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Abstract: In this work, the first surface acoustic-wave-based magnetic field sensor using thin-film
AlScN as piezoelectric material deposited on a silicon substrate is presented. The fabrication is
based on standard semiconductor technology. The acoustically active area consists of an AlScN layer
that can be excited with interdigital transducers, a smoothing SiO2 layer, and a magnetostrictive
FeCoSiB film. The detection limit of this sensor is 2.4 nT/

√
Hz at 10 Hz and 72 pT/

√
Hz at 10 kHz

at an input power of 20 dBm. The dynamic range was found to span from about ±1.7 mT to the
corresponding limit of detection, leading to an interval of about 8 orders of magnitude. Fabrication,
achieved sensitivity, and noise floor of the sensors are presented.

Keywords: surface acoustic waves; surface acoustic wave sensor; magnetic field sensor; current
sensor; magnetostriction; AlScN; FeCoSiB; MEMS; thin film

1. Introduction

The sensing of magnetic fields has a multitude of use cases ranging from biomedical appli-
cations to current sensing in automotive applications [1–5], each having different requirements
on the sensor regarding bandwidth, dynamic range, dc capability, size, and price [6,7].

A promising sensing principle of magnetic fields is based on surface acoustic waves
(SAW) [8] and the change of the Young’s modulus (∆E effect) of magnetostrictive

films [9]. This differs from other sensor approaches, such as using a magnetoelectric
composite cantilever suffering from disadvantages such as a small bandwidth, and a good
LOD that can only be achieved in resonance [10].

Today, for the fabrication of SAW sensors, the use of piezoelectric single-crystal
substrates such as quartz [1,11,12] or LiNbO3 [13,14] is state-of-the-art. For ST-cut quartz
sensors, sensitivities of up to 2000◦/mT and a limit of detection of 100 pT/Hz1/2 at 10 Hz
are reached [15] and, for LiNbO3, a variation of the SAW velocity of ∆v/v = 0.27% at
400 mT [14]. To enable a greater material flexibility, especially in terms of compatibility
with CMOS and MEMS technology, a reduction in chip size and the use of cleverly designed
multilayers to enhance device performance requires a change to thin-film technology.

For that purpose, thin-film AlN is a promising piezoelectric material due to its high
wave velocity, good mechanical and dielectric properties, high thermal conductivity, and
high breakdown voltage [16]. Additionally, a SAW sensor operation up to several GHz
can be realized, which can significantly increase the sensitivity in many sensor applica-
tions [17]. Further, it was shown that alloying AlN with Sc improves the electromechanical
coupling significantly without losing the attractive material properties of AlN [18]. The
electromechanical coupling in AlScN even increases with increasing frequency, so that its
use is particularly interesting for high SAW frequencies [19,20]. The Sc concentration adds
an additional parameter for tuning crucial properties of SAW devices, such as the phase
velocity and the electromechanical coupling [20]. AlScN as a promising thin-film material

Sensors 2021, 21, 8166. https://doi.org/10.3390/s21248166 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4226-5827
https://orcid.org/0000-0002-2994-2021
https://orcid.org/0000-0002-6759-4208
https://orcid.org/0000-0002-5095-8781
https://orcid.org/0000-0002-8125-3805
https://doi.org/10.3390/s21248166
https://doi.org/10.3390/s21248166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248166
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248166?type=check_update&version=2


Sensors 2021, 21, 8166 2 of 8

for SAW sensors, as it is described in [21], is studied in this work, and it can be fabricated
at reasonable cost with standard semiconductor technology on larger wafer sizes and an
easier process integration compared to bulk piezoelectric wafers.

For SAW devices, two common design approaches exist: a delay line, and a resonator
configuration [22,23]. In this work, the delay line configuration is chosen, as shown in
Figure 1, to increase the interaction volume between the excited wave and the magnetic
field sensitive area (magnetostrictive film). For this purpose, two inter-digital transducers
(IDTs) are structured on the acoustic layer (thin film AlScN) to excite and readout the SAW
signal via the piezoelectric effect [24]. The delay line of length l is located between the two
IDTs. To prevent a short circuit between the magnetostrictive film and the IDTs and, more
importantly, to reduce the roughness of the underlaying layer of the magnetostrictive film,
a SiO2 layer is grown on top of the piezoelectric layer. The topmost layer in this area of the
delay line is the magnetostrictive material FeCoSiB. The acoustic wave passing through
the delay line couples to an external magnetic field via the induced change in the Young’s
modulus of the magnetostrictive film [9].
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Figure 1. Schematic sketch of the SAW thin-film magnetic field sensor. Magnetostrictive FeCoSiB on
top of the silicon dioxide layer of length l is in between the AlCu IDTs. FeCoSiB is capped with Ta
to avoid corrosion. The easy axis of the magnetostrictive film defines the sensitive direction of the
sensor against an external applied magnetic field B and is chosen to be perpendicular to the direction
of SAW propagation. As the piezoelectric material, AlScN is chosen.

As the change of Young’s modulus ∆E alters the phase velocity ν of the acoustic
wave [25], a B-field-induced phase change ∆ϕ = 2π l f /(v(B1) − v(B0)) can be detected at
the output IDTs via the direct piezoelectric effect [26]. The sensitivity of the sensor, which is
defined as the phase change per change in magnetic field S = ∂ϕ/∂H, can be written as the
product of its individual contributions: magnetic layer sensitivity Smag (change in Young’s
modulus with magnetic field), structural sensitivity Sstr (change of the wave velocity with
change in Young’s modulus), and geometric sensitivity Sgeo (phase change with change in
wave velocity) [1]:

S =
∂ϕ

∂H
=

∂G
∂H
· ∂ν

∂G
· ∂ϕ

∂ν
= Smag · Sstr · Sgeo (1)

By means of S and the power spectral density Sϕ of the random phase fluctuations of
the sensor, the limit of detection (LOD) of the sensor can be calculated by [27]:

LOD =

√
Sϕ

S
(2)

The logarithmic presentation of the power spectral density 10 log10 (Sϕ) is referred to
as phase noise.
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2. Materials and Methods
2.1. Sensor Fabrication

On a 200 mm, 725 µm thick, single-side polished high-resistivity Si (001) wafer, a 1 µm
Al0.77Sc0.23N layer is sputtered as described in [28].

Afterwards, 200 nm thick AlCu IDTs are sputtered and patterned by dry chloride etch-
ing to a design with a delay line length of l = 3.8 mm, a split-finger structure [29] of 25 pairs,
a periodicity of p = 16 µm, and a finger width of 2 µm, resulting in a theoretical phase ve-
locity of the Rayleigh-like mode of 283 MHz (Figure 2(1)). Three-hundred-nanometer-thick
gold contacts with a 40 nm WTi adhesion layer are sputter-deposited and structured with
a wet etching step (Figure 2(2)). A 1.5 µm thick, low-stress SiO2 interlayer is deposited
with plasma-enhanced chemical vapor deposition (PECVD) at 400 ◦C and smoothed and
thinned with a chemical mechanical polishing (CMP) step to a thickness of 1 µm. An atomic
force microscopy analysis showed that this reduces the surface roughness from 2 nm of the
AlScN layer to a roughness of below 1 nm. Such a reduction significantly enhances the soft
magnetic properties of the FeCoSiB thin film [30]. Afterwards, the layer is structured with
dry etching (Figure 2(3)).
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Figure 2. Schematic cross-sections of the processing steps of the thin film SAW sensor. (1) A layer of
1 µm AlScN is sputter-deposited on top of a high-resistance silicon (001) wafer, followed by 200 nm
AlCu IDTs and 300 nm gold contacts with a 40 nm WTi adhesion layer that are patterned afterwards
(2). A 1.5 µm SiO2 layer is deposited via PECVD and thinned with CMP to a thickness of 1 µm (3).
On top, the magnetostrictive FeCoSiB film with a thickness of 200 nm is deposited with an additional
layer of 10 nm Ta on the top and on the bottom (4).

The magnetostrictive layer consisting of 200 nm (Fe90Co10)78Si12B10 is deposited via
RF magnetron sputtering on top of the SiO2 layer and structured with ion beam etching
to realize steep and straight edges. To improve adhesion and prevent oxidation, 10 nm
Ta is deposited on top and below the FeCoSiB film (Figure 2(4)). To induce a uniaxial
magnetic anisotropy in the soft magnetic film, an annealing step at 250 ◦C for 30 min is
performed while applying a magnetic field of 0.2 T. Thereby, the easy axis of the FeCoSiB
film is aligned perpendicular to the SAW propagation direction (see Figure 1). The simple
process of thermal alignment of the magnetization is an example of the integration-related
advantages of the silicon substrate-based thin-film concept. When using single crystal
piezoelectric substrates, such a simple thermal imprint is not possible due to anisotropic
thermal expansion in the piezoelectric substrate and would result in a significant reduction
of the soft magnetic film properties. Instead, a more complex, low-temperature deposition
with an applied magnetic field must be applied to achieve a proper alignment of the
magnetization [26]. Finally, the sensor is glued and wire-bonded on top of a printed circuit
board (PCB), on which there are balun devices to symmetrize the signal. The final sensor is
shown in the inset of Figure 3.
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Figure 3. Sketch of the measurement setup. The SAW sensor is placed in a magnetically, electrically, and acoustically
shielded measurement chamber inside of two solenoids. For the phase shift measurements, only a dc current source is used
to apply a homogeneous magnetic field. A lock-in amplifier is used to apply the synchronous SAW frequency and measure
the phase change. The sensitivity S is measured by applying an additional ac magnetic field using the second solenoid that
is supplied with another current source using a test amplitude and frequency. The inset shows a zoom-in of the ready-to-use
sensor with a balun attached to symmetrize the signal.

2.2. Experimental Setup

The sensor’s two-port scattering parameters (S-parameters) are characterized with a
vector network analyzer E8361A from Agilent Technologies. A signal power of p = 0 dBm is
used throughout the experiments in this paper, except for the noise measurements. For all
measurements in a magnetic field, the sensor is placed in the center of two axially stacked
coils, which are used to generate ac and dc magnetic signals by means of a programmable
current source (KEPCO BOP20-10ML) for the dc magnetic field. The solenoids are placed
inside a magnetically, electrically, and acoustically shielded measurement chamber. The
magnetic field shielding is provided by a mu-metal cylinder ZG1 from Aaronia AG to prevent
external influences. The magnetically induced phase shift of the sensor is measured in the
homogeneous magnetic field region of the solenoids. To then record the sensor behavior
in the magnetic field, the magnetic flux density is swept from negative to positive values
and reversed. A lock-in amplifier (UHFLI from Zurich Instruments) is used to apply the
synchronous SAW frequency determined by the measurement of the S-parameters and to
measure the static phase response ϕ(B) of the sensor at a chosen input power (here 0 dBm).

In order to determine the sensor’s optimum working point with the highest sensitivity,
the phase ϕ is analyzed as a function of a dc bias field H. In principle, a numerical
calculation of the sensitivity S = ∂ϕ/∂H should be sufficient to determine the point of
steepest slope, which refers to the point of highest sensitivity, but often small phase jumps
related to domain wall movement can give the appearance of incorrectly high sensitivities.
Therefore, a dynamic phase detection measurement is performed to accurately determine
∂ϕ/∂H at every single measurement point. For this, one solenoid generates the static
magnetic bias field that is superimposed with an ac test-field generated with the second
solenoid powered by a current source (Keithley 6221) with a defined amplitude of 10 µT
and a frequency of 10 Hz. By choosing the amplitude of the ac field that is large enough,
the phase fluctuations can be neglected. The sensor’s output signal and the phase reference
are fed into the UHFLI lock-in amplifier that is used as a phase demodulator. The phase
sensitivity is obtained by the evaluation of the amplitude spectrum of the demodulated
phase signal [26].
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The phase noise measurements are performed with the Rohde & Schwarz FSWP phase
noise analyzer at the sensor’s magnetic working point and at magnetic saturation at a
different sensor’s input power. The SAW sensor is placed in the electrically, magnetically,
and acoustically shielded chamber during these measurements. To minimize external noise
sources, especially those appearing in common dc current sources, a battery-based current
source controlled by a potentiometer is applied in series with the solenoids for the genera-
tion of the dc magnetic bias field. The internal generator of the phase noise analyzer excites
the sensor at the synchronous SAW frequency determined in previous measurements. The
LOD can be determined from the measured noise floor with Equation (2). A more detailed
description of the measurement setup can be found in [27].

3. Sensor Characterization

A finite element method (FEM) analysis and spectra analysis were performed using
COMSOL Multiphysics® software [31] based on the acoustic and electromagnetic parame-
ters of the constituent layers (AlScN, SiO2, FeCoSiB). The parameters for AlScN were taken
from [21] and for FeCoSiB from [1]. The simulated admittance and the displacement of the
SAW modes are shown in Figure 4a. A Rayleigh-like thin-film mode is simulated to be at
283 MHz with a high admittance and relatively high displacement that are defined on the
surface with some energy losses in the direction of the Si substrate (see Figure 4b).
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Figure 4. (a) FEM-simulated displacement (red) and admittance (blue) for the presented sensor design. (b) Colored map of
absolute deflection for the Rayleigh-like mode at 283 MHz. The deflection into the FeCoSiB layer, the SiO2 intermediate layer,
the IDTs, the AlScN layer, and the Si substrate are displayed. (c) Measured transmission behavior (scattering parameter S21)
of the presented sensor. The synchronous frequency of the sensor is determined to be 294.2 MHz with a return loss of 40 dB.

The measured transmission behavior of the thin-film magnetic field sensor is shown
in Figure 4c, exhibiting a synchronous frequency of 294.2 MHz at zero flux density, which
is very close to the simulated value. The deviation can be explained by the material
parameters in the simulation deviating from the experimental parameters in the real sensor,
or imperfections in the fabrication, and is assessed as low.

The performance of the sensor in a magnetic field is measured as described above
by applying the synchronous frequency of 294.2 MHz with the lock-in amplifier and
measuring the static phase response of the sensor shown in Figure 5a from negative to
positive field values (black) and reverse (grey). A slight hysteresis is observable, as was
expected, resulting from the magnetic material. The linear region of the static phase
response, which determines the dynamic range, is marked with a blue line in Figure 5a.
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Figure 5. (a) The induced phase shift in the sensor with an external magnetic flux density (black) and the direct measurement
of the sensitivity with an ac test signal (red) is shown. The highest slope in the phase change occurs at about 0.85 mT and
2.65 mT, resulting in the highest values of sensitivity of up to 45◦/mT. A value of 0.85 mT is chosen as a working point
(indicated with the dotted line) due to the high sensitivity and the lower field value compared to 2.65 mT. The dynamic
range of the sensor is marked with the blue line, showing the linear region of the sensor. The ac signal has an amplitude of
10 µT and a frequency of 10 Hz. (b) Measured phase noise (dotted line) and calculated limit of detection (solid line) as a
function of the frequency at magnetic saturation for 0 dBm (black), 10 dBm (red), and 20 dBm (blue) input power.

The sensitivity that is given by the derivative of the phase change as described above
is important for the performance of the sensor. The dynamically measured sensitivity via
an ac test signal depending on the bias field is shown in Figure 5a (red). The two regions
with the maximum phase change are observed at about 0.85 mT and 2.65 mT (Figure 5a)
and are the most interesting for sensor application. The highest sensitivity of about 45◦/mT
is reached at 2.65 mT.

Besides a high sensitivity, a good LOD is an important sensor parameter of the SAW
sensor [15]. The LOD dependency on frequency from the carrier and sensor input power is
shown in Figure 5b. The measurements are performed at the sensor’s working point at
Hbias = 0.85 mT, which is chosen due to the technological limitation of the LOD measurement
setup and at magnetic saturation. As both measurements are almost identical, only the
measurement at saturation is shown in Figure 5b.

Up to a frequency of 1 kHz, a regime of flicker (1/f) noise dominates the spectra. This
noise is related to defects in the substrate and the SiO2 layer, as well as random fluctuations of
the magnetization and magnetic hysteresis losses [27]. In the specific case of SiO2, additional
surface roughness is introduced during the ion beam etching step to pattern the FeCoSiB layer.
A possible way to reduce this roughness would be to add a lift-off process, though this would
have the disadvantage of less defined edges of the magnetostrictive film.

In the 1/f noise regime, a LOD of 3.2 nT/Hz1/2 is achieved at 10 Hz and an input
power of 10 dBm. Above 1 kHz, the noise is dominated by white noise, which is additive
noise and decreases with increasing signal power [27]. Here, a LOD of 246 pT/Hz1/2

is reached for 10 kHz. When the input power is increased to 20 dBm, the LOD can be
decreased even further at higher frequencies above 10 Hz so that a LOD of 2.4 nT/Hz1/2

can be reached at 10 Hz and 72 pT/Hz1/2 at 10 kHz.
The dynamic range of the sensor is given by the linear region around the working point

of the sensor and is indicated in Figure 5a with the blue line. It spans from about 1.7 mT to
the corresponding LOD, leading to an interval of 8 orders of magnitude. The hysteretic
behavior could be compensated as is done in AMR sensors (anisotropic magnetoresistance)
with controlled current pulses [32].

With these characteristics, our sensor has already high potential for sensing a wide range
of technically relevant electrical currents via the generated magnetic field. In contrast, other
current sensor concepts, such as Hall sensors, are limited in the bandwidth in the needed
dynamic range and cannot achieve the measurement of fast signals [33]. AMR sensors also
have a limit of the bandwidth at 1 MHz and a low dynamic range [34]. The presented SAW
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sensor is dc-compatible with a moderately high bandwidth of about 1.2 MHz limited by the
delay line length and a high dynamic range of about 8 orders of magnitude.

4. Conclusions

The first thin-film SAW magnetic field sensor using AlScN as piezoelectric material
on a silicon substrate is presented. The limit of detection is 2.4 nT/Hz1/2 at 10 Hz, which
probably can be lowered further with an impedance matching, higher input power values,
and further insights on the sensor design and noise sources. This will also have a high im-
pact on the phase change and the resulting sensitivity of the sensors. At higher frequencies
above 10 kHz, the LOD is found to be as low as 72 pT/Hz1/2. Additionally, the magnetic
layer can be optimized by an exchange bias [35] to eliminate the need for an external bias
field. Due to the possibility to measure galvanically isolated values from dc up to MHz
with a high dynamic of up to 8 orders of magnitude, the presented sensor is very interesting
for a variety of modern measuring tasks, such as the control of modern power switches,
where it is well suited for monolithic wafer-level integration circuits. This clearly sets it
apart from the competition in the segment of galvanically isolated magnetic field sensors
for power transformers in the field of electromobility, which include Hall sensors and AMR
sensors. Thus, this sensor concept has the potential to manage the rising requirements on
current sensors regarding bandwidth, dynamic range, precision, and compactness.
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