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Abstract: Most algorithms for steering, obstacle avoidance, and moving object detection rely on accu-
rate self-motion estimation, a problem animals solve in real time as they navigate through diverse
environments. One biological solution leverages optic flow, the changing pattern of motion expe-
rienced on the eye during self-motion. Here I present ARTFLOW, a biologically inspired neural
network that learns patterns in optic flow to encode the observer’s self-motion. The network combines
the fuzzy ART unsupervised learning algorithm with a hierarchical architecture based on the primate
visual system. This design affords fast, local feature learning across parallel modules in each network
layer. Simulations show that the network is capable of learning stable patterns from optic flow
simulating self-motion through environments of varying complexity with only one epoch of training.
ARTFLOW trains substantially faster and yields self-motion estimates that are far more accurate than
a comparable network that relies on Hebbian learning. I show how ARTFLOW serves as a generative
model to predict the optic flow that corresponds to neural activations distributed across the network.

Keywords: optic flow; heading; self-motion; neural decoding; adaptive resonance theory; vision;
biologically inspired; neural network

1. Introduction

When it comes to navigation through diverse, complex environments, animals demon-
strate capabilities that far outpace those of machines. Principles derived from biological
systems have the potential to catalyze efficient solutions that enhance autonomy in un-
manned aerial vehicles (UAVs) and other mobile robotic systems [1–4]. Notably, many
animals rely primarily on vision to perceive their self-motion in just fractions of a second.
Insects [5,6] and humans [7] use a rich source of visual information about self-motion
to guide navigation known as optic flow, the pattern of motion that arises on the eye.
Optic flow holds promise for UAV navigation because computing it only requires a single-
resolution camera sensor of modest spatial resolution [8]. This could enable light-weight,
energy-efficient solutions that reduce or eliminate the need for LiDAR, binocular cameras,
and other large sensor arrays. Since optic flow based navigation does not require exter-
nal communication, it could increase autonomy in situations where GPS signals or radio
connections are unreliable or absent.

Mathematically, any first-order optic flow pattern that corresponds to self-motion through
a rigid environment can be decomposed into components that represent the translation and
rotation of the observer (Figure 1) [9]. The translational component consists of motion that
radiates from a singularity known as the focus of expansion (FoE) (Figure 1b) [10]. The rota-
tional component (Figure 1C) reflects changes in the 3D orientation of the observer (pitch, yaw,
and roll) when movement occurs along a straight path. When self-motion does not involve
rotation, the position of the FoE specifies the observer’s instantaneous direction of movement
(heading). As Figure 1 illustrates, however, the presence of rotation may cause the position of
the singularity to shift such that it no longer corresponds to the heading direction (compare
Figure 1A and Figure 1B). Solutions to this problem tend to exploit visual [11–14] or nonvi-
sual [15–17] information to estimate the rotational component (R) and factor it out from the raw
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optic flow pattern (T + R). This yields the translational component (T = T + R− R) from
which heading may be estimated.

= +

T+R RT
A B C

FoE

Figure 1. The optic flow experienced by a moving observer (A) is the sum of translational (B) and rotational (C) components.
The motion singularity in the presence of rotation (black disk) need not correspond to the FoE (red disk), which corresponds
to the heading direction of the observer. Heading of 0◦ corresponds to straight-ahead (B), and headings to the right (left) are
positive (negative). The influence of yaw rotation is depicted in (A).

While numerous computer vision algorithms estimate self-motion from optic flow [18],
the focus here is on biologically inspired approaches that emulate mechanisms in the brain.
A large family of approaches models the structure and function of the medial temporal
(MT) and dorsal superior temporal (MSTd) areas of the primate brain [11,19–24]. Neurons
in MT demonstrate sensitivity to the direction and speed of motion within small regions of
the visual field. MSTd contains neurons that demonstrate tuning to full-field radial and
laminar patterns of motion that resemble translational (Figure 1B) and rotational (Figure 1C)
optic flow, respectively [25,26]. Consistent with neurophysiology, each model MSTd neuron
performs a feedforward integration of local motion signals from MT in a configuration that
matches the preferred optic flow pattern of the MSTd cell. For example, a cell sensitive
to the pattern of radially expanding optic flow that corresponds to self-motion along
a straight-ahead heading (0◦; Figure 1B) would receive leftward motion signals on the left
side of the visual field, rightward motion signals on the right side of the visual field,
etc. This process can be thought of as matching optic flow signals with motion pattern
“templates.” The preferred heading of each MST cell is determined by the position of
the FoE in its template (e.g., 0◦ for a template that resembles Figure 1B). The overall
heading estimate considers the activation of all model MSTd cells. For example, the heading
preference of the maximally active cell or a weighted sum of the preferences of active cells
could constitute the estimate.

Many models rely on predefined templates that necessarily make assumptions about
the layout of the environment to match optic flow signals [11,19,21–24,27–29]. For example,
radial templates (Figure 1B) correspond to linear self-motion toward the fronto-parallel
wall, ground templates assume that the observer moves a fixed height over a flat ground
plane, etc. Actual self-motion scenarios inevitably deviate from these layouts. Even if
the predefined templates yield reasonable heading estimates in some cases [11,30], it is
difficult to anticipate how well they will generalize and support accurate self-motion
estimates. Moreover, the set of predefined templates may not efficiently capture the range
of optic flow patterns encountered during navigation through diverse, novel environments.

Learning Optic Flow Templates for Self-Motion Estimation

Here I present a fast, biologically inspired neural network that learns optic flow
templates that can be used to estimate self-motion through arbitrary environments. The ap-
proach builds on the fuzzy adaptive resonance theory (fuzzy ART) family of biologically
inspired unsupervised learning algorithms [31,32]. Fuzzy ART leverages a combination
of feedforward, recurrent, and feedback neural signals during learning to update exist-
ing learned representations only when a close enough match is obtained to the current
sample, which results in stable learning. The proposed network, ART Fuzzy Logic Optic
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flow Wayfinder (ARTFLOW), inherits the following compelling advantages of fuzzy ART
networks over those that rely on the backpropagation algorithm [33]:

• Learned representations are stable and do not suffer from catastrophic forgetting.
• The learning process and predictions are explainable.
• Effective learning is possible with only a single pass through training samples (one-

shot learning).
• Lifelong learning: the learning process need not occur in discrete training and predic-

tion phases—learning may continue during operation.

Building on these strengths, I made contributions in two key areas to make the fuzzy
ART neural network suitable for learning optic flow and other sensory patterns.

First, neurons are fully connected in typical fuzzy ART neural networks. Analogous
to multi-layer perceptrons (MLPs), such dense connections do not scale well to the large
numbers of features encountered when processing sensory data. Additionally, spatial
relationships among features are not preserved. This is problematic for processing optic
flow wherein the configuration of the motion vectors in the global pattern is important.
I addressed this challenge in ARTFLOW by introducing parallel fuzzy ART modules that
tile space on a discrete grid (Figure 2). Each module only processes signals that arise
within its limited receptive field (RF). This local processing architecture bears similarities
to convolutional neural networks (CNNs), which excel at processing sensory data.

Second, fuzzy ART consists of strictly two network layers, which does not afford learn-
ing of hierarchical relationships among features at multiple scales. In ARTFLOW, the out-
puts of topographically close, spatially offset fuzzy ART modules converge in the next
network layer (Figure 2). Similar to CNNs, this gives rise to emergent features at different
hierarchical levels. Unlike CNNs, however, learned features are spatially confined to
the portion of the visual field sampled by each fuzzy ART module. That is, weights are
not shared between modules. For example, modules sampling the bottom of the visual
field learn optic flow patterns that reflect the statistics of ground flow while those that
sample the top of the visual field learn distinct representations reflecting flow from trees,
ceilings, etc.

I evaluated the ARTFLOW network using video datasets of simulated self-motion
through dot-defined environments and visually realistic neighborhood and warehouse
scenes rendered using the Unreal video game engine. The dot-defined scenes serve as
controlled environments with which to test learning on large numbers of optic flow patterns
that arise during specific types of self-motion. I decoded activations from the top “MSTd”
layer of ARTFLOW to assess how well the learned optic flow templates support accurate
heading estimation. I compared performance to an identically structured hierarchical
network that replaces fuzzy ART modules with those that rely on the simpler Hebbian
learning law.
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Figure 2. Overview of the ARTFLOW neural network architecture. The hierarchical network learns
optic flow template patterns (top layer) from sequences of optic flow. Depicted is an example 3-
layer network configured with 8 × 8, 4 × 4, and 1 × 1 grids of fuzzy ART modules, respectively.
The MT layer preprocesses the optic flow, embedding each local signal into a neural representation
with respect to motion speed and direction. Black squares represent distinct fuzzy ART modules,
and circles in each fuzzy ART layer represent “committed cells” in the fuzzy ART network contained
within each module. Black (blue) circles illustrate inactive (active) neurons. Committed cells learn
distinct patterns based on the optic flow statistics that appear within each receptive field. Hence,
the number may naturally vary across modules, as depicted by the different number of circles
in the squares. Only connections corresponding to processing of the optic flow in the bottom-left
corner are shown (pink squares). Each module is fully connected (purple lines) to committed cells
in one or more nearby modules in the previous layer.

2. Materials and Methods
2.1. Optic Flow Datasets
2.1.1. Dot-Defined Environments

Table 1 summarizes the camera parameters used to generate the datasets of simu-
lated self-motion through the two environments that consist of randomly positioned dots.
In these environments, I distributed the dots either along a ground plane or within a 3D
cloud in front of the observer. Each sample in the dataset consisted of self-motion along
a constant linear path for 10 digital video frames, 0.33 s in duration with a 30 frames-per-
second frame rate. On each video frame, I clipped and replaced dots that exited the field
of view or valid depth range to ensure that the same number of dots always remained
visible. I computed the optic flow using a pinhole camera model [18] and standard ana-
lytic equations [9]. This served as the input to the ARTFLOW network. Figure 3 shows
example optic flow fields from 3D dot cloud and ground environments. Table 2 specifies
the conditions used to generate the datasets in each simulation experiment.
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Table 1. Parameters specifying self-motion through 3D dot cloud and ground plane environments.

Parameter Value

Video spatial resolution 512 × 512 pixels
Translational speed 3 m/s
Camera focal length 1.74 cm

Field of view 90◦

Eye height 1.61 m
Number of dots in scene 2000

Observer-relative depth range of dots 1–50 m

Table 2. Specification of datasets with dot-defined environments. T indicates optic flow that contains only translation,
and T + R indicates optic flow with both translational and rotational components. Training set is used to learn optic flow
templates, while test set is used to evaluate performance on novel patterns. Uniform indicates sampling from the uniform
random distribution with the specified endpoints. Azimuth and elevation angles of 0◦ correspond to straight-ahead heading.

Dataset Description Size
(Num Videos) Independent Variables

3D dot cloud (T)
Translational self-motion through 3D

dot cloud along random
heading directions

Train: 500
Test: 250

Heading azimuth and elevation:
Uniform(−45◦, 45◦)

Ground plane (T)
Translational self-motion over
a ground plane with random

heading directions

Train: 500
Test: 250

Heading azimuth and elevation:
Uniform(−45◦, 45◦)

3D dot cloud (T + R)
Self-motion through 3D dot cloud

along random 2D heading directions
with varying amounts of pitch, yaw,

roll rotation

Train: 1000
Test: 500

Heading azimuth and elevation:
Uniform(−45◦, 45◦) Rotation

speed:
Uniform(1, 10)◦/s

A B C

D E

3D Dot Cloud (T) Ground (T) 3D Dot Cloud (T+R)

Neighborhood Warehouse

Figure 3. Example optic flow samples from the random dot (top row) and Unreal (bottom row) datasets.
Samples consisted of translational optic flow, except for those in the 3D Dot Cloud (T + R) dataset,
which also contained rotation. One such sample is shown in (C) with (5◦azimuth, 1◦elevation)
translation, and 7 ◦/s yaw and roll rotation.
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2.1.2. Neighborhood and Warehouse Environments

The neighborhood and warehouse datasets were generated using Microsoft Air-
Sim [34], a simulation environment for drones that renders visually realistic scenes using
the Unreal game engine. The neighborhood dataset consists of self-motion through a rich
outdoor scene with grass, trees, houses, fences, streets, and other objects. The warehouse
environment consisted of a darker indoor scene with tall shelving, skylight reflections,
and boxes. I created 150 ten frame video samples from each of these environments at
512 × 512 resolution. I estimated the optic flow from the videos using DeepFlow2 [35].
Figure 3 shows example optic flow fields extracted from the neighborhood and ware-
house scenes.

2.2. Overview of ARTFLOW Neural Network

Figure 4 shows the configuration of the two-layer ARTFLOW neural network used
in simulations. The first non-input layer embeds optic flow inputs into a neural representa-
tion that emulates primate area MT (MT preprocessing layer). This yields a distributed code
of the optic flow with respect to speed and direction. Subsequent layers contain separate
modules arranged in a spatial, non-overlapping grid (henceforth “fuzzy ART layer”). Each
module implements an independent instance of the fuzzy ART neural network (henceforth
“fuzzy ART module”). The number of fuzzy ART layers and connectivity between them is
flexible. For example, Figure 2 shows a three layer network with 8 × 8, 4 × 4, and 1 × 1
module configurations in each respective layer. I found that two layers were sufficient for
the simulations reported here. Connections between modules in successive layers followed
a hierarchical, “fan in” configuration—the first fuzzy ART layer consisted of an 8 × 8 grid
of modules that converged to a single module in the second fuzzy ART layer. The weights
of neurons in this top layer represent the learned optic flow templates.

Table 3 summarizes hyperparameters and their default values in ARTFLOW.

Table 3. ARTFLOW hyperparameters and default values used in simulations. Most MT hyperparameters are set according
to physiologically informed values.

Parameter Layer Type Description Value

NMT MT Number of MT neurons 5000
MT RF radius 15 pixels (2.5◦)

θpre f MT Preferred direction of neuron Uniform (0◦, 360◦)
σθ MT Bandwidth of direction tuning 3◦

σν MT speed tuning bandwidth N (µs = 1.16◦, σs = 0.5◦)
s0 MT Non-negative offset parameter to prevent

singularity in speed logarithm
Exp (0.25◦/s)

νpre f MT Preferred speed of neuron Uniform (0.5, 2.0)◦/s,
Uniform (2.0, 4.3)◦/s,
Uniform (4.3, 7.6)◦/s,
Uniform (7.6, 12.7)◦/s,

Uniform (12.7, 32.0)◦/s
AMT MT Passive decay rate 0.1
BMT MT Excitatory upper bound 2.5

MT Temporal integration time step 0.1 frames (0.003 s)
γMT MT Input value that yields 0.5 in sigmoid

activation function
0.007 (median empirical input)

Fuzzy ART Fuzzy ART module arrangement Layer 1: 8 × 8, layer 2: 1 × 1
α Fuzzy ART Activation prior on existing representations 0.01
ρ Fuzzy ART Vigilance Layer 1: 0.65, layer 2: 0.85
β Fuzzy ART Learning rate 1 (when committing new cell)

0.1 (when updating weights)
Fuzzy ART Number of training epochs Layer 1: 1, layer 2: 1
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2.3. MT Preprocessing Layer

Model MT neurons exhibit sensitivity to the speed and direction of optic flow signals
over time. I based parameter values on known neurophysiology where possible.

2.3.1. Optic Flow Integration

I positioned 5000 (NMT) model MT neurons such that they sampled random portions
of the 512 × 512 pixel optic flow field. Each neuron integrated motion within its 15 pixel
radius (≈ 5◦ diameter) circular RF [36].

Direction preferences were uniformly distributed. Tuning to the direction θ(x, y)
present at position (x, y) within the RF of a neuron relative to the preferred direction θpre f
followed a von Mises distribution:

dMT(x, y; θpre f ) = exp(σθ(cos(θ(x, y)− θpre f )− 1)) (1)

where σθ = 3◦ indicates the bandwidth of the direction tuning, which was set to approxi-
mate the ≈ 90◦ full-width at half-maximum found in MT cells [37,38].

The tuning of each model MT neuron to the optic flow speed (ν) at position (x, y)
within the RF followed a log-normal distribution [39]:

sMT(x, y; νpre f ) = exp

− log
(

ν(x,y)+s0
νpre f +s0

)2

2σ2
ν

 (2)

where σν defines the speed tuning bandwidth; s0 defines a non-negative offset parameter
to prevent the singularity in the logarithm at 0; and νpre f defines the preferred speed of
the model neuron. Given that MT neuron speed tuning varies considerably, I sampled
values from probability distributions that approximate neurophysiological fits to these
parameters. Based on Figure 4 of [39], I sampled σν from a Gaussian distribution (mean:
1.16◦, SD: 0.5◦) and s0 from an exponential distribution (λ: 0.25◦/s). Consistent with
Figure 8 of [39], I sampled νpre f from five uniform distributions with endpoints that yielded
octave spaced bins.

2.3.2. Net Input

The net input of each model MT neuron is the average product of the direction and
speed inputs within the RF:

IMT =
1

NMT,RF

NMT,RF

∑
x,y

dMT(x, y; θpre f )sMT(x, y; νpre f ) (3)

where NMT,RF defines the number of optic flow inputs that appear within the RF. Each MT
unit (n) integrates the optic flow signal over time:

dn
dt

= −AMTn + (BMT − n)IMT . (4)

In Equation (4), AMT = 0.1 indicates the rate at which the neural response decays
in the absence of input, and BMT = 2.5 indicates the excitatory upper bound of the neuron.
I used Euler’s method to integrate Equation (4) with a time step of 0.1 frames (0.003 s).

2.3.3. Net Activation

I applied the following sigmoid activation function to compute each MT output
signal (m):

m =
n2

n2 + γ2
MT

(5)
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where γMT indicates the input that yields an activation value of 0.5. We set γMT = 0.007,
which was the approximate median n value on the 3D dot cloud (T) dataset.

Input layer (512x512x2 optic flow)

MT preprocessing layer (5000x1)
  Neural speed and direction signal sampled at
  random positions in the optic flow.

Fuzzy ART layer (8x8 modules)

Fuzzy ART layer (1x1 modules)
  “MSTd” optic flow templates

Figure 4. ARTFLOW network configuration used in simulations.

2.4. Fuzzy ART Layer 1

The MT signal (NMTx1) obtained after integrating each 10 frame optic flow sequence
(Equations (4) and (5)) served as the input to the first fuzzy ART layer during training and
prediction. This fuzzy ART layer consisted of 64 fuzzy ART modules arranged in a 8 × 8
spatial lattice. Each module received input from MT cells whose RF centers fall within
its designated spatial sector, denoted ~m. For example, the module on the bottom-left
sector receives input from MT neurons whose RFs sample the bottom-left 64 × 64 pixel
sector within each 512 × 512 optic flow frame. Due to the random placement of the MT
RFs, the MT input features (M; length of ~m) may differ between modules. For example,
the bottom-left module may have M = 113 input features if 113/5000 MT RFs sample that
sector; an adjacent module may have M = 97 features representing a distinct population of
97/5000 MT neurons; etc.

2.5. Fuzzy ART Modules

Here I summarize key stages of the fuzzy ART algorithm [32,40] implemented within
each module. The input to each module was complement coded

~x = [~m, 1− ~m], (6)

which doubles the length of each feature vector ~x to 2 M. The weights between the input
and coding layers of the fuzzy ART network are initialized as a 2 M× Cmax matrix of 1 s,
where Cmax represents the maximum number of coding layer cells that may be allocated
(“committed”) toward learning distinct patterns in the input. I set the value of Cmax large
enough such that the network did not run out of commitable coding nodes in practice.
The number of committed coding cells C is initially zero.

The activation Tj of coding cell j = 1, . . . , C, obeys the choice-by-difference (CBD)
function [41,42]:

Tj = ||~x ∧ ~wj||1 + (1− α)
(

M− ||~wj||1
)

(7)

where || · ||1 indicates the L1 norm; the ∧ operator indicates the fuzzy intersection (i.e.,
component-wise minimum of the two vectors) of its arguments; ~wj is the 2M× 1 weight
vector associated with committed coding cell j; and α = 0.01 balances priors on existing
learned representations with their match to the current input in determining the activation
Tj. The set of Tj values is empty initially when no coding cells are committed.



Sensors 2021, 21, 8217 9 of 19

2.5.1. Training

The ART search cycle determines whether the weights of a previously committed
coding cell will be updated based on the current input or a new coding cell will be
committed during training. The search cycle checks how close the current input pattern (~x)
is to weights of committed coding cells. Committed coding cells are checked sequentially
in descending order of their activations Tj. Let i index the coding cell currently checked
in the ART search cycle. The following function determines the degree of match between
the input sample and weight vector ~wi of coding cell i:

Γi =
||~x ∧ ~wi||1
||~x||1

(8)

If the match score meets or exceeds the “vigilance” threshold ρ (i.e., Γi ≥ ρ), the weights
~wi of the current coding cell are updated according to the following equation, and, after-
wards, the next input sample is processed.

~wi = β(~x ∧ ~wi) + (1− β)~wi (9)

In Equation (9), 0 ≤ β ≤ 1 is a learning rate hyperparameter.
If the current coding cell does not yield a match to the input sample, the match Γj to

the next coding cell with the next highest Tj is checked. If none of the committed coding
cells yield a match or C = 0 (i.e., no coding cells are yet committed), a new coding cell is
committed. This means that C is incremented and the weight update rule (Equation (9)) is
applied to ~wC, a column vector of 1 s. The next input sample is subsequently processed.
I used the fast-commit slow-recode mode [32] to enhance weight stability whereby β = 1
the first time a coding cell is committed and β = 0.1 on subsequent weight updates.

The vigilance threshold 0 ≤ ρ ≤ 1 represents an important hyperparameter whose
value jointly controls the granularity of learning and the number of coding cells that will
be committed over the course of training. At the extremes, ρ = 1 implies that separate
coding cells will be committed for every input sample, while ρ = 0 implies that a single
coding cell will attempt to encode every sample. I constrained all modules within the same
fuzzy ART layer to share a common vigilance value.

2.5.2. Prediction

The output of each module is a function of the committed coding cell activations
(Tj). I used the softmax function for non-output fuzzy ART layers to produce distributed,
normalized activations that sum to 1. For the output layer, I selected the identity function:
the raw Tj values.

2.6. Non-Input Fuzzy ART Layers (MSTd Layer)

The activation of the committed coding cells across the 64 (8 × 8) modules are con-
catenated to form the input vector to the single module in the second fuzzy ART layer
(henceforth “MSTd layer”). Because the number of committed cells is determined during
training, I trained fuzzy ART layers sequentially: I trained the fuzzy ART layer 1 first, froze
its weights, then trained the MSTd layer.

2.7. Decoding Self-Motion Estimates

I trained two decoders (one linear and one nonlinear) using gradient descent to
estimate self-motion parameters from the MSTd layer activations. Both decoders were
implemented as backpropagation neural networks that use the Adam optimizer with
default parameters to minimize mean-squared error (MSE) loss. I standardized both
the features and labels. A single-layer MLP served as the nonlinear decoder, which had
250 hidden units and the rectified-linear (ReLU) activation function. Each decoder network
had two output units when estimating heading (azimuth and elevation angles) and five
output units when estimating rotation (heading azimuth, heading elevation, pitch, yaw,
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and roll). I used early stopping (patience of 5) to halt training when the validation set loss
stopped decreasing.

2.8. Training Protocol

I trained ARTFLOW on the training set of each dataset (Table 2) for 1 epoch by
default (one-shot learning). During prediction, I froze learning and computed predicted
activations on the corresponding test sets. On the neighborhood dataset, I used an 80/20
split to subdivide the 150 videos into train and test sets. The warehouse dataset served only
as a test set to evaluate how well the optic flow templates learned on the neighborhood
scene generalize to the novel environment.

I trained the decoders on the ARTFLOW MSTd layer activations produced to each
sample in the training set after learning completed. The reported accuracy reflects decoder
estimates of heading and rotation parameters from MSTd layer activations obtained to
the test set samples.

2.9. Hierarchical Hebbian Network

I compared ARTFLOW to an identically structured hierarchical network that imple-
ments Hebbian learning rather than fuzzy ART in each module. Because the weights of
a single Hebbian neuron converge to the first principal component (PC) of its input and
fuzzy ART networks learn C optic flow templates, I implemented Sanger’s network in each
module, which adapts Hebb’s Rule for learning the top C PCs [43]. To facilitate comparison
among the networks, I configured each Sanger module to have Cmean neurons, the mean
number of committed coding cells across the corresponding fuzzy ART network layer.
Unlike the fuzzy ART network, Sanger modules have the same number of neurons across
the same layer.

I trained each Sanger’s network with a learning rate of 0.01. Training ceased when
differences between weight matrices on successive epochs dropped below a Frobenius
norm of 0.01. To prevent negativity in each neural output x from Sanger modules during
prediction, I applied a logistic activation function:

f (x) =
1

1 + e−x (10)

2.10. Simulation Setup and Code Availability

I implemented the model and performed simulations using MATLAB R2021b on an
Apple MacBook Pro equipped with the six-core 2.9 Ghz Intel Core i9-8950HK processor and
16 GB of memory. Fuzzy ART layers were implemented such that training and prediction
computations across modules ran in parallel on the CPU. The code is available on GitHub:
https://github.com/owlayton/ARTFLOW (accessed on 1 October 2021).

3. Results

I begin by highlighting key properties of the optic flow templates learned by ART-
FLOW. Subsequent sections focus on the accuracy of self-motion estimates derived from
the network.

3.1. Learning Optic Flow Templates

The ARTFLOW network learned diverse motion patterns that capture distinct charac-
teristics of the optic flow encountered during simulated self-motion through each visual
environment (first rows in Figure 5A–D). The optic flow templates learned from the 3D
dot cloud (T + R) dataset (Figure 5A) reflect the complex spiral motion that results from
combinations of translation and pitch, yaw, and roll rotation (e.g., Figure 2C). These learned
patterns vary in their curvature, reflecting the differing rotation rates present across video
samples. For example, some templates resemble the approximately radial optic flow that
arises with smaller rotation rates, whereas others resemble the more circular patterns that
may arise with larger rotation rates. When trained on optic flow from the same 3D dot

https://github.com/owlayton/ARTFLOW
https://github.com/owlayton/ARTFLOW
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cloud scene without rotation, the templates appear radial (Figure 5B) and encode a range
of FoE positions. This could be viewed as an emergent basis with which to encode heading
across the neural population, a hypothesis that I test quantitatively below.
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Figure 5. Optic flow templates learned by ARTFLOW (rows) in different visual environments (label on right-hand side).
Groups of four consecutive rows correspond to each scene. Each row shows the optic flow templates after the number of
training epochs indicated on the left-hand side (1 epoch is the default).

Many of the learned templates from the 3D dot cloud (T) scene appear qualitatively
similar to those from the neighborhood (Figure 5C) and ground plane datasets (Figure 5D),
albeit in the lower portion of the visual field in the latter case. This consistency reflects
the fact that the three datasets consist of full-field translational optic flow. The neighbor-
hood templates do, however, appear less coherent due to the increased complexity of
the scene and noise introduced by the optic flow estimation algorithm.

It is noteworthy that the number of optic flow templates differs across datasets without
changes to the hyperparameters. This occurs because the vigilance hyperparameter (ρ)
parameterizes the coarseness of learning rather than the number of cells in each ARTFLOW
network layer. Consequently, the number of learned templates varies based on the statistics
of each dataset and environment.

3.2. Stability of Learning

One key property of ART neural networks is their resilience to catastrophic forget-
ting, meaning that continued learning does not erode existing representations. Indeed,
ARTFLOW demonstrates considerable stability in each learned optic flow template as
the number of training epochs varied over several orders of magnitude (4 × 1 columns
in Figure 5). The templates undergo remarkably little change from their state after a single
exposure to each sample, showing the effectiveness of one-shot learning in ARTFLOW.

3.3. Estimating Self-Motion from Optic Flow Templates

Next, I investigated how effectively the optic flow templates learned by ARTFLOW
support the accuracy of self-motion estimation. To that end, I decoded translational
(heading) and rotational (pitch, roll, and yaw) self-motion parameters from MSTd layer
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activations after one epoch of training. I evaluated the accuracy on novel optic flow
sequences not encountered during training (i.e., on distinct test sets) using linear and non-
linear (MLP-based) decoders. The performance of the ARTFLOW templates was compared
with that of a principal component analysis (PCA)-based representation. This was achieved
by simulating an identically structured hierarchical network that implemented Hebbian
learning (Sanger’s network) in each module instead of fuzzy ART.

Figure 6A plots the heading error decoded from the ARTFLOW and the Hebbian
networks on the optic flow datasets. Regardless of the decoder, the ARTFLOW yields
more accurate heading estimates than the Hebbian network, often with half the error or
less. On the 3D dot cloud (T) dataset, ARTFLOW garnered a 1–3◦ mean absolute error
(MAE), depending on the decoder, which is comparable to human performance under
similar conditions [44]. The error roughly doubled on the ground dataset, which likely
stems from the uncertainty caused by the lack of flow above the horizon (Figure 2B). Both
networks yielded less accurate estimates on the neighborhood and warehouse datasets
with optic flow derived from more realistic scenes. MAE from ARTFLOW did not exceed
10◦ on these two datasets, while error from the Hebbian network reached 30◦. Given that
ARTFLOW was trained on a subset of the neighborhood optic flow samples, compara-
ble performance on the warehouse dataset shows effective generalization of the learned
templates to a novel environment.
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Figure 6. The accuracy of self-motion estimates decoded from ARTFLOW and the Hebbian networks (top row) as well
as their runtimes (bottom row). (A) Mean absolute error (MAE) in heading estimates derived from learned optic flow
templates with linear and nonlinear decoders. Values reflect error combined across azimuth and elevation. Estimates
were obtained on distinct test sets not used in training. Plotted values were offset horizontally for visual clarity. (B) MAE
in estimates of pitch, yaw, and roll rotation components on test samples from the 3D dot cloud (T + R) dataset. (C) Mean
time required to train fuzzy ART and Hebbian layers on optic flow samples. (D) Same data as in (C) expressing the mean
training time improvement in ARTFLOW compared to the Hebbian network. (E) Mean time required to process each optic
flow sample with fuzzy ART and Hebbian layers during prediction.
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Estimating heading in the presence of rotation (3D dot cloud (T+R) dataset) represents
a much more challenging problem (Figure 1). Accordingly, both networks produced larger
heading error than on the other datasets. The nonlinear decoder achieved ≈ 20◦ MAE from
ARTFLOW, a substantial improvement from the ≈ 30◦ error garnered by the linear decoder.
It is noteworthy that human heading estimation is also less accurate in the presence
of rotation: MAE reaches 15◦when estimating central headings (−4–4◦) with ±5◦/sec
yaw rotation simulated in the visual display [45]. The conditions in the 3D dot cloud
(T+R) dataset make heading estimation even more challenging: 1–10◦/sec 3D rotation and
−45–45◦ headings. Therefore, 15◦ likely underestimates the error in human judgments
under comparable circumstances.

Estimates of pitch and yaw rotation derived from the networks (Figure 6B) demon-
strated comparable accuracy (MAE: ≈ 1.5–2◦/s). Roll was estimated with slightly higher
accuracy (MAE: ≈ 1–1.5◦/s).

3.4. Runtime Comparison

Fuzzy ART layers in ARTFLOW required substantially less time to train than layers
in the Hebbian network (Figure 6C). Figure 6D shows that this amounts to a 80–90%
improvement in the training time per sample across the datasets. The time required for
prediction was comparable across the networks (Figure 6E).

3.5. Sensitivity Analysis to Vigilance

I performed a sensitivity analysis to better understand the robustness of decoded
self-motion estimates (Figure 6A,B) to changes in vigilance, a critical hyperparameter
in each fuzzy ART network layer of ARTFLOW that controls the granularity of learning.
Figure 7A–C show the MAE in heading estimates obtained from the nonlinear decoder with
different combinations of layer 1 and 2 vigilance values. Figure 7D–F show the number of
optic flow templates that emerge during training and contribute to each heading estimate.
The number of templates can be viewed as the size of the basis with which self-motion
is encoded. As long as the accuracy of the decoded estimate remains high, a smaller set
implicates a more parsimonious encoding of self-motion and is desirable.
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Figure 7. Sensitivity analysis focusing on robustness of heading estimates to the vigilance hyperparameter. (A–C) Heatmaps
showing the MAE (◦) of heading estimates obtained by the nonlinear decoder with different combinations of vigilance
values in layers 1 and 2 of the ARTFLOW network on the 3D dot cloud (T), warehouse, and 3D dot cloud (T+R) datasets,
respectively. (D–F) Number of optic flow templates learned by ARTFLOW on the corresponding datasets with the indicated
combinations of vigilance values. Grid lines show the number of templates learned with default vigilance values.
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Figure 7A reveals that a broad range of vigilance values in both layers yields heading
estimates accurate to within 1–2◦ on the 3D dot cloud (T) dataset. The number of templates
learned from the 3D dot cloud (T) dataset remained fairly small across the range of layer 2
vigilance values tested (Figure 7D). The ≈ 7◦ MAE in heading estimates on the warehouse
dataset exhibited similar tolerance to layer 1 vigilance values when coupled with moderate-
to-large layer 2 vigilance values (Figure 7B). The corresponding region of the parameter
space that afforded the most accurate estimates on the 3D dot cloud (T+R) was smaller
(Figure 7C). ARTFLOW yielded the most accurate estimates on the warehouse and 3D
dot cloud (T + R) datasets when layer 1 vigilance was low and layer 2 vigilance was
high (top-right corner of Figure 7B,C). However, this comes at the cost of substantial
increases in the number of optic flow templates (Figure 7E,F). The default vigilance values
achieved slightly less accurate estimates with a compact set of templates, (see grid lines
in Figure 7D–F).

3.6. Generative Model of Optic Flow

In addition to encoding self-motion, the learned optic flow templates represent a gener-
ative model of optic flow. That is, ARTFLOW is capable of predicting the optic flow pattern
that corresponds to a set of template activations. This is achieved by propagating the tem-
plate activations backward layer-by-layer (see Appendix A for details). Figure 8 shows
actual test optic flow samples (“Input”) and corresponding predicted patterns (“Pred”)
from the activations of the ≈20 templates depicted in Figure 5. In many cases, the re-
constructions emulate the singularity position and other important qualitative properties,
despite not having encountered any of the test optic flow patterns during training. Devia-
tions between the true and predicted patterns were generally largest in the neighborhood
and warehouse dataset samples.

In
pu
t

Pr
ed

In
pu
t

Pr
ed

In
pu
t

Pr
ed

In
pu
t

Pr
ed

3D dot
cloud (T+R)

3D dot
cloud (T)

N
eighborhood

W
arehouse

Optic flow input (N=20) and reconstruction from model optic flow templates
A

B

C

D

Figure 8. Generative capability of ARTFLOW. Twenty optic flow test samples from each dataset (“Input” rows) reconstructed
by the network (“Pred” rows) based on the activation of optic flow templates.

4. Discussion

Simulations reveal that ARTFLOW is capable of learning stable templates with only
one pass through optic flow samples corresponding to simulated self-motion through
a number of virtual environments (one-shot learning). This contrasts with deep learning
networks that require larger amounts of data and many training epochs [46–48] and
that suffer from the catastrophic forgetting problem [33]. While I used separate training
and prediction phases in the simulations reported here, this distinction is not necessary,
and ARTFLOW may continue to learn during on-going operation, unlike deep learning
approaches. This offers exciting potential for adaptive, evolving sensitivity when exploring
novel or changing environments.
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A single hyperparameter, vigilance, controls the degree of distinction among the tem-
plates. This allows the network to self-regulate the number of templates that are needed to
learn optic flow patterns with the desired granularity. Simulations revealed that the accu-
racy of heading estimation was robust to a wide range of vigilance values in the 3D cloud
(T) and warehouse datasets (Figure 7). Sensitivity to vigilance was greater on the 3D cloud
(T + R) dataset, and values that favored a larger number of templates yielded the best accu-
racy. Given that 3D rotation increases the dimensionality of the parameter space in which
optic flow patterns may be embedded, it is indeed reasonable to expect that more neurons
may be required to effectively encode self-motion. Inertial and other non-visual signals
may also be used to improve self-motion estimates [16,45], perhaps without substantially
increasing the number of templates in the network.

ARTFLOW not only encodes self-motion parameters more effectively than a com-
parable network that uses Hebbian learning (Figure 6A) but it requires far less training
time (Figure 6C,D). This stems from fundamental differences in the design of the un-
derlying algorithms. Crucially, the weight update rule in fuzzy ART modifies a single
vector in the weight matrix, whereas the corresponding update in the comparable Hebbian
learning algorithm (Sanger’s network) requires three separate matrix multiplications to
combine the weight matrix with with lower triangular portion of the squared activation
matrix [43]. While fuzzy ART relies on an iterative search process for selecting the best
matching template during learning, it amounts to checking scalar values that represent
the degree of match to each template at most once, in the worst case. By contrast, training
with the Hebbian learning algorithm tends to involve iterative optimization over multiple
training epochs.

Comparison to Other Models

Several neural networks have been developed that adaptively learn the self-motion
templates using Hebbian or Instar biological learning laws [49–51]. However, their focus
is on characterizing neurophysiological properties of MSTd rather than estimating self-
motion from optic flow extracted from video. As I demonstrated here, such networks are
unlikely to perform as well as ARTFLOW. Beyeler and colleagues have introduced a model
of MSTd that uses non-negative matrix factorization to learn optic flow templates [38].
While the model captures an extensive collection of neurophysiological properties of MSTd,
it does not specify the neural network mechanisms for the underlying computations and
requires iterative optimization (i.e., multiple training epochs). The model yields 5.75◦ error
when estimating heading over the (−45◦, 45◦) range considered here from a dot-defined
environment that consists of intersecting ground and frontoparallel wall planes. This
environment was not simulated here, but it bears the most similarity to the 3D cloud and
ground plane datasets on which ARTFLOW garnered 3.24◦ and 7.46◦ heading error, re-
spectively. It should be noted that ARTFLOW achieves this level of accuracy with 500 optic
flow training samples and ≈20 learned templates, compared to the 10,000 training samples
and 144 templates used by the Beyeler model. If the two models achieve comparable
accuracy on the ground + wall dataset, ARTFLOW would do so with substantially less
training and a more compact representation.

ARTFLOW complements work others have done to develop fuzzy ART into a multi-
layer network. ARTree [52,53] is a hierarchical network that differs most substantially from
ARTFLOW in its coarse-to-fine structure: a single fuzzy ART network processes each data
sample in the first layer, and the number of modules increases with each successive layer.
Distributed dual-vigilance fuzzy ART (DDVFA) contains sets of modules that process in-
formation globally and locally at the same hierarchical level [40]. Other approaches [54,55]
successively pass the entire output of a fuzzy ART network as features to another fuzzy
ART network. This would approximate chains of fuzzy ART layers in ARTFLOW config-
ured as single 1 × 1 modules. Like MLPs, this implicates global pattern processing without
consideration of the local structure of data. It is unclear how suitable these alternative
approaches are for processing optic flow or large volumes of other sensory data.
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5. Conclusions

Algorithms inspired by the design of the brain have the potential to bridge the gap be-
tween machines and animals when it comes to agile, resilient, adaptive navigation. Toward
that end, I have presented ARTFLOW, a fast, unsupervised biologically inspired neural net-
work that learns optic flow patterns that support accurate self-motion estimation in diverse
environments. The network demonstrates effective encoding of self-motion parameters
with one-shot learning and representations that remain stable over continued training.
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Abbreviations
The following abbreviations are used in this manuscript:

SD standard deviation
T translation
R rotation
MSE mean squared error
MAE mean absolute error
MSTd dorsal medial superior temporal area
MT medial temporal area
PCA principal component analysis
RF receptive field

Appendix A. Generative Model of Optic Flow

To predict the optic flow that corresponds to activations in the top “MSTd” layer of
ARTFLOW, learned optic flow templates send signals backward through the network until
they reach the MT preprocessing layer. At this point the signals may be decoded within each
module according to known motion tuning properties of MT neurons. This process estimates
a single optic flow vector that captures the average (centroid) direction within the RF of each
module in the first fuzzy ART layer. That is, optic flow is estimated at the spatial resolution of
the modules in the first layer of the network (e.g., 8× 8 for 8× 8 modules).

Let Mupper denote the number of committed cells in a single module of an “upper fuzzy
ART layer” of the network and Mlower denote the total number of committed cells across
the connected modules in the adjacent fuzzy ART layer directly beneath. For example,
if the upper layer represents the top MSTd layer with a single module that contains 20
learned optic flow templates then Mupper = 20. If the upper layer module is connected
with four modules in the layer below, each containing 10 committed cells, then Mlower =
40. The activation actlower

j of each cell j = 1, . . . , Mlower in the lower layer based on
the descending top-down signals from the upper layer module is

actlower
j =

Mupper

∑
i=1

wjiactupper
i (A1)

where w represents the weights learned between the upper fuzzy ART module and com-
mitted cells in the connected lower modules (shape: Mlower × Mupper). This computation is
repeated for all modules in the lower layer and for any fuzzy ART layers beneath the lower
layer (i.e., lower layer subsequently becomes the upper layer).
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At the MT preprocessing layer, the direction of optic flow within the RF of each module
is estimated according to population vector (centroid) decoding [56]. Let Ns represent
the number of MT neurons within the rectangular spatial sector s, the RF of module s
(pink squares in Figure 2). The horizontal us and vertical vs estimated optic flow vector
components in the sector are given by

(us, vs) =
1

∑Ns
i=1 acti

Ns

∑
i=1

(
acticos

(
θpre f ,i

)
, actisin

(
θpre f ,i

))
(A2)

where acti represents the activation of MT neuron i in the sector s due to the top-down
descending signals, and θpre f ,i is the preferred direction of the MT neuron.
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