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Abstract: Human–Robot Interaction (HRI) for collaborative robots has become an active research
topic recently. Collaborative robots assist human workers in their tasks and improve their efficiency.
However, the worker should also feel safe and comfortable while interacting with the robot. In
this paper, we propose a human-following motion planning and control scheme for a collaborative
robot which supplies the necessary parts and tools to a worker in an assembly process in a factory.
In our proposed scheme, a 3-D sensing system is employed to measure the skeletal data of the
worker. At each sampling time of the sensing system, an optimal delivery position is estimated using
the real-time worker data. At the same time, the future positions of the worker are predicted as
probabilistic distributions. A Model Predictive Control (MPC)-based trajectory planner is used to
calculate a robot trajectory that supplies the required parts and tools to the worker and follows the
predicted future positions of the worker. We have installed our proposed scheme in a collaborative
robot system with a 2-DOF planar manipulator. Experimental results show that the proposed scheme
enables the robot to provide anytime assistance to a worker who is moving around in the workspace
while ensuring the safety and comfort of the worker.

Keywords: human–robot interaction; human–robot collaboration; collaborative robots; motion
planning; robot control; human motion prediction; human-following robots

1. Introduction

The concept of collaborative robots was introduced in the early 1990s. The first
collaborative system was proposed by Troccaz et al. in 1993 [1]. This system uses a passive
robot arm to ensure safe operation during medical procedures. In 1996, Colgate et al.
developed a passive collaborative robot system and applied it to the vehicle’s door assembly
process carried out by a human worker [2]. In 1999, Yamada et al. proposed a skill-assist
system to help a human worker carry a heavy load [3].

The collaborative robot systems are being actively introduced in the manufacturing
industry. The International Organization of Standardization (ISO) amended its robot
safety standards ISO 10128-1 [4] and 10128-2 [5] in 2011 to include the safety guidelines
for human-robot collaboration. This led to an exponential rise in collaborative robot
research and development. Today, many companies are manufacturing their own versions
of collaborative robots, and these robots are being used in industries all over the world.
Collaborative robots are expected to play a major role in the Industry 5.0 environments
where people will work together with robots and smart machines [6].

In 2010, a 2-DOF co-worker robot “PaDY” (in-time Parts and tools Delivery to You
robot) was developed in our lab to assist a factory worker in an automobile assembly
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process [7]. This process comprises a set of assembly tasks that are carried out by a
worker while moving around the car body. PaDY assists the worker by delivering the
necessary parts and tools to him/her for each task. The original control system of PaDY
was developed based on a statistical analysis of the worker’s movements [7].

Many studies have been carried out on the human–robot collaborative system. Hawkins
et al. proposed an inference mechanism of human action based on a probabilistic model
to achieve wait-sensitive robot motion planning in 2013 [8]. D’Arpino et al. proposed fast
target prediction of human reaching motion for human–robot collaborative tasks in 2015 [9].
Unhelkar et al. designed a human-aware robotic system, in which human motion prediction
is used to achieve a safe and efficient part-delivery task between the robot and the stationary
human worker in 2018 [10]. A recent survey on the sensors and techniques used for human
detection and action recognition in industrial environments can be seen in [11]. The studies
cited above [8–10] have improved efficiency of the collaborative tasks by incorporating
human motion prediction into robot motion planning.

Human motion prediction was also introduced to PaDY. In 2012, the delivery oper-
ation delay of the robot–human handover tasks was reduced by utilizing prediction of
the worker’s arrival time at the predetermined working position [12]. In 2019, a motion
planning system was developed which optimized a robot trajectory by taking the prediction
uncertainty of the worker’s movement into account [13]. In those studies [12,13], the robot
repeats the delivery motion from its home position to each predetermined assembly posi-
tion. If the robot can follow the worker during the assembly process, the worker can pick
up necessary parts and tools from the robot at any time. Thus, more efficient collaborative
work could be expected by introducing human-following motion.

In this paper, human-following motion of the collaborative robot is proposed for
delivery of parts and tools to the worker. The human-following collaborative robot system
needs to stay close to the human worker, while avoiding collision with the worker under
the velocity and acceleration constraints. The contribution of this paper is summarized
as follows:

1. The proposed human-following motion planning and control scheme enables the
worker to pick up the necessary parts and tools when needed.

2. The proposed scheme achieves the human-following motion with a sufficiently small
tracking error without adversely affecting the safety and comfort of the worker.

3. Experiments conducted in an environment similar to a real automobile assembly
process illustrate the effectiveness of the proposed scheme.

This is a quantitative study where we conducted the experiments ourselves and
analyzed the data collected from these experiments to deduce the results. The proposed
scheme predicts the motion of the worker and calculates an optimal delivery position for
the handover of parts and tools from the worker to the robot for each task of the assembly
process. This scheme has been designed for a single worker operating within his/her
workspace. It is not designed for the cases when multiple workers are operating in the
same workspace, or when the worker moves beyond the workspace.

The rest of the paper is organized as follows. Section 2 describes the related works.
Section 3 gives an overview of the proposed scheme, including the delivery position
determination, the worker’s motion prediction, and trajectory planning and control scheme.
The experimental results are discussed in Section 4. Section 5 concludes this paper.

2. Related Works

In this section, we present a review of the existing research on human–robot handover
tasks, human-following robots, and motion/task planning based on human motion prediction.

2.1. Human–Robot Handover

Some studies have considered the problem of psychological comfort of the human
receiver during the handover task. Baraglia et al. addressed the issue of whether and
when a robot should take the initiative [14]. Cakmak et al. advocated the inclusion of user
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preferences while calculating handover position [15]. They also identified that a major
cause of delay in the handover action is the failure to convey the intention and timing of
handing over the object from the robot to the human [16]. Although these studies deal with
important issues for improving the human–robot collaboration, it is still difficult to apply
them in actual applications because psychological factors cannot be directly observed.

Some other studies used observable physical characteristics of the human worker
for planning a robot motion that is safe and comfortable for the worker. Mainprice et al.
proposed a motion planning scheme for human–robot collaboration considering HRI
constraints such as constraints of distance, visibility and arm comfort of the worker [17].
Aleotti et al. devised a scheme in which the object is delivered in such a way that its
most easily graspable part is directed towards the worker [18]. Sisbot et al. proposed
a human-aware motion planner that is safe, comfortable and socially acceptable for the
human worker [19].

The techniques and algorithms mentioned above operate with the assumption that
the worker remains stationary in the environment. To solve the problem of providing
assistance to a worker who moves around in the environment, we propose a human-
following approach with HRI constraints in this paper.

2.2. Human-Following Robots

Several techniques have been proposed to carry out human-following motion in
various robot applications. One of the first human-following approaches was proposed by
Nagumo et al., in which an LED device carried by the human was detected and tracked by
the robot using a camera [20].

Hirai et al. performed visual tracking of the human back and shoulder in order to
follow a person [21]. Yoshimi et al. used several parameters including the distance, speed,
color and texture of human clothes to achieve stable tracking in complex situations [22].
Morioka et al. used the reference velocities for human-following control calculated from es-
timated human position under the uncertainty of the recognition [23]. Suda et al. proposed
a human–robot cooperative handling control using force and moment information [24].

The techniques cited in this section focus on performing human-following motion of
the robot to achieve safe and continuous tracking. However, these schemes use the feedback
of the observed/estimated current position of the worker. This makes it difficult for the
robot to keep up with the worker who is continuously moving around in the workspace.
In this paper, we solve this problem by applying human motion prediction and MPC.

2.3. Motion/Task Planning Based on Human Motion Prediction

In recent years, many studies have proposed motion planning using human motion
prediction. The predicted human motion is used to generate a safe robot trajectory. Main-
price et al. proposed to plan a motion that avoids the predicted occupancy of the 3D human
body [25]. Fridovich-Keil et al. proposed to plan a motion that avoids the risky region
calculated by the confidence-aware human motion prediction [26]. Park et al. proposed a
collision-free motion planner using the probabilistic collision checker [27].

Several studies have proposed robot task planning to achieve collaborative work
based on human motion prediction. Maeda et al. achieved a fluid human–robot handover
by estimating the phase of human motion [28]. Liu et al. presented a probabilistic model
for human motion prediction for task-level human–robot collaborative assembly [29].
Cheng et al. proposed an integrated framework for human–robot collaboration in which
the robot perceives and adapts to human actions [30].

Human motion prediction has been effectively used in various problems of human–
robot interaction. In this paper, we apply the human motion prediction to human-following
motion of the collaborative robot for delivery of parts/tools to a worker.
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3. Proposed Motion Planning and Control Scheme
3.1. System Architecture

Figure 1 shows the system architecture of our proposed scheme. This scheme consists
of three major parts:

1. Delivery position determination;
2. Worker’s motion prediction;
3. Trajectory planning and control.

Figure 1. System architecture.

In delivery position determination, an optimal delivery position is estimated using
an HRI-based cost function. This cost function is calculated using the skeletal data of the
worker measured by the 3-D vision sensor. In workers’ motion prediction, the position data
obtained from the vision sensor are used to predict the motion of the worker. Moreover,
after the completion of each work cycle, the worker’s model is updated using the stored
position data. In the trajectory planning step, an optimal trajectory from the robot’s current
position to the goal position is calculated using the receding horizon principle of Model
Predictive Control (MPC). The robot motion controller ensures that the robot follows the
calculated trajectory. The detailed description of these three parts of our scheme is given in
the subsequent subsections.

3.2. Delivery Position Determination

In our proposed scheme, the delivery position is determined by optimizing an HRI-
based cost function. This cost function includes terms related to the safety, visibility and
arm comfort of the worker. These terms are calculated from the worker’s skeletal data
observed by the 3-D vision sensor in real-time. This concept was first introduced by
Sisbot et al. for motion planning of mobile robots [31]. The analytical form of the HRI-
based cost function was proposed in our previous study [32]. Here, we provide a brief
description of the cost function and solver for determining the optimal delivery position.
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Let pdel ∈ Rn be the n dimensional delivery position, then the total cost Cost(pdel, sw)
is expressed as:

Cost(pdel, sw) = CV(pdel, sw) + CS(pdel, sw) + CA(pdel, sw)

where sw is latest sample of the worker’s skeletal data obtained from the sensor. CV(pdel, sw)
is the visibility cost that maintains the delivery position within the visual range of the
worker. This cost is expressed as a function of the difference between the worker’s body
orientation and the direction of the delivery position with respect to the worker’s body center.
CS(pdel, sw) is the safety cost that prevents the robot from colliding with the worker. This
cost is expressed as a function of the distance between the worker’s body center and the
delivery position. CA(pdel, sw) is the arm comfort cost that maintains the delivery position
within the suitable distance and orientation for the worker. This cost is a function of the joint
angles of the worker’s arm. In addition, this cost penalizes the delivery position where the
worker needs to use his/her non-dominant hand.

The optimal delivery position is calculated by minimizing the cost function Cost(pdel, sw).
Since Cost(pdel, sw) is a non-convex function, we use Transition-based Rapidly-exploring
Random Tree(T-RRT) method [33] to find the globally optimal solution. We apply T-RRT only
in the vicinity of the worker to calculate the optimal solution in real-time. The process of
determining the optimal delivery position is summarized in Algorithm 1.

Algorithm 1 Determination of Optimal Delivery Position using T-RRT

Input: Worker’s position pw,
Current sample of the worker’s skeleton sw,
Sampling range rs,
HRI cost function Cost(pdel, sw)

Output: Optimal delivery position pdel
1: Set the sampling area Snear using pw and rs
2: pcur ← Sample(Snear)
3: Costcur ← Cost(pcur, sw)
4: Counter ← 0
5: while Counter ≤ Countermax do
6: prand ← Sample(Snear)
7: pnew ← pcur + δ(prand − pcur)
8: Costnew ← Cost(pnew, sw)
9: if TransitionTest(Costnew, Costcur, dnew−cur) then

10: pcur ← pnew
11: Costcur ← Costnew
12: Counter ← 0
13: else
14: Counter ← Counter + 1
15: end if
16: end while
17: pdel ← pcur
18: return pdel

Figure 2 shows an example of the cost map in the workspace around the worker
calculated from the HRI constraints. The worker’s shoulder positions (red squares) and
the calculated delivery position (green circle) are shown in the figure. We can see that
the proposed solver can calculate the delivery position that has the minimum cost in the
cost map.
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Figure 2. Example of the cost map calculated from the HRI constraints and its optimal delivery position.

3.3. Worker’s Motion Prediction

The worker’s motion is predicted by using Gaussian Mixture Regression (GMR)
proposed in our previous work [34]. GMR models the worker’s past movements and
predicts his/her future movements in the workspace. Here, we provide a brief description
of the motion prediction using GMR.

Suppose that pc = p(t)
w ∈ Rn is the worker’s current position at time step t, ph =(

p(t−1)
w p(t−2)

w · · · p(t−d)
w

)T
∈ Rn×(d−1) is the position history, and d is the length of the

position history. GMR models the conditional probability density function pr(pc|ph)
whose expectation E[pc|ph] means the worker’s future position and variance V[pc|ph] is
the uncertainty of the prediction. The details of GMR calculation are shown in Appendix A.

The procedure for the long-term motion prediction using GMR is summarized in
Algorithm 2. The calculation to predict the worker’s position at the next time step is
repeated until the length of the predicted trajectory becomes equal to the maximum
prediction length Tp. The worker’s predicted motion is expressed as the sequence of

Gaussian distributions
(
N (tc)

w ,N (tc+1)
w , · · · N (tc+Tp)

w

)
starting from the current time tc. N(t)

w

is the worker’s predicted position distribution at step t expressed as:

N (t)
w = N (µ

(t)
w , Σ

(t)
w ) (1)

where µ
(t)
w is the mean vector and Σ

(t)
w is the covariance matrix of worker’s predicted

position at step t.
If the worker repeats his/her normal movement, which is indicated in the process

chart of the assembly process, our prediction system can predict the worker’s movement ac-
curately enough for the system. According to our previous research, the RMSE (Root Mean
Square Error) of the worker’s movement was about 0.3 m [34]. The RMSE was calculated
by the comparison between the initial predicted worker’s movement and the observed
worker’s movement when the worker started to move to the next working position.

When the worker moves differently from his/her normal movement, it is not easy to
ensure the accuracy of the prediction. However, the proposed system operates safely even
in this case, since the variance of the predicted position of the worker is included in the
cost function used in the motion planning as shown in our previous study [13].
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Algorithm 2 Worker’s motion prediction using GMR

Input: Current time tc,
Current position p(tc)

c ,
Position history p(tc)

h ,
Max prediction length Tp

Output: Predicted trajectory
(
N (tc),N (tc+1), · · · ,N (tc+Tp)

)
1: while k = 1 to Tp do

2: p(tc+k)
h =

(
p(tc+k−1)

c p(tc+k−2)
c · · · p(tc+k−d−1)

c

)T

3: µ
(tc+k)
w = E[p(tc+k)

c |p(tc+k)
h ]

4: Σ
(tc+k)
w = V[p(tc+k)

c |p(tc+k)
h ]

5: p(tc+k)
c = E[p(tc+k)

c |p(tc+k)
h ]

6: end while

3.4. Trajectory Planning and Control

Figure 3 shows the concept of human-following motion planning using the worker’s
predicted motion. The sequence of the worker’s predicted position distributions (N (tc)

w ,

N (tc+1)
w , · · · N (tc+Tp)

w ) is given to the trajectory planner. The sequence of the robot states,
that is the robot trajectory

(
q(tc), q(tc+1), · · · q(tc+To)

)
, is calculated so that the robot’s state

at each time step follows the corresponding predicted position of the worker.

Figure 3. Concept of human-following motion planning based on the predicted trajectory of
the worker.

To achieve the prediction-based human-following robot motion, we use an MPC-based
planner to consider the evaluation function for finite time future robot states. This is a well-
known strategy and is often used in real-time robot applications such as task-parametrized
motion planning [35] and multi-agent motion planning [36].
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The cost function used in MPC consists of terminal cost and stage cost. The terminal
cost deals with the cost at the terminal state of the robot, which is the delivery position in
our case. Stage cost considers the state of the robot during the whole trajectory from the
current configuration to the goal configuration. A distinct feature of our scheme is that
the optimal delivery position, found by optimizing the HRI-based cost function, is used to
calculate the terminal cost. In addition, the predicted trajectory of the worker is used to
calculate the stage cost. This scheme plans the collision-free robot trajectory that follows
the moving worker efficiently under the safety cost constraint and the robot’s velocity and
acceleration constraints.

The cost function J used for the optimization of the proposed trajectory planner is
expressed as:

J = ϕ(q(tc + To)) +
∫ tc+To

tc
(L1(q̇(k)) + L2(q(k)) + L3(q(k)))dk (2)

where q = (θ, θ̇)T ∈ R2Nj is the state vector of the manipulator, θ = (θ1, θ2, · · · , θNj)
T ∈ RNj

is the vector composed of the joint angles of the manipulator, Nj is the degrees of freedom
of the manipulator, To(To ≤ Tp) is the length of the trajectory (in our experiments, we
used To = Tp as a rule of thumb) and ϕ(q(tc + To)) is the terminal cost which prevents the
calculated trajectory of the robot from diverging. It is expressed as:

ϕ(q(tc + To)) =
1
2

(
FKNj(q(tc + To))− xdel

)T
R
(

FKNj(q(tc + To))− xdel

)
(3)

where FKj is the forward kinematics of the robot that transform the robot state q from joint
coordinates to position pj and velocity vj in the workspace coordinates. R is the diagonal
positive definite weighting matrix. xdel is the terminal state of the robot which is calculated
based on the optimal delivery position and the predicted mean position of the worker.

In this study, xdel becomes xdel =
(

µ
(tc+To)
w + pdel, 0

)T
, where µ

(tc+To)
w is the worker’s

predicted position at the end of the trajectory (tc + To), and pdel is the calculated delivery
position for the worker’s observed position. We calculate pdel after each sampling interval
and assume that the variation in pdel is negligibly small during the sampling interval of
the sensing system, which is 30 ms.

L1(q̇(k)), L2(q(k)) and L3(q(k)) are the stage costs which are expressed as:

L1(q̇(k)) =
1
2

N

∑
j=1

rj(Bvel,j(θ̇j(k)) + Bacc,j(θ̈j(k))) (4)

L2(q(k)) = w
Nj

∑
j=1

1

DM

(
FKp,j(q(k)), µ

(k)
w , Σ

(k)
w

) . (5)

L3(q(k)) =
1
2

N

∑
j=1

(FKp,j(q(k))− (µ
(k)
w + pdel)

T) Q (FKp,j(q(k))− (µ
(k)
w + pdel)) (6)

L1(q̇(k)) is the stage cost to maintain the robot velocity and acceleration within their
maximum limits. Bvel,j(θ̇j(k)) and Bacc,j(θ̈j(k)) are defined as:

Bvel,j(θ̇j(k)) =

{
0 (||θ̇j|| ≤ θ̇max,j)(

||θ̇j|| − θ̇max,j
)2

(||θ̇j|| > θ̇max,j)
(7)

Bacc,j(θ̈j(k)) =

{
0 (||θ̈j|| ≤ θ̈max,j)(

||θ̈j|| − θ̈max,j
)2

(||θ̈j|| > θ̈max,j)
(8)
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where θ̇max,j and θ̈max,j are the maximum velocity and maximum acceleration of the jth
joint, respectively.

L2(q(k)) is the stage cost that prevents the robot from hitting the worker. w is a
weighting coefficient of this cost function. DM(x, µ, Σ) =

√
(x− µ)TΣ−1(x− µ) is the

Mahalanobis distance that considers the variance of the probabilistic density distribution.
Using the Mahalanobis distance between the predicted worker’s position distribution
N (µ

(k)
w , Σ

(k)
w ) and the end-effector position FKp,j(q(k)) at step k, an artificial potential field

is constituted according to the predicted variance. The artificial potential becomes wider in
the direction of larger variance in the predicted position.

L3(q) is the stage cost to ensure that the robot follows the worker’s motion. Q is
the diagonal positive definite weighting matrix. This cost function is responsible for
the human-following motion of the robot based on the worker’s predicted trajectory as
shown in Figure 3. For each time step of the predicted position distribution of the worker
N (µ

(k)
w , Σ

(k)
w ), the desirable state of the robot is calculated so that the robot’s endpoint

follows the predicted mean position of the worker µ
(k)
w offset by the calculated delivery

position pdel.
Now we can define the optimization problem that will be solved by our proposed system.

minimize J

subject to q̇ = f (q, u)

q(t) = qcur

where f denotes the nonlinear term of the robot’s dynamics, u is the input vector, and q(t)
is the initial state of the trajectory which corresponds to the current state qcur of the robot.
To solve this optimization problem with the equality constraints described above, we use
the calculus of variations. The discretized Euler–Lagrange equations that the optimal
solution should satisfy are expressed as:

q(k+1) = q(k) + f (q(k), u(k))∆ts, (9)

q(t) = qcur, (10)

λ(k) = λ(k+1) −
(

∂H
∂q

)T
(q(k+1), u(k), λ(k+1)), (11)

λ(t+To) =

(
∂ϕ

∂q

)T
(q(t+To)), (12)

∂H
∂u

(q(k), u(k), λ(k)) = 0, (13)

where H is the Hamiltonian and is defined as:

H(q, u, λ) = L1(q̇(k)) + L2(q(k)) + L3(q(k)) + λT f (q, u). (14)

The procedure for calculating the online trajectory is shown in Algorithm 3. After the
sequential optimization based on the gradient decent, we obtain the optimal trajectory(

q(t), q(t+1), · · · , q(t+To)
)

. For detailed calculations, please refer to our previous study [13].
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Algorithm 3 Robot Trajectory Generator

Input: Target delivery position pdel,
Predicted worker’s trajectory

(
N (t),N (t+1), · · · N (t+Tp)

)
,

Current state of the robot qcur,
Max length of the robot trajectory To

Output: Optimal trajectory is
(

q(t), q(t+1), · · · q(t+To)
)

1: Initialize the set of input vectors u
2: q(t) ⇐ qcur

3: while Σt+To
k=t |

∂H
∂u (q

(k+1), u(k), λ(k+1))| < ε do
4: while k = 1 to To do
5: q(t+k) ⇐ q(t+k−1) + f (q(t+k−1), u(t+k−1))∆ts
6: end while
7: while k = To to 1 do

8: λ(t+k−1) ⇐ λ(t+k) −
(

∂H
∂q

)T
(q(t+k), u(t+k), λ(t+k+1))

9: end while
10: while i = 1 to To do

11: si ⇐
(

∂H
∂u

)T
(q(t+i−1), u(t+i−1), λ(t+i))

12: end while
13: u⇐ u + cs
14: end while
15: while k = 1 to To do
16: q(t+k) ⇐ q(t+k−1) + f (q(t+k−1), u(t+k−1))∆ts
17: end while

4. Experiment
4.1. Experimental Setup

To evaluate the performance of the proposed scheme in a real-world environment,
we used the planar manipulator PaDY proposed in our previous study [7]. PaDY was
designed to assist the workers of an automobile factory. A parts tray and a tool holder were
attached to the end-effector of PaDY to store the parts and tools required for car assembly
tasks. The robot delivers the parts and tools to the worker during the assembly process.
For the details of the hardware design of PaDY, please refer to [7].

The proposed scheme was installed in a computer with an Intel Core i7-3740QM (Quad-
core processor, 2.7 GHz) with 16GB memory. All calculations were done within 30 ms,
the sampling interval of the sensing system that tracks the position of the human worker.

We designed an experiment to demonstrate the effectiveness of the worker’s motion
prediction in the human-following behavior of our proposed scheme. Figure 4 shows the
experimental workspace and Figure 5 shows the top view of the setup for this experiment.
In this experiment, the worker needs to perform the following six tasks:

1. Tightening a bolt (Task 1);
2. Attaching three grommets (Task 2);
3. Attaching one grommet (Task 3, Task 4, Task 5, Task 6).

Each task is performed at a separate working position in the workspace. The experi-
ment is carried out as shown in Figure 6. The experiment is carried out as follows.

1. The experiment begins when the robot starts to approach the worker standing at the
working position for Task 1. The worker takes a bolt and the bolt tightening tool from
the robot (Figure 6a).

2. The worker performs Task 1 (Figure 6b).
3. The worker moves to the working position for Task 2 and the robot follows him.

The worker returns the bolt tightening tool to the tool holder (Figure 6c) and picks up
three grommets from the parts tray.
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4. The worker performs Task 2 (Figure 6d).
5. The worker moves to the working position for Task 3 and picks up a grommet from

the tray (Figure 6e).
6. The worker performs Task 3 (Figure 6f).
7. The worker moves to the working position for Task 4 and picks up a grommet from

the tray (Figure 6g).
8. The worker performs Task 4 (Figure 6h).
9. The worker moves to the working position for Task 5 and picks up another grommet

from the parts tray (Figure 6i).
10. The worker performs Task 5 (Figure 6j).
11. The worker moves to the working position Task 6 and picks up the last grommet from

the parts tray (Figure 6k).
12. The worker performs Task 6 (Figure 6l) and this concludes the experiment.

We performed this experiment with four different participants (A, B, C and D) to
evaluate the robustness of the system for different workers. Each participant is asked to
perform the complete work cycle ten times. The first trial is performed without using the
predicted motion of the worker. Whereas, in all other trials, the predicted motion of the
worker is used and the worker model is sequentially updated after completing each trial.

For more details about the experiment, please see the Supplementary Materials.

Figure 4. Experimental workspace.

PaDY 

YPaDY

XPaDY
XKinect

YKinect Kinect

Task1

Task2

Task3Task4Task5Task6

2.0m

2
.0

m

Figure 5. Top view of the experimental setup.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Experiment showing a complete work cycle where six tasks are performed. (a) A bolt and the tool are picked up;
(b) Task 1 is performed; (c) The tool is returned and 3 grommets are picked up; (d) Task 2 is performed; (e) A grommet
is picked up; (f) Task 3 is performed; (g) A grommet is picked up; (h) Task 4 is performed; (i) A grommet is picked up;
(j) Task 5 is performed; (k) A grommet is picked up; (l) Task 6 is performed.

4.2. Tracking Performance

Figure 7a shows the estimated delivery position and the robot’s end-effector position
for trial 1 of a participant when the robot’s motion is calculated based on the observed
position of the worker without using the motion prediction. The black vertical lines show
the time when the worker performs each assembly task. Figure 7b shows the estimated
delivery position and the robot’s end-effector position for trial 10 of the same participant
when the robot’s motion is calculated based on the predicted position of the worker using
the proposed scheme.

At the beginning of the experiment, the robot is at its home position and the participant
is at the working position for Task 1. The robot starts its human-following motion after
arriving at the delivery position for Task 1 (at around 6 s in Figure 7a,b). We can see that
the robot keeps following the participant during the whole experiment in both schemes
(with and without the use of motion prediction).

The green line in Figure 7a,b shows the tracking error which is the difference between
the delivery position and the end-effector position. We can see that the maximum tracking
error is reduced from about 0.5 m to 0.3 m by using the motion prediction.
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Figure 7. Tracking performance. (a) When motion prediction is not used; (b) When motion prediction is used.

It is not possible to completely eliminate the tracking error since the manipulator
used for the experiments has a mechanical torque limiter at each joint and the maximum
angular acceleration without activating the torque limiter is 90 deg/s2. In both Figure 7a,b,
a large tracking error around 30 s can be observed. This is because the participant makes
a large movement around 30 s and the robot cannot follow the participant because of its
acceleration limit.

4.3. Cycle Time

Figure 8 shows the comparison of the cycle time of the four participants in each trial.
We define cycle time as the time required for a participant to complete all six tasks of the
assembly process. In Figure 8, the cycle time of each trial is normalized by the time of
trial 1. Remember that motion prediction was not used in trial 1.
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0

20

40

60

80

100

N
or

m
al

iz
ed

 c
yc

le
 ti

m
e 

[%
] 

Participant A
Participant B
Participant C
Participant D

Figure 8. Comparison of Cycle Time.

We can see that the cycle time for each participant decreases as the number of trials
increases. The cycle time of trial 10 is reduced to 65.6–74.8% of the cycle time of trial 1. This
shows that motion prediction can improve the performance of participants and help them
complete the assembly process faster.

Note that the proposed system ignores the dynamics of the interaction between the
robot and the worker, assuming that the worker is well trained and the behavioral dynamics
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of the worker with respect to the robot’s movements can be ignored. If the effects of the
robot’s motion on the worker can be modeled, the system can better deal with the effect
of the interaction between the worker and the robot and a further improvement in the
worker’s time efficiency could be expected.

4.4. HRI-Based Cost

Table 1 shows the average and maximum HRI-based costs for each participant during
the human-following motion of the robot. Since the HRI-based cost increases as the safety
and comfort of the worker decreases, it is desirable to have a low HRI-based cost in
human–robot collaboration.

Table 1. Summary of HRI-based costs during the human-following motion for each worker.

Worker Average Cost (without Prediction) Average Cost (with Prediction) Max Cost (without Prediction) Max Cost (with Prediction)

Worker A 8.99 11.79 36.34 35.82

Worker B 12.73 9.90 38.17 34.44

Worker C 18.35 13.56 39.65 31.33

Worker D 16.30 17.50 31.47 31.26

In Table 1, we see that there are no significant differences in the average and maximum
HRI-based costs between trial 1 (when motion prediction is not used) and trial 10 (when
motion prediction is used) for all four participants. Therefore, we conclude that the
proposed prediction-based human-following control reduces the work cycle time without
adversely affecting the safety and comfort of the workers.

5. Conclusions

We proposed a human-following motion planning and control scheme for a collab-
orative robot which supplies the necessary parts and tools to a worker in an automobile
assembly process. The human-following motion of the collaborative robot makes it possible
to provide anytime assistance to the worker who is moving around in the workspace.

The proposed scheme calculates an optimal delivery position for the current position
of the worker by performing non-convex optimization of an HRI-based cost function.
Whenever the worker’s position changes, the new optimal delivery position is calculated.
Based on the observed movement of the worker, the motion of the worker is predicted and
the robot’s trajectory is updated in real-time using model predictive control to ensure a
smooth transition between the previous and new trajectories.

The proposed scheme was applied to a planar collaborative robot called PaDY. Experi-
ments were conducted in a real environment where a worker performed a car assembly
process with the assistance of the robot. The results of the experiments confirmed that our
proposed scheme provides better assistance to the worker, improves the work efficiency,
and ensures the safety and comfort of the worker.

This scheme has been designed for a single worker operating within his/her workspace.
It is not designed for the cases when multiple workers are operating in the same workspace,
or when the worker moves beyond the workspace. Moreover, we did not consider the
dynamics of interaction between the robot and the human, assuming that the human
worker in the factory is well trained and his/her behavior dynamics to the robot motion is
negligible. If the effects of the robot’s motion on the human can be modeled, the system
can better deal with the effect of the interaction and further improvement in time efficiency
could be expected.

We believe that the human-following approach has tremendous potential in the field
of collaborative robotics. The ability to provide anytime assistance is a key feature of
our proposed method, and we believe it will be very useful in many other collaborative
robot applications.
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Appendix A. Detail Calculation of Gaussian Mixture Regression

Suppose that pc = p(t)
w ∈ Rn is the worker’s current position at time step t, ph =(

p(t−1)
w p(t−2)

w · · · p(t−d)
w

)T
∈ Rn×(d−1) is the position history, and d is the order of the

autoregressive model. Then the joint distribution pr of pc and ph can be expressed as

pr(ph, pc) =
M

∑
m=1

πmN (ph, pc|µm, Σm), (A1)

where

µm =

[
µ

ph
m

µ
pc
m

]
, (A2)

Σm =

[
Σ

ph ph
m Σ

ph pc
m

Σ
pc ph
m Σ

pc pc
m

]
. (A3)

The expectation E[pc|ph] and the variance V[pc|ph] of the conditional probability
density function pr(pc|ph) are expressed as

E[pc|ph] =
M

∑
m=1

hm(ph)µ
′, (A4)

V[pc|ph] =
M

∑
m=1

hm(ph)
(

Σ′ + µ′µ′T
)

−E[pc|ph]E[pc|ph]
T, (A5)

https://youtu.be/-jkPoK5URdw
https://youtu.be/-jkPoK5URdw
https://github.com/kf-iqbal-29/Dataset-HumanFollowingCollaborativeRobot.git
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where

hm(ph) =
πmN (ph|µ

ph
m , Σ

ph ph
m )

∑K
k=1 πkN (ph|µ

ph
k , Σ

ph ph
k )

, (A6)

µ′ = µ
pc
m + Σ

pc ph
m (Σ

ph ph
m )−1(ph − µ

ph
m ), (A7)

Σ′ = Σ
pc pc
m − Σ

pc ph
m (Σ

ph ph
m )−1Σ

ph pc
m . (A8)

While making the prediction, the position of the worker p(t+1)
c at step t + 1 is calcu-

lated as

p(t+1)
c = E[p(t+1)

c |p(t+1)
h ],

p(t+1)
h =

(
p(t)

c p(t−1)
c · · · p(t+1−d)

c

)T
. (A9)

This calculation to predict the worker’s position, shown in Equation (A9) is repeated
until the length of the predicted trajectory becomes equal to the maximum prediction
length Tp. The process of predicting the worker’s motion is summarized in Algorithm 2.
For the details of the derivation, please see [37].
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