTM network, as shown in Figure 8. Rather than using all the data
directly, randomly selected data were applied for the learning. By selecting data from a
random location of random sizes, we can enable the LSTM model to learn the different
walking characteristics of different users.

In the implementation of stack LSTM network in this study, we used the variable
window sizes from 20 to 200. As the sampling frequency for the smart shoes was 30 Hz
in this experiment, the window sizes of 20 and 200 corresponded to 0.67 s and 6.67 s,
respectively. The designed LSTM network can learn the walking patterns of each user
based on these settings.

Figure 7. Data selection with a random location and a random size.

Figure 8. The designed LSTM network considering the variable window sizes.
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3.2. Stack LSTM Architecture for User Identification Based on Variable Window Size

A stack LSTM network was designed in order to learn randomly selected data. Figure 8
shows the overall architecture of the designed LSTM network in our experiment. As
the learning was able to proceed without any pre-processing, the overall identification
architecture can be relatively simple. The designed stack LSTM network consists of two
consecutive LSTM layers and one fully connected layer. From the two consecutive LSTM
layers, we can extract various features for user walking patterns. One fully connected layer
was used for the user classification.

In the implementation of this study, the first LSTM layer had an input shape with
random sizes from 20 to 200 and provided a vector output with a size 64, which is a full
sequence for the subsequent LSTM layer. The second LSTM layer produced 64 features,
which was used as an input to the fully connected layer. Two-layer LSTM can enhance the
learning performance compared to 1-layer LSTM. If more layers will be used, the complexity
can be also increased. Hence in the proposed method, 2-layer LSTM was used.

In order to prevent overfitting, the two LSTM layers applied a recurrent dropout to
0.2, and the final LSTM output vector applied a dropout to 0.5. The fully connected layer
had n outputs and applied softmax for the normalized probability calculation. Here, n is
the number of users to be identified. With the input of accelerometer data, we can identify
users with the proposed method.

Figure 9 shows the detailed architecture of the stack LSTM network used in this study.
The designed LSTM network had an input data with a random size between 20 and 200.
Since there were three axes for x, y, and z in the accelerometer, we used six accelerometer
data of xL, yL, zL, xR, yR, and zR for the left foot and the right foot. The stack LSTM network
gave 64 features for the classification, and these features were used as an input to the fully
connected layer.

(a) Stack LSTM model with window size 20 (b) LSTM cell with N time repetition

Figure 9. Stack LSTM model with window size 20 and 200.

4. Experimental Results
4.1. Gait Data Gathering and Preprocessing

In order to evaluate the performance of the proposed method, we applied the proposed
method to walking data collected from the “Footlogger”. In this experiment, we collected
only the accelerometer data with a sampling frequency of 30 Hz. Three-axis data for x, y,
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and z were considered, and xL, yL, zL, xR, yR, and zR for the left foot and the right foot were
collected. The accelerometer data were normalized with mean 0 and standard deviation 1.

We collected data from 16 people, consisting of eleven men and five women, whose
ages were between 20 and 30. Each user walked 10 m 10 times at a normal walking speed. In
total, 160 samples corresponding to 1600 m were collected. As the walking speeds can differ
between people and the number of walking times, the data sizes can differ consequently.
The data length of the fastest walking was 216 (about 7.2 s) and that of the slowest walking
was 290 (about 9.6 s). As shown in Figure 10, the classification performance of the 160 data
samples was assessed using a five-fold cross-validation strategy. Two samples per each
user data, which are a total of 32 samples, were used as the test data, and the remaining
128 samples were used as the training data. After performing the experiment five times
in five-fold cross validation, all of the data samples of each section were used as test data
at least once. By shuffling the dataset randomly, we made the five-fold cross-validation
experiments five times. The average value of the classification rate was calculated as the
final result.

Figure 10. Dataset division into training set and test set using five-fold cross-validation.

4.2. Performance Evaluation for User Identification

Figure 3 shows the exemplary accelerometer data used in this study. As in Figure 7,
selected data from a random location of random sizes were utilized for the LSTM learning.

In this experiment, the number of epochs was 1000, and for each epoch, the number
of batches was 36,828, which represents the total amount of data. The adjusting window
size was between 20 and 200. Performance evaluation was made for the test data where the
window sizes were 20, 30, 50, 100, 150, and 200, as shown in Figure 11. User identification
was performed for each window size. Here, T denotes the window size of the data.

Table 1 shows the classification rate. Walking data with window sizes of 20 and
200 produced classification rates of 81.83% and 99.87%, respectively. When the window
size was greater than 100, the classification rate was over 98.38%. This indicated that the
classification was effectively made.
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Figure 11. Test data selection for performance evaluation.

Table 1. User identification rate regarding timing window size.

Timing Window Size (s) User Identification Rate (%)

20 (0.67) 81.83

30 (1.00) 89.91

50 (1.67) 95.21

100 (3.34) 98.38

150 (5.00) 98.73

200 (6.67) 99.87

5. Discussion

To demonstrate the relative performance of the proposed method, we compared it
with the method in [22]. The method in [22] performs step detection using pressure sensors
first, and then normalizes it for the recognition. Since the proposed method in this study
uses only accelerometer data and applies them for the learning without any modification,
these two methods cannot be compared directly. Instead, as in Table 2, we used two, three,
and four steps for the method in [22], respectively. Here, two, three, and four steps account
for 26%, 39%, and 52% of the total data. Hence, for the comparison, we used input data
with timing window sizes of 42, 63, and 84 accounting for 26, 39, and 52% of the total data
for the proposed method. Table 2 shows the recognition rates of the two methods. The
recognition rate of the proposed method was 97.19% for 39% of the total data, whereas that
of the method in [22] was 92.10% for the three steps.

From the experimental results, we can see that user identification can be effectively
made with the partial data from the accelerometer sensors of smart shoes. Considering the
proposed method, we can derive the following advantages and disadvantages.

First, using only accelerometer data, user identification can be performed with the
proposed method. Without using all sensor data of the smart shoes including accelerometer,
pressure, and gyroscope sensors, the classification can be made using only accelerometer
data. Additionally, partial data that cannot complete a single step or multi-steps can be
used for the classification. It can be more practical considering real applications.
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For the implementation, 2-layer LSTM can consume more time than the conventional
machine learning based approaches. In future work, implementation in embedded systems
should be considered over deep learning accelerators. Additionally, since the proposed
network learns the accelerometer directly, it may not be robust to the speed variation of
users. In future work, network design considering speed variation should be required.

Table 2. Recognition results of the proposed method and the method in [22].

User Identification Rate (%)

The Method in [22] Proposed Method

Number of Steps Accuracy Data Rate (%) Accuracy

2 82.93 26 93.41

3 92.10 39 97.19

4 93.79 52 98.26

6. Conclusions

In this study, we proposed a stack LSTM-based user identification method with
accelerometer data of smart shoes. Through the learning of variable size and random
location data, the stack LSTM model could learn partial data with different sizes and
locations. Selecting data with random sizes and random locations enabled the LSTM
model to learn the different characteristics of user walking patterns. Neither step detection
nor gait analysis was required in the proposed method. Additionally, partial data that
cannot complete a single step or multi-steps could be used for the classification. Further,
the simulation results showed that the proposed method identified users effectively. Since
the proposed method has a relatively simple learning architecture and is easy to implement,
the proposed method can be applied to the user identification method effectively.

In this study, we assumed that the subjects walked at a normal speed. Therefore,
further study of user identification at different walking speeds or in different walking
environments remains needed.
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