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Abstract: Autism spectrum disorder (ASD) is a combination of developmental anomalies that causes
social and behavioral impairments, affecting around 2% of US children. Common symptoms include
difficulties in communications, interactions, and behavioral disabilities. The onset of symptoms can
start in early childhood, yet repeated visits to a pediatric specialist are needed before reaching a
diagnosis. Still, this diagnosis is usually subjective, and scores can vary from one specialist to another.
Previous literature suggests differences in brain development, environmental, and/or genetic factors
play a role in developing autism, yet scientists still do not know exactly the pathology of this disorder.
Currently, the gold standard diagnosis of ASD is a set of diagnostic evaluations, such as the Autism
Diagnostic Observation Schedule (ADOS) or Autism Diagnostic Interview–Revised (ADI-R) report.
These gold standard diagnostic instruments are an intensive, lengthy, and subjective process that
involves a set of behavioral and communications tests and clinical history information conducted
by a team of qualified clinicians. Emerging advancements in neuroimaging and machine learning
techniques can provide a fast and objective alternative to conventional repetitive observational
assessments. This paper provides a thorough study of implementing feature engineering tools to find
discriminant insights from brain imaging of white matter connectivity and using a machine learning
framework for an accurate classification of autistic individuals. This work highlights important
findings of impacted brain areas that contribute to an autism diagnosis and presents promising
accuracy results. We verified our proposed framework on a large publicly available DTI dataset
of 225 subjects from the Autism Brain Imaging Data Exchange-II (ABIDE-II) initiative, achieving a
high global balanced accuracy over the 5 sites of up to 99% with 5-fold cross validation. The data
used was slightly unbalanced, including 125 autistic subjects and 100 typically developed (TD) ones.
The achieved balanced accuracy of the proposed technique is the highest in the literature, which
elucidates the importance of feature engineering steps involved in extracting useful knowledge and
the promising potentials of adopting neuroimaging for the diagnosis of autism.

Keywords: autism spectrum disorder (ASD); DTI; neuroimaging; ABIDE-II; diagnosis

1. Introduction

Autism spectrum disorder (ASD), famously known as just autism, is a pervasive
developmental disorder manifested as problems in social interactions and communications,
both verbal and non-verbal [1–3]. While there are no fully known causes of autism etiology,
many hypotheses and theories exist. Regardless of the minutiae, it is believed that autism
is a complex interaction between different genetic and environmental factors [4]. Current
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approved diagnosis techniques require significant clinical experience, assessing different
aspects via a standard testing/scoring system, such as the ADOS [5] or ADI-R [6]. Those
tests are subjective and can be time consuming and challenging, with limited accuracy of
around 80–85% [7]. Furthermore, clinicians may not always agree with the results of those
tests [8]. This is our main motivation for developing a neuroimaging-based alternative
that can provide a non-subjective evaluation that may help clinicians reach a faster, more
reliable diagnosis. Previous neurobiological studies investigated connections between ASD
and underlying structure, trying to describe brain abnormalities associated with autism
traits. Since the emergence of MRI, plenty of studies appeared to investigate connections
between ASD and underlying brain features, either shape and volume features using
structural MRI [9], or white matter (WM) diffusivity [10] anomalies using DTI, while others
performed correlations of ASD with either task-based or resting-state functionality [11]
using functional MRI (fMRI). In this paper, we will introduce our DTI-based algorithm for
assessing ASD with the help of the ABIDE-II dataset.

DTI has been gaining rising popularity through the past couple of decades, especially
for brain related disorders, as it provides a non-invasive way of characterizing the con-
nective tracts inside the brain between different areas. It quantifies the diffusion patterns
inside the white matter (WM). White matter mainly consists of axons of neurons (nerve
fibers), and with the human brain containing hundreds of billions of neurons, the structure
of WM is truly complex. The WM represents the axonal fibers carrying neural signals
between various brain regions and between the brain and spinal cord through the brain-
stem. The organization of such a complex network contains a wealth of information; still,
the current resolution for conventional MRI technologies cannot capture such small details,
which are typically less than a micrometer to only few micrometers. Nevertheless, DTI
provides diffusion measures that gives information about the tractography of the brain.

DTI’s most used parameters [12] include fractional anisotropy (FA), mean diffusivity
(MD), and sometimes also “radial” and “axial” diffusivities. These parameters actually de-
scribe the diffusion of water inside the brain, and since water diffusion is restricted outside
of fiber tracts, this translates into indirect information regarding the micro-structure and
connectivity of WM [13]. Additionally, some derived features are also used to characterize
other diffusion measures in WM tracts, such as tensor trace, skewness, rotational invari-
ance, and many others [14]. Abounding previous literature has noted WM abnormalities
associated with autism, often as differences in WM micro-architecture across some local
brain areas. For instance, differences in FA values were reported by Wolff et al. [15] between
ASD and typically developed (TD) infants. Using DTI, Barnea et al. [11] compared WM
structure of ASD to normal TD, accounting for IQ, age and gender. They reported reduced
FA in areas affiliated with social cognition in ASD, but found no difference for MD values.
The role of MD values was identified by Alexander et al. [10], as they reported reduced
FA values backed by an overall increase in MD across the corpus callosum for ASD vs.
non-ASD individuals. Lee et al. [16] also reported higher MD values accompanied with
reduced FA in autistic subjects, as well as higher radial diffusivity. In [17], a sample of
38 infants from the Infant Brain Imaging Study (IBIS) were used for the diagnosis of autism
using spherical harmonics. Another study of ASD children [18] found, again, significantly
lower FA in ASD subjects and correspondingly greater MD in frontal lobe WM. A separate
study of 45 autistic subjects and 30 TDs manifested diagnostic potential when the authors
split ASD to language impaired and non-language impaired groups based on FA and MD,
achieving an accuracy of up to 80% [19].

Aside from classical analysis studies, plenty of studies have employed ML techniques
for ASD classification. The whole ABIDE-I f-MRI dataset was tested with a refined deep
learning model that was introduced by Heinsfeld et al. [20] that exceeded the previous
state-of-the-art performance, achieving 70% accuracy. Khosla [21] presented another deep
learning algorithm using a volumetric convolutional neural network that fits non-linear
predictive models on 3D resting state fMRI (rs-fMRI) input and recorded a classification
accuracy of up to 73% on ABIDE-I rs-fMRI data. In [22], the authors proposed framework
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exploiting features from both structural MRI (sMRI) and fMRI applied on 185 subjects from
the National Database for Autism Research (NDAR), achieving 81% accuracy fusing both
modalities. While most of those works relied on sMRI and/or fMRI, the focus of our paper is
using DTI. DTI micro-architectural features were incorporated in another large recent study
on 263 NDAR subjects for the diagnosis of autism, achieving accuracy of up to 73% [23]. Up
to now, most of the published work regarding autism classification used ABIDE-I, and very
few studies used newer ABIDE-II data [21,24–26]. One study used one site of ABIDE-II only
(San Diego State University cohort), and employed both fMRI and DTI imaging modalities
using connectome features, accomplishing an accuracy of 72% [27]. We emphasize that the
need to use more than one modality implicates added cost and scanning time. Another key
contribution of this work is finding a best-fit dimensionality reduction technique. Having
a very large feature space (p) with limited sample space, or subjects, in our case (n), is
commonly known as the curse of dimensionality [28], which causes increased complexity
of the models that easily results in overfitting, with less learning captured by the model.
This phenomenon is very common with MRI imaging and medical data, where we have
piles of data fields for a few number of patients, and sometimes is not handled correctly.
The standard way to handle those data is by exploiting some sort of feature reduction
algorithms such as linear discriminant analysis (LDA) [29], principal component analysis
(PCA) [30], or auto-encoders [20]. The common shortcoming is that they usually do not
keep the interpretation of the original feature in the new feature space, making it hard to
explain clinical connections for any classification decision, and thus, making it less attractive
for a practical medical use. The feature reduction method needs to help clinicians make an
informative decision and aid in understanding the pathological abnormalities of the brain
of autistic subjects. Our work investigates the recursive feature elimination (RFE) technique,
which recursively eliminates the least contributing features for classification, ending with
a best subset. We extensively carried out plethora of experiments to reach a near-optimal
configuration that led to the best classification, as validated on our dataset.

Despite the numerous studies of autism-related changes in white matter integrity,
the objective of this work is to implement a comprehensive ML-CAD system that, be-
sides its ability to classify ASD vs. TD subjects, identifies brain areas correlated with autism,
and was validated on a big, publicly available dataset using DTI data. The proposed al-
gorithm employed a thorough feature selection using recursive feature elimination with
cross-validation (RFE-CV) using four different kernels (SVM with linear kernel (LSVM),
random forest (RF), and logistic regression (LR), either with a l1-norm (LR1), or LR with
l2-norm (LR2)), and performed hyper-parameter optimization on eight different classifi-
cation techniques. The best candidate configurations were validated using random splits
of different k-folds’ cross-validation to identify the global ML model alongside the global
imaging bio-markers associated with ASD. Our main motivation behind this work is to
present a reliable system that can help physicians better understand individuals with autism,
allowing earlier and more personalized treatment plans. The rest of this paper is organized
as follows: Section 2 presents the details of the pipeline of the proposed algorithm, while
the experimental results are introduced in Section 3 for the ABIDE-II diffusion MRI data.
Finally, Section 4 provides a discussion and the conclusions of the paper.

2. Methodology

A visualization of the pipeline of the whole framework is presented in Figure 1.
It starts with pre-processing of each subject’s input volumes, and is then followed by
DTI parameter calculations, feature extraction and mapping to a WM atlas to get local
features. This is followed by using two different feature representations, to be used in
feature selection and classification steps. The following subsections provide details of these
multi-stage processes until reaching a final diagnosis.
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Figure 1. (a) Pipeline of the DTI-diagnosis algorithm. (b) Usage of the new derived feature represen-
tation F̂ and feature selection before classification.

2.1. Data Used

This work utilized DTI data from the Autism Brain Imaging Data Exchange (ABIDE)-II
dataset. ABIDE-II is a recent publicly available dataset that aggregates MRI data (sMRI,
fMRI, and DTI) for autism studies across different multiple sites. ABIDE-II contains data
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from around 19 sites for more than 1000 subjects; half of them are autistic individuals.
Working on a publicly available dataset facilitates replicating results and increases the reli-
ability of our findings. ABIDE-II is considered a large dataset, which increases the power
of our study. We selected datasets that involved DTI data, which included 6 datasets,
namely: Barrow Neurological Institute (BNI), NYU Langone Medical Center 1 (NYU1),
NYU Langone Medical Center sample 2 (NYU2), San Diego State University (SDSU), Insti-
tut Pasteur and Robert Debré Hospital (IP), and Trinity Centre for Health Sciences (TCD).
IP DTI data bvals (diffusion gradient strength per volume values) and bvecs (diffusion
gradient directions per volume values) were missing a value, so we excluded it, and used
the remaining five sites. Those 5 sites originally had 284 subjects with DTI imaging data,
and ended with 225 subjects of them after cleaning the data, on which we applied the steps
of our pipeline, as we will elaborate on in the next subsections.

2.2. Pre-Processing
2.2.1. Input Image Preparation

After deciding which sites to work on, we downloaded their available data, which
came organized as folders labeled by subject ID containing imaging data. We located
subjects that had DTI data, copying the relevant image nii files along with bvals and bvecs
to the working directory to be pre-processed.

2.2.2. Skull Stripping

The goal of the skull stripping step is to remove non-brain tissues (e.g., skull, scalp,
dura, . . . ) from the image volumes, extracting only the brain. This automated process
was implemented using the brain extraction tool (BET) algorithm [31] from FSL tools,
generating the binary masks and using default parameters with a fractional intensity
threshold of 0.25.

2.2.3. Eddy Current Correction

Eddy currents are induced currents due to gradient fields in the x, y, z directions
that result in visible image artifacts that usually blur the boundaries between gray and
white matter. Diffusion-weighted imaging is usually affected by this phenomenon, and an
eddy current correction step is commonly implemented. For this purpose, we used the
eddy current correction tool ‘eddy’ available through FSL [32] to correct for both common
artifacts, including adjusting for induced currents and also for subject movement during
the scan, across sections.

2.3. Feature Calculation

After having the diffusion-weighted volumes cleaned of non-brain tissues and com-
mon artifacts, we run DTI calculations to get the DTI diffusion tensor, its eigenvalues,
and other metrics. For each voxel, diffusion can be represented by a 3 by 3 tensor, which
describes the diffusion pattern at each point in 3D space. From this tensor, a more common
metric, namely eigenvalues, is used to represent the magnitude of diffusion along 3 major
perpendicular directions of its eigenvectors. The largest eigenvalue, λ1, along with its
eigenvector, v1, represent the magnitude and direction of the primary direction of diffusion
(along the fiber tract), while the other two represent radial diffusion perpendicular to
the main one [33]. Other derived metrics, such as fractional anisotropy, mean diffusiv-
ity, skewness, and many others are commonly used to represent other characteristics of
the diffusion. In our work, we included the following 6 metrics to describe our white
matter micro-architecture:

1. Fractional anisotropy (FA): Measures the degree of anisotropy of the diffusion, with zero
representing completely isotropic diffusion, and one representing a directional diffu-
sion [33];

2. Mean diffusivity (MD): Average magnitude of diffusion at each point, independent of
the direction. MD = 1

3 ∑3
i=1 λi;
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3. Axial diffusivity (AD): Magnitude of diffusion along the major axis; AD = λ1;
4. & 5. Radial diffusivities: Magnitude of diffusion along the two perpendicular axes to

AD: RDs = [λ2, λ3];
6. Tensor skewness: A higher order moment of diffusion, revealing more information

not captured by lower order ones. [14];
TSkew = 1

3 ∑3
i=1(λi −MD)3.

For the first five features, the dtifit tool, part of the FSL package, was used to calculate
the diffusion tensors along with eigenvalues, eigenvectors, FA, and MD. Tensor skewness
(Tskew) was calculated using Matlab 2021a, as it was not provided through the previous
tool. At this point, each subject is represented by six volumes, each comprising hundreds
of thousands of raw voxel values.

Data Cleaning

In the previous parts of the pipeline, some subjects failed during volume size val-
idation, BET and DTI calculations, or regional feature extraction, either with an error
in the prepossessing or yielding a non-complete brain, identified by having more zero
values, or “blanks”, than it should. Excluding those subject from further processing,
we ended up with 225 subjects that will be used for the rest of this work. Subject IDs
along with age, label, IQ, and gender for all subjects used in this study are provided as a
Supplemental Material, Table S3.

2.4. Atlas-Based Segmentation

Having each subject represented by its six volumes per voxel feature, now we need to
assign those features to local brain areas. For this purpose, the white matter atlas ICBM-
DTI-81, defined by Johns Hopkins University [34], is used. The JHU ICBM-DTI-81 WM
atlas uses ICBM coordinates and defines 48 white matter areas. Those areas were originally
hand-segmented from the average of diffusion MRI tensors of different 81 subjects. To locate
local anatomical regions in each subject space, we implemented an atlas-based segmentation
approach, where we preformed atlas registration for area localization. Registration from the
atlas space to subject’s space was performed in two iterations: a rigid transformation then
an affine transformation. The objective of the rigid registration in the first iteration is just
to find an initial alignment, not changing the size or shape, that will be used for next step.
Then, an affine transformation is found to improve upon the initial estimation by providing
a higher degree of freedom for a more generic linear transformation that enables the object’s
size and shape to be adjusted. This two-step registration task was implemented using DTI-TK
software [35] using normalized mutual information measures with a 4 mm × 4 mm × 4 mm
sampling distance and 1% tolerance. DTI-TK also enables interoperability with FSL software
used in preprocessing. The found transformation was then applied to atlas labels, hence
providing WM areas mask at each subject space. Those masks were used to define local
features for those 48 areas. This segmentation technique provides a fast automated solution,
enabling easy application to new subjects or datasets, with less error.

2.5. Feature Representation

At this point, each subject is represented by six features per 48 areas. Each of those
features are per-voxel raw features, and their length, in tens of thousands, varies between
areas. The first step is to convert those raw features into a better representation with
the goal of reducing the number while keeping the most important aspects capturing
underlying information. For this purpose, we replaced per-voxel features of each area
with three summary statistics of underlying distribution, namely, the mean (µ), standard
deviation (σ), and skewness (sk), where µ aims to the capture central tendency, σ captures
the dispersion of values around this mean, and sk aims to measure the asymmetry of the
data around this mean. At the end of this step, our feature matrix F, for each subject i, can
be represented as a 48 by 18 matrix, as follows:
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Fi =


µFA1 σFA1 skFA1 · · · skTskew1
µFA2 σFA2 skFA2 · · · skTskew2

...
...

...
. . .

...
µFA48 σFA48 skFA48 · · · skTskew48


where Fi is the feature matrix for subject i using the first feature representation described
above. Each element in this matrix is a summary statistic (baseline: µ/σ/sk) for one of the
six features (subscript: FA/MD/Tskew) for an area from 1 to 48 (sub-subscript index).

2.5.1. Feature Engineering

Instead of directly using per-area summary statistics features, we developed an
enhanced representation that captures latent relative relationships between brain ar-
eas. We calculated Pearson correlation coefficient between each pair of brain areas l, m,
and use this correlation matrix as our feature matrix. Therefore, for each subject i,
ρl,m = corr(Fi(l, :), Fi(m, :)). Although this step increased the number of features per
subject slightly [from 48 × 18 = 864 to (48 × 47/2) = 1128], it helped in boosting the perfor-
mance of the classification, as we will see in the results. This novel representation, using
interactions, is considered a key contribution that helped in improving the performance.
The new second feature matrix F2_i for subject i is now represented by:

F2_i =


ρ1,1 ρ1,2 · · · ρ1,48
ρ2,1 ρ2,2 · · · ρ2,48

...
...

. . .
...

ρ48,1 ρ48,2 · · · ρ48,48


where each element in this matrix ρi,j is a correlation between the summary statistics vectors
of the two areas i, j. We highlight that only the upper triangle (U) of this new feature matrix
(or lower L, because of symmetry) is used in subsequent steps, as the rest is redundant
because of symmetry. Serializing those 1128 features, we can represent the final feature
matrix for all 225 subjects as F̂ with size 225× 1128, where each row is the concatenated
calculated correlations for one subject. Figure 1b illustrates those steps. In addition to the
data matrix, we have another column vector y denoting the labels of each subject, whether
ASD (yi = 1) or TD (yi = 0).

y =
[
y1, y2, y3, · · · , y225

]
2.5.2. Feature Reduction: RFE-CV

The feature space (1128 correlations) is quite large relative to our sample size (225 subjects).
As we discussed earlier, the number of features relative to the number of subjects needs
to be reduced, keeping the most informative features. While many feature reduction
techniques, such as linear discriminant analysis, principal component analysis, or autoen-
coders, can perform this task, they transform the feature space into a new one that does
not preserve the meanings of the original features. Building classification systems based on
those new ambiguous features would sophisticate the ability to understand any clinical
reasoning of classification results, hence making it less beneficial and reasonable to physi-
cians in generating an informative decision or understanding the underlying pathological
abnormalities of an autistic brain. We employed the recursive feature elimination (RFE)
technique, where only a subset of features is selected. RFE is a feature selection algorithm
based on feature ranking with recursive feature elimination. The principle behind RFE is
fitting a classification model, ranking the features by the model’s scoring, then eliminating
the weakest features recursively to find the optimal number of features to be selected. Cross
validation is used with RFE (RFE-CV), where data is split into k-folds, features are scored
based on different data subsets, and then the best scoring across the k-folds is selected.
The target optimization scoring metric (whether accuracy, balanced accuracy, f 1, weighted
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f 1, precision, recall, . . . ) can be specified, and here, we used balanced accuracy with
k = 10 folds for optimization. The algorithm then finds the optimal n significant features to
be selected that maximizes the average classification performance according to the target
metric [36,37]. To find the best architecture of RFE-CV that best fits our problem, we tested
four types of RFE-CV classifiers as kernels, namely linear SVM (LSVM), random forest (RF),
logistic regression (LR) with l1-norm (LR1), and LR with l2-norm (LR2), on the two feature
representations we have (original summary statistics Fi of 225× 864 and correlations F2_i
of 225× 1128). Thus, we obtained estimates using four different models, each selecting
features according to its classifier independently, and providing average cross-validated
scores for 10-folds; then we evaluated the performance of eight models to select which
model to use for further processing.

2.6. Classification

After having n selected features for each of 8 models representing the top prominent
features for distinguishing autistic brains, we set up a system of machine learning classifiers.
We tested eight different classifier types, and performed hyper-parameter optimization
for each one to end up with best parameter classifier model in terms of accuracy. We
included both linear and non-linear classifiers to test both types of relationships between
the two classes. The set of used classifiers are: (1) linear SVM (LSVM), (2) logistic regression
(LR), (3) passive aggressive classifier (PAGG), (4) SVM with radial-basis kernel (RBF-SVM),
(5) Gaussian naive Bayes (GNB), (6) random forest (RF), (7) XGboost (XGB), and (8) neural
networks (NN). Classifiers 1–3 are linear classifiers, while the rest are non-linear. Classifiers
6 and 7 are ensemble-based classifiers, and for NN we included both shallow and deep
configurations in our hyper-parameter search. For hyper-parameter optimization, after we
selected only n features according to the previous RFE-CV step, we tested a set of different
parameters with different ranges for each classifier. For this purpose, the input data is split
into five folds to determine the best performance according to the average across those
five folds. Therefore, for each classifier, using the selected features only, the following
steps were performed: (i) split data into five folds, use four for training and one for testing
each time, and for each parameters configuration, store the performance of the classifier
for each fold; (ii) The balanced accuracy scoring is used to decide the best configuration;
(iii) The best performing classifier is selected, and the hyper parameters along with its
maximum average cross-validated score, and also standard deviation over folds, are
highlighted. Table 1 shows the set of used hyper-parameters in the search associated with
each classifier and their ranges. Algorithm 1 illustrates a step-by-step guide of the full
implemented algorithm, and Figure 1 summarizes a graphical illustration of the pipeline
of the entire system.

Table 1. Used hyper-parameter values in a cross-validated grid search. Names between parentheses are parameter names
in the ML package.

Classifier Hyper-Parameter Range/ Values

(1) LSVM

Regularization (C) 0.1, 1, 5, 10

Loss function (loss) L1, L2

Penalization strategy (penalty) squared_hinge, hinge

(2) LR

Penalization strategy (penalty) L1, L2 elastic

Regularization (C) 0.1, 1, 5, 10

Solver algorithm (solver) newton-cg, lbfgs, liblinear, sag, saga

(3) PassiveAgressive
Regularization (C) 0.1, 1, 5, 10

N idle iteration before stop (n_iter_no_change) 1, 5, 10

(4) Nonlinear-SVM

Regularization (C) 0.1, 1, 5, 10

Kernel used (kernel) rbf, poly, sigmoid

Polynomial kernel degree (degree) 2–6

Kernel coefficient (gamma) scale, auto

Independent term in kernel function (coef0) 0.0, 0.01, 0.1, 1, 5, 10, 50, 100
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Table 1. Cont.

Classifier Hyper-Parameter Range/ Values

(5) GNB Default parameters priors = None, var_smoothing = 1× 10−9

(6) RF

Number of features to consider when looking for the best split (max_features) auto, sqrt, log2

Number of trees in the forest (n_estimators) 50, 100, 200, 500, 1000

Function to measure the quality of a split (criterion) gini, entropy

Bootstrap samples when building trees (bootstrap) True, False

Min # of samples required to split an internal node (min_samples) 1, 2, 5, 10

(7) XGB

Which booster to use (booster) gbtree, gblinear, dart

Learning rate (learning_rate) 0.001, 0.01, 0.1, 0.3, 0.5, 1

Min loss reduction required to make a further partition on a leaf node (gamma) 0, 0.1, 0.5, 1, 1.5, 2, 5, 20, 50, 100

Min sum of instance weight needed in a child (min_child_weight) 0.1,0.5, 1, 5, 10

Subsample ratio of columns when constructing each tree (colsample_bytree) 0.6, 0.8, 1.0

L2 regularization term on weights (lambda) 0, 0.001, 0.5, 1, 10

L1 regularization term on weights (alpha) 0, 0.001, 0.5, 1, 10

(8) NN

Hidden layer sizes (hidden_layer_sizes) (150,100,50,), (100,50,25,), (100,)

Activation function (activation) tanh, relu, logistic

Solver used for weight optimization (solver) lbfgs, sgd, adam

L2 regularization penalty (alpha) 0.0001,0.001,0.01, 0.05, 0.1, 0.5

Initial learning rate (learning_rate) constant, adaptive

Exponential decay rate for estimates of first moment vector in adam (beta_1) 0, 0.001, 0.01, 0.1, 0.3, 0.5, 0.9

Exponential decay rate for estimates of second moment vector in adam (beta_2) 0, 0.001, 0.01, 0.1, 0.3, 0.5, 0.9

Algorithm 1 Diffusion tensor autism diagnosis algorithm.

1: ∀ subject’s data files: (NII+bval+bvec) :
2: 1. Check for errors, check bval and bvec files.
3: 2. run pre-processing modules:
4: (i) Run skull stripping using brain extraction tool (BET).
5: (ii) Run FSL’s eddy current correction tool.
6: (iii) Register the DTI IIT Human Brain Atlas to each subject space using DTI-TK tool, save

transformations.
7: (iv) Recheck for any generated errors or deformations.
8: 3. Feature Calculations:
9: (i) Use FSL to calculate DTI tensor, scale units, calculate RDs, AD, FA, MD, Tskew volumes.

10: (ii) Apply resulted transformation on the JHU atlas labels to generate masks.
11: (iv) Use registered masks to extract each feature for each WM region.
12: (v) Calculate summary statistics (µ, σ, Sk) for each area for each feature (λ1,λ2,λ3,FA,MD,

Tskew), rank feature values across the different 48 brain areas, get a concatenated feature vector
(3*6). Create feature matrix F to be used as a first variant of the input data matrix X.

13: (vi) Calculate correlations between feature vectors of each two areas to create feature
matrix F2.

14: (vii) From F2: remove redundant correlations (L and diagonal) and concatenate U to
create F̂ to be used as a second variant of the input data matrix X.

15: 4. RFECV feature selection: for each feature representation, and for each RFE-CV kernel:
16: (i) Split input data X, labels y into k folds. Each time use one fold as Xtest, ytest, rest as Xtrain,

ytrain.
17: (ii) Train the classifier using each Xtrain, ytrain.
18: (iii) Get the balanced accuracy score of the trained classifier using Xtest, ytest.
19: (iv) Calculate the cross-validated score and sort features based on importance.
20: (v) Remove the least important features from X matrices, and repeat the steps from (i) to (v)

until only one feature exists.
21: (vi) Determine the n features that provided the best cross-validated score along with its

hyper-parameters to be used for each of the kernels.
22: 5. Classification:
23: ∀ classifier, for each configuration of hyper-parameters:
24: (i) Split reduced Xselect, with n selected features, into k folds, along with y.
25: (ii) Calculate the cross-validated score for each hyper-parameter’s configuration.
26: (iii) Determine best hyper-parameter configuration in terms of score for each classifier.
27: (iii) Find the best classifier/parameters, along with its used n features.
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3. Results

As discussed in the data subsection, the ABIDE-II dataset [38] was used for the testing
and validation of the above-mentioned methodology. ABIDE-II [38] provides hundreds of
subjects’ brain imaging data (structural MRI, functional MRI, and DTI) to enhance research
in autism spectrum disorder (ASD). DTI data used are only from the following five sites:
IP, NYU1, NYU2, TCD, and SDSU. Diffusion-weighted MRI (dwMRI) scans for a total of
225 subjects were used: 125 ASDs and 100 TDs, with age ranges between 5.128 years and
46.6 years.

The four types of RFE-CV kernels (LSVM, LR1, LR2, and RF) were used to select
features from the two different representations (summary statistics F, and correlations F̂),
and those features were used to train and test eight types of classifiers (LSVM, LR, PAGG,
RBFSVM, GNB, RF, XGB, and NN). The hyper-parameter optimization step was carried
out for each combination of [feature-RFECV kernel-classifier], using a grid search over
the list of hyper-parameters on Table 1 with five-fold cross validation with the help of the
GridSearchCV scikit learn toolkit. The aim of this search was to identify the best RFE-CV
kernel in terms of accuracy, to be used for the final classification/validation stage. Based
on the results of those 64 sets of combinations, we identified which setting best suits our
data, then we investigated it with more validations, changing the splits and varying the
number of folds.

Tables S1 and S2 in the Supplementary Materials show the full details of this round of
experiments for both feature representations: summary statistics F and correlations F̂, re-
spectively. We notice that both LR1 and LR2 kernels almost failed to provide representative
features in terms of accuracy results (accuracy ~60%). While the RF kernel provided us with
moderate results (mostly above 70%), LSVM was the one we were searching for, achieving
accuracies of up to 99% with F̂ features. More importantly, we highlight that using our
novel feature representation F̂, we were able to achieve this high boost in classification
results. To show which types of features were more representative, we show the histogram
of the occurrence of each type of summary statistics appearing in selected features from
F with LSVM RFE-CV used in Figure 2. The figure illustrates the efficacy of adding SK
feature which appeared as important as the common FA metric, and points out coice of
skewness as a relevant summary statistic.

(a) (b)

Figure 2. Histogram of types of selected summary statistic features. (a) for the occurances of each
feature type, (b) for summary statistics occurrences.

Following these results, we will only use the LSVM RFE-CV kernel with F̂ representa-
tion (correlations) for further investigations, as it shows better performance. We will fix the
hyper-parameters of the eight classifiers to the ones we previously found on the first set of
experiments (Table 2), and randomly re-split different settings of k-fold cross validation,
with k = [2, 4, 5, 10], to test whether the achieved performance is highly dependent on
the split and/or the subjects of previous experiment and see the effect of changing the
proportion of train/test on the results.
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Table 2. The fixed hyper-parameters found to optimize performance on the set of tested classifiers.

lSVM {‘penalty’: ‘l2’, ‘loss’: ‘hinge’, ‘C’: 1}

pagg {‘n_iter_no_change’: 5, ‘C’: 0.1}

LR {‘solver’: ‘newton-cg’, ‘penalty’: ‘none’, ‘C’: 0.1}

XGB
{‘reg_lambda’: 0.001, ‘reg_alpha’: 0, ‘min_child_weight’: 10, ‘learning_rate’: 1,
‘gamma’: 0.1, ‘colsample_bytree’: 0.6, ‘booster’: ‘gblinear’}

GNB defaults

SVC {‘kernel’: ‘poly’, ‘gamma’: ‘scale’, ‘degree’: 3, ‘coef0’: 5, ‘C’: 0.1}

Rf
{n_estimators’: 50, ‘min_samples_split’: 2, ‘min_samples_leaf’: 0.1,
’max_features’: ‘sqrt’, ‘criterion’: ‘entropy’, ‘bootstrap’: False}

nn
{‘solver’: ‘adam’, ‘learning_rate’: ‘adaptive’, ‘hidden_layer_sizes’: (100,),
‘beta_2’: 0.5, ‘beta_1’: 0.5, ‘alpha’: 0.0001, ‘activation’: ‘logistic’}

Table 3 shows the final diagnostic accuracies of our proposed framework using our
novel feature representation with the help of RFE-CV with the LSVM kernel, and Table 4
shows the area under the curve for each of the classifiers across different k-folds. Without a
new optimization, using the same settings, and on new sets of random splits, our innovative
algorithm was still able to provide up to 99% accuracy, which clearly manifested the
strength of the presented algorithm.

Table 3. Mean accuracy ± standard deviation across the k-folds, with k = 2, 4, 5, 10.

k = 2 k = 4 k = 5 k = 10

LSVM 0.92 ± 0.018 0.991 ± 0.015 0.999 ± 0.002 0.999 ± 0.002
pagg 0.893 ± 0.018 0.951 ± 0.037 0.96 ± 0.026 0.982 ± 0.03
LR 0.902 ± 0.0 0.964 ± 0.018 0.978 ± 0.02 0.991 ± 0.018

XGB 0.556 ± 0.011 0.604 ± 0.021 0.591 ± 0.041 0.609 ± 0.119
GNB 0.644 ± 0.025 0.618 ± 0.079 0.613 ± 0.08 0.684 ± 0.133

RBF-SVM 0.511 ± 0.038 0.529 ± 0.021 0.573 ± 0.022 0.582 ± 0.076
RF 0.609 ± 0.02 0.591 ± 0.04 0.591 ± 0.05 0.596 ± 0.054
NN 0.871 ± 0.004 0.969 ± 0.019 0.973 ± 0.026 0.964 ± 0.034

Table 4. Calculated area under the curve for each classifier across the k-folds, with k = 2, 4, 5, 10.

k = 2 k = 4 k = 5 k = 10

LSVM 0.919 0.991 0.999 0.999
pagg 0.891 0.948 0.959 0.982
LR 0.9 0.962 0.977 0.991

XGB 0.543 0.593 0.583 0.606
GNB 0.644 0.618 0.608 0.683

RBF-SVM 0.509 0.529 0.565 0.575
RF 0.571 0.549 0.548 0.552
NN 0.873 0.969 0.975 0.963

Figure3 illustrates the importance of the top selected features by our RFE-CV LSVM
kernel. The bars in blue on the left indicate high negative correlation importance with
our positive class (autism), while the ones in dark orange on the right indicates a positive
importance coefficient. The longer the bars, the higher the coefficient, indicating more
importance for features of this brain-area pair. Table 5 lists the name of the top twelve feature-
pairs as ranked by our selection algorithm for easier identification. We can see that most of
those brain areas already appear in the literature as correlating with the ASD phenotype.
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We already see some areas appear more than once in the top 12 pairs; we will discuss the
importance of the highlighted brain areas more in the following section, Discussion.

Figure 3. Sorted coefficient of importance for the top 50 selected features of the area pairs correlations.

Table 5. Top 12 WM brain area pairs which feature correlations were highly ranked through RFE-CV
selection. L or R at the end stands for the left or right hemispheres, respectively.

Retrolenticular Part of Internal Capsule L & Fornix Cres/ Stria Terminalis
Anterior Limb of Internal Capsule L & Uncinate Fasciculus R

Body of Corpus Callosum & Tapetum L
Corticospinal Tract R & Posterior Corona Radiata R

Posterior Limb of Internal Capsule R & Retrolenticular Part Of Internal Capsule R
External Capsule R & Tapetum L

Middle Cerebellar Peduncle & Inferior Cerebellar Peduncle R
Anterior Limb of Internal Capsule R & Tapetum R

Middle Cerebellar Peduncle & Cingulum Cingulate Gyrus L
Anterior Limb of Internal Capsule R & Fornix Cres /StriaTerminalis R

Inferior Cerebellar Peduncle R & Retrolenticular Part Of Internal Capsule R
Cingulum Hippocampus L & Superior Fronto-occipital Fasciculus R

4. Discussion and Conclusions

The proposed technique adopted in this study introduced a novel feature represen-
tation applied to a large number of subjects obtained from a publicly available dataset.
We performed extensive experimentation to validate the results introduced through this
paper, as well as paved the path for developing new frameworks that may benefit from
our novel algorithm. In addition to the achieved promising results, in terms of high cross-
validated balanced accuracy, we introduced the notion of interaction between brain areas’
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micro-connectivity and its viability of reaching a better classification of autism. More
importantly, we identified the brain-area pairs that mostly contributed to reaching the
final decision. We highlight that those identified brain areas in Table 5 align with the
corpus of findings from previous literature studying autism impairments. The uncinate
fasciculus (uc) is a fiber pathway through the external capsule (ec) which links the ventral
frontal cortex, in particular Brodmann areas 11 and 47, with the temporal pole, and dif-
ferences in it were revealed in [39,40]. On the other hand, the middle cerebellar peduncle
(mcp) carries signals from the cerebral cortex and subcortical regions, via the pontine
nuclei, into the cerebellar cortex. The internal capsule (ic) microstructure was found to
undergo an atypical developmental trajectory in autistic patients, manifested as increased
connectivity from childhood to adulthood [41]. All parts cited in this study of the ic are
involved in autism [41–45], and DTI changes have been correlated with autistic behaviors,
including inattention, self injury, repetitive behaviors, and social deficits. In general, all
white matter tracts identified here (Table 5, Figure 3) connect cortical (sensory motor cor-
tex, frontal/occipital lobes, cingulate) and subcortical regions (thalamus, hippocampus,
cerebellum), thereby contributing to deficits (inattention, self injury, repetitive behaviors,
motor, social, memory, emotional regulation, and sensory impairments) found in autistic
individuals [41–43]. Shukla et al. [45] identified reduced FA and increased RD in the ic
and corpus callosum (cc) in children with autism. They also spotted increased MD in
anterior and posterior limbs of ic. Significant differences in the AD of the stria terminalis
(st) was reported by Yamagata et al. [46] between ASD and TD individuals. Reduced FA
and increased RD of st was also reported in [40], and higher AD of st in TD children was
noted in [43]. Differences in middle, inferior, and superior cerebellar peduncles [45,47–49]
and the corpus callosum [43,45,47,50] were also reported in those previous studies.

The tapetum WM is part of the splenium fibers around the cc, providing connectivity
between the temporal lobe, and was found to play a role in different mental disorders [51].
Reduced FA, increased RD, and decreased AD of the tapetum has been reported in ASD.
Abnormalities in the corticospinal tract, corona radiata, external capsule, cingulum cingu-
late cyrus, cingulum hippocampus, and superior fronto-occipital fasciculus were noted
in previous studies [13,23,40,42,44,49,52–56]. We stress that our findings are for brain re-
gions’ interactions with others, following the idea of disrupted connectivity introduced by
Vasa et al., and work normally when done in functional MRI experiments. In [57], Vasa et al.
reviewed some of the current structural and functional connectivity ASD data to examine
the “disrupted connectivity” theory. They identified and highlighted many confounding
factors in the literature that could have affected this conclusion.

In conclusion, the classification framework presented accomplishes many objectives.
It provides a high state of the art balanced accuracy on a public dataset, and interpretability,
not only in providing a ASD/TD diagnosis, but also in identifying what areas contributes to
such a classification. Those spotted brain areas can be reported early with the framework’s
diagnosis to the physician, who can now make better informed decisions. We believe
that this is an important aspect that would lead to a better understanding of the brain
abnormalities associated with autism. The system we present is also scalable: adding more
subjects that can be preprocessed and feature calculated independently, and fusion of an
extra modality, such as structural MRI features or resting state functional MRI for the same
subject, can be easily integrated. On the other hand, we stress that the robust results were
obtained and validated using only five ABIDE-II sites, and adding more datasets should
guarantee generalizability of our proposed framework, which can be a good direction for
future work. Moreover, more sophisticated medical interpretation is needed not only to
map those affected brain areas to TD vs. ASD, but also to correlate them with ADOS or
similar scores, allowing more distinction per scored module. This may need integration
with other imaging modalities such as sMRI or fMRI to incorporate different aspects (shape
and functionality) to our classification framework, progressing towards an integrated
system for autism assessment and providing better interpretation and understanding of
underlying personalized diagnosis.
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Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
s21248171/s1, Table S1: contains accuracy results for F representation, for different RFE-CV kernels.
Table S2: contains accuracy results for F̂ representation, for different RFE-CV kernels. Table S3:
subjects’ demographics: subject IDs, along with age, label, IQ, and gender, and also the summary of
those demographics for each group.
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