
sensors

Review

Voxelisation Algorithms and Data Structures: A Review

Mitko Aleksandrov 1,* , Sisi Zlatanova 1 and David J. Heslop 2

����������
�������

Citation: Aleksandrov, M.;

Zlatanova, S.; Heslop, D.J.

Voxelisation Algorithms and Data

Structures: A Review. Sensors 2021,

21, 8241. https://doi.org/10.3390/

s21248241

Academic Editor: Riccardo

Carotenuto

Received: 30 September 2021

Accepted: 1 December 2021

Published: 9 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The School of Built Environment, The University of New South Wales, Sydney, NSW 2052, Australia;
s.zlatanova@unsw.edu.au

2 The School of Public Health and Community Medicine, The University of New South Wales,
Sydney, NSW 2052, Australia; d.heslop@unsw.edu.au

* Correspondence: mitko.aleksandrov@unsw.edu.au

Abstract: Voxel-based data structures, algorithms, frameworks, and interfaces have been used in
computer graphics and many other applications for decades. There is a general necessity to seek
adequate digital representations, such as voxels, that would secure unified data structures, multi-
resolution options, robust validation procedures and flexible algorithms for different 3D tasks. In
this review, we evaluate the most common properties and algorithms for voxelisation of 2D and
3D objects. Thus, many voxelisation algorithms and their characteristics are presented targeting
points, lines, triangles, surfaces and solids as geometric primitives. For lines, we identify three groups
of algorithms, where the first two achieve different voxelisation connectivity, while the third one
presents voxelisation of curves. We can say that surface voxelisation is a more desired voxelisation
type compared to solid voxelisation, as it can be achieved faster and requires less memory if voxels
are stored in a sparse way. At the same time, we evaluate in the paper the available voxel data
structures. We split all data structures into static and dynamic grids considering the frequency
to update a data structure. Static grids are dominated by SVO-based data structures focusing on
memory footprint reduction and attributes preservation, where SVDAG and SSVDAG are the most
advanced methods. The state-of-the-art dynamic voxel data structure is NanoVDB which is superior
to the rest in terms of speed as well as support for out-of-core processing and data management,
which is the key to handling large dynamically changing scenes. Overall, we can say that this is the
first review evaluating the available voxelisation algorithms for different geometric primitives as
well as voxel data structures.

Keywords: voxel; voxelisation; data structures; algorithms; geometric primitives

1. Introduction

Voxel-based representations are used in many application domains. In computer
graphics, voxels are used for fast ray tracing [1], voxelisation of surfaces and solids [2,3],
shadow [4] and visibility analysis [5–7]. These are mostly focused on fast-real time vi-
sualisation and therefore aiming at visualising only visible voxels. In medicine, voxel
representations are commonly implemented in software processing CT and MRI scans
investigating organs and body structure in three dimensions [8,9]. Voxel approaches are
increasingly being used in city modelling for 3D reconstruction [10] and spatial analy-
sis [11]. Voxel-based models are commonly investigated with the aim to define geological
phenomena [12,13]. In environmental analysis, voxelisation is used to establish computa-
tional domains for gaseous and liquid simulations as well as to interact with obstacles [14].
Voxel-based methods are extensively applied for the processing of point clouds [15–17]. A
quick voxelisation is suggested to derive navigable areas for pedestrian simulation [18–20]
and collision detection [21,22]. As we can see voxels are highly applicable in various
domains due to their discrete representation creating a continuous phenomenon in space.

A discrete approximation of digital objects or continuous phenomena is called vox-
elisation. Many different voxelisations are performed targeting lines [23], triangles [24],

Sensors 2021, 21, 8241. https://doi.org/10.3390/s21248241 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7030-024X
https://orcid.org/0000-0002-8766-0487
https://doi.org/10.3390/s21248241
https://doi.org/10.3390/s21248241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248241
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248241?type=check_update&version=1

Sensors 2021, 21, 8241 2 of 22

polygons [25], surfaces [26] and solids [2,3]. When voxelising 3D objects different prop-
erties can be considered such as connectivity, separation, coverage and tunnelling [27],
as well as colours preservation [28] and anti-aliasing [29] which are related to non-binary
voxelisation. Based on our knowledge there is no single paper that evaluates and presents
the characteristics of available algorithms for the voxelisation of different geometrical
primitives.

Although dense regular grids are convenient to use for several reasons, their main
disadvantage is their memory footprint which is directly proportional to the volume of em-
bedding space. Since areas including 3D city modelling and physical simulations usually
deal with data that occupy only a fraction of the entire space, sparse representation of volu-
metric data is suggested keeping only voxels that contain meaningful information [3,30].
Apart from data structures such as sparse octrees that tend to reduce the memory needs
for rendering large objects and scenes, numerous 3D sparse data structures are more
adaptive suiting the needs of simulations [31,32]. However, to be able to scale to extreme
resolutions and handle physical simulations with dynamic topology more balanced and
generic data structures are developed [33,34]. Thus, identifying the characteristics of
available 3D data volumetric structures is required to understand their pros and cons for
different applications.

To be able to work with voxels, the conversion from vector-based primitives such as
points, lines, triangles, surfaces and solids needs to be performed. This paper presents
a review on methods for voxelisation and voxel data structures, dealing with geometry,
properties and semantics of objects. The paper is organised as follows. Section 2 introduces
the main properties and principles related to discrete space that guide a voxelisation
process as well as binary and non-binary voxelisation. Section 3 explores algorithms for
the voxelisation of different 3D geometric primitives. Section 4 discusses various aspects
related to voxel hardware technology and data structures available today to effectively
manage voxels for different applications. Section 5 highlights some final remarks and
conclusions based on the entire review.

2. Voxelisation Properties

The literature provides many definitions of a voxel space. Here we will refer to a
voxels space as to an integer space. Let Z3 be the subset of 3D Euclidian space R3 that is
represented by all points whose coordinates are integers. This subset is called a grid [27].
A grid point represents a cell commonly referred to as a voxel. Voxels can have multiple
properties, which can be organised differently with respect to the application. Binary
voxelisation is a term to indicate that a voxel can have a property, which can take only two
values: 0 (empty) or 1 (filled).

The shape of a voxel is generally considered as a cube, although applications may use
cuboid representations [13]. The neighbourhood properties of a voxel play an important
role in all voxel-based algorithms. A voxel can have a maximum of 26 adjacent voxels,
from which 6 share a face, 12 share an edge and 8 voxels share only a corner in 3D space
(Figure 1). Based on this, the adjacency relation N between two voxels is defined. Face-
sharing voxels have adjacency 6, face-sharing and edge-sharing voxels have the adjacency
of 18, and 26-adjacent voxels are those that share a face, edge or corner. In 3D space
N ∈ {6, 18, 26}, while in 2D N ∈ {4, 8}. Accordingly, an N-path of voxels can be identified
as a sequence of voxels, in which consecutive voxels are N-adjacent.

2.1. Common Voxelisation Properties

In contrast to vector representations, voxelised objects are prone to several configu-
rations such as holes, cavities and penetration, which have to be taken care of during the
voxelisation. The objects have to remain connected so that a discrete unit represents cor-
rectly the analogous representation of the vector object. This implies that the voxelisation
algorithms should apply several topological constraints such as connectivity, separation,
coverage and tunnelling [27].

Sensors 2021, 21, 8241 3 of 22

Connectivity identifies a set of N-paths between every pair of voxels belonging to an
object. It indicates the result is an N-connected component, which is not disconnected in
any way. Connectivity is a measure of the way voxels are linked to each other. It gives a
notion of ‘thin’ or ‘thick’ voxelisation. Figure 2 illustrates ‘thick’ and ‘thin’ voxelisation,
resulting, respectively, from 4-connectivity (connected via the edges) and 8-connectivity
(connected via edges and vertices). The main benefits of strongly connected voxels, 8-
connected in 2D and 18 and 26-connected in 3D are very attractive since they result in
tinner objects with shorter length or area. In some cases, the connectivity of voxels might
be insufficient to estimate the quality of the voxelisation process and therefore the notion
of separation may need to be investigated.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 22

Figure 1. The 26 neighbours of a voxel; six voxels sharing face (in red), 12 voxels sharing edge (in

green) and 8 voxels sharing a vertex (in blue).

2.1. Common Voxelisation Properties

In contrast to vector representations, voxelised objects are prone to several configu-

rations such as holes, cavities and penetration, which have to be taken care of during the

voxelisation. The objects have to remain connected so that a discrete unit represents cor-

rectly the analogous representation of the vector object. This implies that the voxelisation

algorithms should apply several topological constraints such as connectivity, separation,

coverage and tunnelling [27].

Connectivity identifies a set of N-paths between every pair of voxels belonging to an

object. It indicates the result is an N-connected component, which is not disconnected in

any way. Connectivity is a measure of the way voxels are linked to each other. It gives a

notion of ‘thin’ or ‘thick’ voxelisation. Figure 2 illustrates ‘thick’ and ‘thin’ voxelisation,

resulting, respectively, from 4-connectivity (connected via the edges) and 8-connectivity

(connected via edges and vertices). The main benefits of strongly connected voxels, 8-con-

nected in 2D and 18 and 26-connected in 3D are very attractive since they result in tinner

objects with shorter length or area. In some cases, the connectivity of voxels might be in-

sufficient to estimate the quality of the voxelisation process and therefore the notion of

separation may need to be investigated.

Figure 2. Connectivity and separation in 2D voxel set representing a circle. On the left, 4-con-

nected voxelisation is achieved, which is at the same time 8-separating. On the right, 8-connected,

and thus, 4-separating voxelisation is presented.

Figure 1. The 26 neighbours of a voxel; six voxels sharing face (in red), 12 voxels sharing edge (in
green) and 8 voxels sharing a vertex (in blue).

Sensors 2021, 21, x FOR PEER REVIEW 3 of 22

Figure 1. The 26 neighbours of a voxel; six voxels sharing face (in red), 12 voxels sharing edge (in

green) and 8 voxels sharing a vertex (in blue).

2.1. Common Voxelisation Properties

In contrast to vector representations, voxelised objects are prone to several configu-

rations such as holes, cavities and penetration, which have to be taken care of during the

voxelisation. The objects have to remain connected so that a discrete unit represents cor-

rectly the analogous representation of the vector object. This implies that the voxelisation

algorithms should apply several topological constraints such as connectivity, separation,

coverage and tunnelling [27].

Connectivity identifies a set of N-paths between every pair of voxels belonging to an

object. It indicates the result is an N-connected component, which is not disconnected in

any way. Connectivity is a measure of the way voxels are linked to each other. It gives a

notion of ‘thin’ or ‘thick’ voxelisation. Figure 2 illustrates ‘thick’ and ‘thin’ voxelisation,

resulting, respectively, from 4-connectivity (connected via the edges) and 8-connectivity

(connected via edges and vertices). The main benefits of strongly connected voxels, 8-con-

nected in 2D and 18 and 26-connected in 3D are very attractive since they result in tinner

objects with shorter length or area. In some cases, the connectivity of voxels might be in-

sufficient to estimate the quality of the voxelisation process and therefore the notion of

separation may need to be investigated.

Figure 2. Connectivity and separation in 2D voxel set representing a circle. On the left, 4-con-

nected voxelisation is achieved, which is at the same time 8-separating. On the right, 8-connected,

and thus, 4-separating voxelisation is presented.

Figure 2. Connectivity and separation in 2D voxel set representing a circle. On the left, 4-connected
voxelisation is achieved, which is at the same time 8-separating. On the right, 8-connected, and thus,
4-separating voxelisation is presented.

Separation is a set of N-path voxels that divides two sets of voxels. This notion is
intended to estimate how the “empty space” interacts with the voxelised object. The
separation is exclusively a topological property, which does not reflect to what extent the
actual object is correctly represented. The separation and connectivity are related. In 2D
space, a 4-connecting voxelised object is always 8-separating and vice-versa (Figure 2). In
3D space, 6-connecting can be 18- or 26-separating and vice versa, but the relations are
more elaborated. Separation is one of the main aspects that is considered in simulations. In

Sensors 2021, 21, 8241 4 of 22

the case of 6-separating voxelisation (i.e., thin voxelisation) a fluid would be allowed to
go to voxels that only share a face with a voxel. In general, such a kind of voxelisation is
sufficient since fluids could not travel to other voxels that share an edge or a corner with
the central one. In favour of having 6-separating voxelisation is the fact that it is cheaper to
compute and often more required in computer graphic applications [35]. The only reason
when 18- or 26-separating voxelisation can be required is when an underlying model that
computes the distribution of a gas or fluid takes into account values of diagonal voxels or
allows distribution in those directions [36].

Coverage is a notion that aims to define formally the thickness of a voxelised line or
surface. There are three major variations of it: cover, supercover and partial cover (Figure 3).
A set of voxels is called a cover if every point of an object is in a voxel. Normally, 8-
connectivity in 2D creates a cover. A set of voxels are called supercover if all voxels that
‘contain’ or ‘touch’ points of the object are included in the set. A supercover can be obtained
from algorithms that ensure 4- or 6-connectivity, respectively, 2D and 3D. A suvercover
is also known as a conservative voxelisation [37,38]. It enlarges the object and may result in
large overlapping parts of neighbouring objects [23]. However, for applications such as
collision detection, occlusion culling and visibility processing conservative voxelisation is
highly desirable [38]. In which case, voxel-based collision detection between two models
would guarantee that those models do not intersect. A partial cover is a subset of cover,
which allows for the maintenance of the tiniest voxelisation. As visible in Figure 3c this
variation, while preserving well the shape of the object, may lead to cases when not all
points of the object are voxelised. A partial cover, being not very restrictive, may lead to
a connected voxel set that is not necessarily unique, as is visible in Figure 3c,d. Another
approach solution can target a ‘well-voxelised’ approximation, which is tunnel-free and
has a partial cover at the same time. To achieve such voxelisation, a method is proposed
where the Euclidian distance is minimal between centroids of voxels representing a cover
and the continuous object [27], resulting in keeping only them as part of the voxelised
object (Figure 3d).

Sensors 2021, 21, x FOR PEER REVIEW 4 of 22

Separation is a set of 𝑁-path voxels that divides two sets of voxels. This notion is in-

tended to estimate how the “empty space” interacts with the voxelised object. The sepa-

ration is exclusively a topological property, which does not reflect to what extent the ac-

tual object is correctly represented. The separation and connectivity are related. In 2D

space, a 4-connecting voxelised object is always 8-separating and vice-versa (Figure 2). In

3D space, 6-connecting can be 18- or 26-separating and vice versa, but the relations are

more elaborated. Separation is one of the main aspects that is considered in simulations.

In the case of 6-separating voxelisation (i.e., thin voxelisation) a fluid would be allowed to

go to voxels that only share a face with a voxel. In general, such a kind of voxelisation is

sufficient since fluids could not travel to other voxels that share an edge or a corner with

the central one. In favour of having 6-separating voxelisation is the fact that it is cheaper

to compute and often more required in computer graphic applications [35]. The only rea-

son when 18- or 26-separating voxelisation can be required is when an underlying model

that computes the distribution of a gas or fluid takes into account values of diagonal

voxels or allows distribution in those directions [36].

Coverage is a notion that aims to define formally the thickness of a voxelised line or

surface. There are three major variations of it: cover, supercover and partial cover (Figure 3).

A set of voxels is called a cover if every point of an object is in a voxel. Normally, 8-con-

nectivity in 2D creates a cover. A set of voxels are called supercover if all voxels that ‘con-

tain’ or ‘touch’ points of the object are included in the set. A supercover can be obtained

from algorithms that ensure 4- or 6-connectivity, respectively, 2D and 3D. A suvercover

is also known as a conservative voxelisation [37,38]. It enlarges the object and may result in

large overlapping parts of neighbouring objects [23]. However, for applications such as

collision detection, occlusion culling and visibility processing conservative voxelisation is

highly desirable [38]. In which case, voxel-based collision detection between two models

would guarantee that those models do not intersect. A partial cover is a subset of cover,

which allows for the maintenance of the tiniest voxelisation. As visible in Figure 3c this

variation, while preserving well the shape of the object, may lead to cases when not all

points of the object are voxelised. A partial cover, being not very restrictive, may lead to

a connected voxel set that is not necessarily unique, as is visible in Figure 3c,d. Another

approach solution can target a ‘well-voxelised’ approximation, which is tunnel-free and

has a partial cover at the same time. To achieve such voxelisation, a method is proposed

where the Euclidian distance is minimal between centroids of voxels representing a cover

and the continuous object [27], resulting in keeping only them as part of the voxelised

object (Figure 3d).

Figure 3. Representation of a cover (a), supercover (b), partial cover (c), and partial cover (d) well-voxelised curve in 2D.

Connectivity, separation and coverage allow to control the ‘thickness’ of voxelisation

and therefore have the ability to indicate intersections and detect penetrations. For exam-

ple, in a vector space, two lines intersect in a well-defined intersection point and a line

cannot penetrate a closed polygon. However, depending on the voxelisation approach,

the result might be different in the voxel space. For example, the intersection point of two

Figure 3. Representation of a cover (a), supercover (b), partial cover (c), and partial cover (d) well-voxelised curve in 2D.

Connectivity, separation and coverage allow to control the ‘thickness’ of voxelisation
and therefore have the ability to indicate intersections and detect penetrations. For example,
in a vector space, two lines intersect in a well-defined intersection point and a line cannot
penetrate a closed polygon. However, depending on the voxelisation approach, the result
might be different in the voxel space. For example, the intersection point of two lines in
2D can disappear if 8-connecting voxelisation is applied. (Figure 4, left). Alternatively, the
intersection point might become enlarged and therefore fuzzy, if a 4-connecting approach
is applied. (Figure 4, right).

Sensors 2021, 21, 8241 5 of 22

Sensors 2021, 21, x FOR PEER REVIEW 5 of 22

lines in 2D can disappear if 8-connecting voxelisation is applied. (Figure 4, left). Alterna-

tively, the intersection point might become enlarged and therefore fuzzy, if a 4-connecting

approach is applied. (Figure 4, right).

(a) (b)

Figure 4. Intersection points of lines in 2D space: ‘tunnelling’, i.e., an intersection point is missing in 8-connected (a) and

two voxels (in dark) as an intersection point (b).

Tunnelling is the notion to indicate the effect of penetration of two voxelised lines or

surfaces (Figure 4, left). The 8-connected voxelisation in 2D, and 18- and 26-connected in

3D are prone to tunnelling. Consequently, a 4-connected voxel path in 2D and 6-connected

in 3D are tunnel-free. In computer graphics, tunnelling may give the impression of having

holes during rendering [23]. In applications performing analysis on voxelised objects, tun-

nelling might lead to difficulties in detecting intersections and penetrations.

2.2. Binary and Non-Binary Voxelisation

A common voxelisation classification depending on the resulting output identifies

two types of voxelisation: binary and non-binary. Binary voxelisation is investigated by

many researchers [3,39–41], but we need to explain the needs and possibilities of using

non-binary voxelisation.

The main advantages of using binary voxelisation over a non-binary one is memory

requirements, where only a single bit is needed to indicate a voxel’s status, and speed to

create a voxelised object. Apart from a discrete representation of an object that binary rep-

resentation provides, many times storing additional information is needed, especially for

objects that come with textures, semantics and other properties. For example, we can store

information related to surface normal and material properties like colour, opacity, den-

sity, depth, etc. There are several classes of non-binary voxelisation targeting anti-aliasing

[29,42], multi values [43–46], and distance transform [47–50].

For example, to achieve alias-free rendering, estimating surface normal at the voxel’s

location is required. To ensure correct voxel estimation the use of filters during voxelisa-

tion and reconstruction is needed [51]. As mentioned above, in addition to occupancy in

multivalued voxelisation other information can be stored such as colour, material, opac-

ity, etc. [45]. However, two nearly coplanar close surfaces representing two objects can fall

in the same voxel, where storing information of both objects in a voxel is suggested [46].

Therefore, thin objects such as clothes or canvas placed close to other objects depending

on an observer side could require keeping information of both objects in a voxel.

A distance map or field keeps distance at each point to the closest point of an object

in space. Distance maps represent useful information for many spatial analyses and fluid

simulations. Once a distance transform is signed, we can determine if a point is within or

out of an object [49]. The use of distance transform is versatile including computer

Figure 4. Intersection points of lines in 2D space: ‘tunnelling’, i.e., an intersection point is missing in 8-connected (a) and
two voxels (in dark) as an intersection point (b).

Tunnelling is the notion to indicate the effect of penetration of two voxelised lines or
surfaces (Figure 4, left). The 8-connected voxelisation in 2D, and 18- and 26-connected in
3D are prone to tunnelling. Consequently, a 4-connected voxel path in 2D and 6-connected
in 3D are tunnel-free. In computer graphics, tunnelling may give the impression of having
holes during rendering [23]. In applications performing analysis on voxelised objects,
tunnelling might lead to difficulties in detecting intersections and penetrations.

2.2. Binary and Non-Binary Voxelisation

A common voxelisation classification depending on the resulting output identifies
two types of voxelisation: binary and non-binary. Binary voxelisation is investigated by
many researchers [3,39–41], but we need to explain the needs and possibilities of using
non-binary voxelisation.

The main advantages of using binary voxelisation over a non-binary one is memory
requirements, where only a single bit is needed to indicate a voxel’s status, and speed
to create a voxelised object. Apart from a discrete representation of an object that binary
representation provides, many times storing additional information is needed, especially
for objects that come with textures, semantics and other properties. For example, we can
store information related to surface normal and material properties like colour, opacity,
density, depth, etc. There are several classes of non-binary voxelisation targeting anti-
aliasing [29,42], multi values [43–46], and distance transform [47–50].

For example, to achieve alias-free rendering, estimating surface normal at the voxel’s
location is required. To ensure correct voxel estimation the use of filters during voxelisation
and reconstruction is needed [51]. As mentioned above, in addition to occupancy in
multivalued voxelisation other information can be stored such as colour, material, opacity,
etc. [45]. However, two nearly coplanar close surfaces representing two objects can fall
in the same voxel, where storing information of both objects in a voxel is suggested [46].
Therefore, thin objects such as clothes or canvas placed close to other objects depending on
an observer side could require keeping information of both objects in a voxel.

A distance map or field keeps distance at each point to the closest point of an object
in space. Distance maps represent useful information for many spatial analyses and fluid
simulations. Once a distance transform is signed, we can determine if a point is within
or out of an object [49]. The use of distance transform is versatile including computer
graphics, digital image processing (e.g., blurring effects, skeletonizing), path planning and
pathfinding [20].

Sensors 2021, 21, 8241 6 of 22

3. Voxelisation of 3D Geometric Primitives

As shown in the previous section, during the voxelisation of 3D objects we can deal
with many aspects. A large number of voxelisation approaches have been reported in the
literature, for example: for lines [23], triangles [24], polygons [25], parametric surfaces [42],
implicit surfaces [52], constructive solid geometry [53], and polyhedral objects [54], etc.
In this section, we will present the state-of-the-art methods for voxelisation of geometric
primitives such as points, lines, triangles, surfaces and solids.

3.1. Point Voxelisation

Voxelisation of a point or many points can be done in a very straightforward way
and be performed in several steps: (1) a translation according to a pivot point obtained
from the bounding box of the points, (2) division of all coordinates considering a voxel
size, (3) rounding the final values down to the first integer value, which can be a corner or
centre point of the voxel and (4) recording a voxel in the voxel space if not existent. An
algorithm considering the integer values for centroids of voxels is presented in [55]. Due to
its simplicity to calculate and the ability to run in parallel, a point voxelisation technique
known as particle-in-cell (PIC) is used in physical simulations to track the movement of
densities and currents in voxel space [56].

3.2. Line Voxelisation

Going through the voxelisation process, a 3D continuous line should be transformed
into a discrete set of connected voxels. A discrete line representation can have many
purposes and roles [23]. A voxelised line or line segment is fundamental primitives which
can be used as a building block for generating more complex 3D objects. For example, if we
extend a circle following a line direction we can ending up with an open cylinder. Another
example of using line voxelisation techniques is for ray traversal in voxel space. In this
case, a set of voxels intersected or visited by the continuous ray can be determined. Line
voxelisation algorithms can be also used in voxelisation of triangles [41].

In 3D, 6-connected and 26-connected line voxelisation techniques are usually dis-
cussed by researchers. The main advantage of 26-connected line voxelisation is the lower
computational cost since it generates approximately two times fewer voxels [23]. Another
type of line voxelisation that needs to be discussed is spline voxelisation since not all lines
are straight.

3.2.1. 6-Connected Voxelisation Algorithms

A straightforward method of raymarching voxels in a uniform grid was proposed
generating a 6-connected path [1]. This method is nowadays known as the real line
voxelisation (RLV). The method traverses the intersections between a line and the grid.
The next intersection is identified based on the proximity along the axes and line direction.
Thus, the method identifies during each step the intersecting points with the grid in all
three dimensions and shifts the focus to the closest point for the next iteration. If the line
passes through the corner of the voxel grid, an arbitrary voxel candidate can be picked or
supercover line voxelisation (SLV) can be formed by labelling all touching voxels as filled.

Another algorithm worth mentioning producing 6-connected voxelisation is Xiaolin
Wu’s line algorithm [57]. This algorithm is commonly used in modern computer graphics
because it supports antialiasing while being fast compared to other available algorithms.

A method generating a 6-connected line, named tripod, is proposed suggesting a
comparable performance in voxelisation speed. The method is tracking the projections of a
line on the three main axes [23]. Although this method requires the line of origin to lay at
the centre of the voxel to avoid fractions in calculations, it suggests having the containment
property. However, this might not be the case since every shift can result in some other
voxels being covered (Figure 5c).

Sensors 2021, 21, 8241 7 of 22

Sensors 2021, 21, x FOR PEER REVIEW 7 of 22

at the centre of the voxel to avoid fractions in calculations, it suggests having the contain-

ment property. However, this might not be the case since every shift can result in some

other voxels being covered (Figure 5c).

Figure 5. (a) RLV or SLV; (b) SLV generates more voxels than RLV considering all touching voxels;

(c,d) small variations of the voxels coverage generated by Tripod and ILV algorithm.

Following the same structure as RLV, a new approach was presented called integer-

only line voxelisation (ILV) [41]. The main idea of this method is to avoid floating-point

arithmetic and divisions present in RLV. Apart from the shift of the starting point of a line

as in the tripod algorithm, this algorithm shifts the endpoint to the voxel centre as well.

This can cause covering of voxels that are not present in RLV, and thus not guaranteeing

the containment property of the original line (Figure 5d).

3.2.2. 26-Connected Voxelisation Algorithms

Many algorithms create thin line voxelisation. Regarding 8-connected rasterisation,

the most famous algorithms are digital differential analyser (DDA) (https://en.wikipe-

dia.org/wiki/Digital_differential_analyzer_(graphics_algorithm). (accessed on 4 Decem-

ber 2021)) and Bresenham’s line algorithm [58]. The main difference between these two

algorithms is that Bresenham’s line algorithm employs integer with round off functions

while the DDA algorithm works with floating-point values. Another pro of using Bresen-

ham’s algorithm is the computational performance mainly due to using additions and

subtractions compared to the DDA which uses multiplications and additions. Unlike the

DDA algorithm, the Bresenham algorithm is an integer-only line voxelisation algorithm,

requiring endpoints to lie exactly on the middle points of the grid. However, we should

point out that this shift can result in the coverage of different voxels between these two

algorithms. A 3D version of DDA [59] and Bresenham’s algorithm [60] are also proposed

creating a 26-connected line, behaving in the same way as the initial algorithms.

3.2.3. Spline Voxelisation Algorithms

To tackle a variety of lines, including parametric ones, Laine introduced two ap-

proaches considering intersections between specific targets and the grid [61]. Targets that

are suggested are diagonal and crosshair ones. The targets can be applied in 2D and 3D

voxelisations. Using one of these intersecting targets results in a voxelisation with differ-

ent connectivity and separability properties. Generally, a diagonal target leads to 4-con-

nectivity and a crosshair target to 8-connectivity voxelisation in 2D (Figure 6). The process

is performed for each voxel which can be optimised by casting rays diagonally and hori-

zontally from two directions for both scenarios in 2D or by intersecting planes in the same

Figure 5. (a) RLV or SLV; (b) SLV generates more voxels than RLV considering all touching voxels;
(c,d) small variations of the voxels coverage generated by Tripod and ILV algorithm.

Following the same structure as RLV, a new approach was presented called integer-
only line voxelisation (ILV) [41]. The main idea of this method is to avoid floating-point
arithmetic and divisions present in RLV. Apart from the shift of the starting point of a line
as in the tripod algorithm, this algorithm shifts the endpoint to the voxel centre as well.
This can cause covering of voxels that are not present in RLV, and thus not guaranteeing
the containment property of the original line (Figure 5d).

3.2.2. 26-Connected Voxelisation Algorithms

Many algorithms create thin line voxelisation. Regarding 8-connected rasterisation, the
most famous algorithms are digital differential analyser (DDA) (https://en.wikipedia.org/
wiki/Digital_differential_analyzer_(graphics_algorithm). (accessed on 30 November 2021))
and Bresenham’s line algorithm [58]. The main difference between these two algorithms is
that Bresenham’s line algorithm employs integer with round off functions while the DDA
algorithm works with floating-point values. Another pro of using Bresenham’s algorithm is
the computational performance mainly due to using additions and subtractions compared
to the DDA which uses multiplications and additions. Unlike the DDA algorithm, the
Bresenham algorithm is an integer-only line voxelisation algorithm, requiring endpoints to
lie exactly on the middle points of the grid. However, we should point out that this shift
can result in the coverage of different voxels between these two algorithms. A 3D version
of DDA [59] and Bresenham’s algorithm [60] are also proposed creating a 26-connected
line, behaving in the same way as the initial algorithms.

3.2.3. Spline Voxelisation Algorithms

To tackle a variety of lines, including parametric ones, Laine introduced two ap-
proaches considering intersections between specific targets and the grid [61]. Targets that
are suggested are diagonal and crosshair ones. The targets can be applied in 2D and
3D voxelisations. Using one of these intersecting targets results in a voxelisation with
different connectivity and separability properties. Generally, a diagonal target leads to
4-connectivity and a crosshair target to 8-connectivity voxelisation in 2D (Figure 6). The
process is performed for each voxel which can be optimised by casting rays diagonally
and horizontally from two directions for both scenarios in 2D or by intersecting planes
in the same way for 3D. Another possible solution that we can think of is to approximate
such a line with straight lines and use some of the previously mentioned algorithms to
voxelise them.

https://en.wikipedia.org/wiki/Digital_differential_analyzer_(graphics_algorithm
https://en.wikipedia.org/wiki/Digital_differential_analyzer_(graphics_algorithm

Sensors 2021, 21, 8241 8 of 22

Sensors 2021, 21, x FOR PEER REVIEW 8 of 22

way for 3D. Another possible solution that we can think of is to approximate such a line

with straight lines and use some of the previously mentioned algorithms to voxelise them.

(a) (b)

Figure 6. Voxelisation of a curve using intersecting targets in 2D. (a) Using cross-diagonal intersection targets forming 4-

connected and 8-separating voxelisation. (b) Using crosshairs intersection targets forming 8-connected and 4-separating

voxelisation.

3.2.4. Comparison of Line Voxelisation Algorithms

There are numerous algorithms that can successfully perform line voxelisation in two

or three dimensions. In Table 1, we present chronologically nine approaches and some of

their characteristics. The main difference between the algorithms is the type of voxelisa-

tion that they achieve. They either use floating-point or integer arithmetic. When it comes

to speed, integer-based algorithms achieving thinner voxelisation should be the quickest.

However, this can depend on the application in which they are used. Thus, targeting op-

timal scanline voxelisation of 3D models RLV outperformed the 3D Bresenham’s line al-

gorithm and ILV in terms of speed and accuracy of approximating original 3D models

[62]. It is pointed out that the main reason for this is the consideration of many edge cases,

in which case other algorithms were slower. Tripod and 3D-DDA were not considered in

this study, although authors behind Tripod algorithm suggested that their algorithm can

achieve comparable results to RLV [23]. However, we should mention that this is only one

application area in which these algorithms can be compared.

Table 1. Line voxelisation algorithms.

Method Type Property General Purpose

2D Bresenham’s line algorithm [58] Integer-only 8-connected Line primitives rasterisation

2D-DDA Floating-point or integer 8-connected Line primitives rasterisation

3D-DDA [59] Floating-point or integer 26-connected Line primitives voxelisation

RLV & SLV [1] Floating-point Conservative Line primitives voxelisation

Xiaolin Wu’s line algorithm [57] Floating-point Conservative Antialiasing

Tripod [23] Integer 6-connected Line primitives voxelisation

3D Bresenham’s line algorithm [60] Integer-only 26-connected Line primitives voxelisation

Targets-based approaches [61] Floating-point 6/26-connected
Irregular line primitives

voxelisation

ILV [41] Integer-only 6-connected Surface voxelisation

3.3. Triangle Voxelisation

Triangles are the most basic polygons which have some unique properties such as

being planar, having a well-defined interior and can perform quick intersections with

rays. Triangles are almost always used as a building element of more complex objects like

polygons and surfaces. In general, rasterisation is the main technique used for voxelisa-

tion of triangles, but they can be voxelised using ray casting as well (Figure 7). The first

approach identifies which pixels to cover of a triangle in 2D space and reprojecting them

Figure 6. Voxelisation of a curve using intersecting targets in 2D. (a) Using cross-diagonal intersection targets form-
ing 4-connected and 8-separating voxelisation. (b) Using crosshairs intersection targets forming 8-connected and
4-separating voxelisation.

3.2.4. Comparison of Line Voxelisation Algorithms

There are numerous algorithms that can successfully perform line voxelisation in two
or three dimensions. In Table 1, we present chronologically nine approaches and some of
their characteristics. The main difference between the algorithms is the type of voxelisation
that they achieve. They either use floating-point or integer arithmetic. When it comes
to speed, integer-based algorithms achieving thinner voxelisation should be the quickest.
However, this can depend on the application in which they are used. Thus, targeting
optimal scanline voxelisation of 3D models RLV outperformed the 3D Bresenham’s line
algorithm and ILV in terms of speed and accuracy of approximating original 3D models [62].
It is pointed out that the main reason for this is the consideration of many edge cases, in
which case other algorithms were slower. Tripod and 3D-DDA were not considered in
this study, although authors behind Tripod algorithm suggested that their algorithm can
achieve comparable results to RLV [23]. However, we should mention that this is only one
application area in which these algorithms can be compared.

Table 1. Line voxelisation algorithms.

Method Type Property General Purpose

2D Bresenham’s line algorithm [58] Integer-only 8-connected Line primitives rasterisation
2D-DDA Floating-point or integer 8-connected Line primitives rasterisation

3D-DDA [59] Floating-point or integer 26-connected Line primitives voxelisation
RLV & SLV [1] Floating-point Conservative Line primitives voxelisation

Xiaolin Wu’s line algorithm [57] Floating-point Conservative Antialiasing
Tripod [23] Integer 6-connected Line primitives voxelisation

3D Bresenham’s line algorithm [60] Integer-only 26-connected Line primitives voxelisation
Targets-based approaches [61] Floating-point 6/26-connected Irregular line primitives voxelisation

ILV [41] Integer-only 6-connected Surface voxelisation

3.3. Triangle Voxelisation

Triangles are the most basic polygons which have some unique properties such as
being planar, having a well-defined interior and can perform quick intersections with
rays. Triangles are almost always used as a building element of more complex objects like
polygons and surfaces. In general, rasterisation is the main technique used for voxelisation
of triangles, but they can be voxelised using ray casting as well (Figure 7). The first
approach identifies which pixels to cover of a triangle in 2D space and reprojecting them
into 3D space, while the second one relies on a quick intersection identification between
rays and triangles.

Sensors 2021, 21, 8241 9 of 22

Sensors 2021, 21, x FOR PEER REVIEW 9 of 22

into 3D space, while the second one relies on a quick intersection identification between

rays and triangles.

Figure 7. Triangle voxelisation. (a) uniform ray casting (b) rasterisation techniques; in red, the bounding box, in green tiles

that are outside; in purple tiles that are inside; in yellow tiles that are intersecting the triangle are presented.

3.3.1. Rasterisation

Rasterisation approaches mainly rely on bringing triangles into 2D space to identify

quickly which pixels should be filled using inside/outside checks. To optimise which pix-

els to check, as presented in Figure 7b, the simplest approach is to consider only pixels

that are covered by the bounding box of a triangle [63]. However, for elongated triangles,

many pixels that are outside still need testing, which can be considered as wasted compu-

tation. As a result, an approach tessellating a bounding box space into tiles is proposed

(Figure 7b), which can quickly eliminate large blocks of pixels that are outside but also

inside of a triangle [64]. At the same time, many rasterisation approaches target various

pixel traversal ways to quickly identify which to fill. Thus, algorithms considering back-

track traversal [65], zigzag traversal [66], central-line traversal [63,67], tiled traversal [68–

70] and midpoint traversal [71] are available. Tiled traversal algorithms are considered the

best out of them, also reducing the needed power consumption. However, this might not

be the case if triangles are smaller compared to a selected pixel size [72], requiring to split

them into groups for faster processing [26].

DDA and Bresenham algorithms can be used for triangle rasterisation, but they can

be difficult to implement in hardware resulting in a few approaches relying on them for

triangle voxelisation [71]. However, researchers are trying to come up with new ap-

proaches that actually involve line rasterisation [41,62], achieving compareble pre-

formance with above mentioned approaches.

3.3.2. Raycasting

Many algorithms are targeting ray-triangle intersections to derive which triangles to

render on a screen [73,74]. Ray casting can be performed from a specific point of view

using a perspective camera or an orthogonal camera, where rays are uniformly sent to-

wards an area of interest. Both approaches are commonly used in rendering scenes, keep-

ing depth and other parameters (e.g., colour, reflectivity, etc.) for each pixel that is closest

to a camera within Z-buffer. However, voxels do not cover the same area in the scene if a

perspective camera is used. The latter approach considers casting rays from a uniform

grid (Figure 7a) which can generate uniformed size voxels. Moreover, if all intersections

with triangles are identified, the whole scene can be voxelised at once with the same size

voxels. In order not to miss thin structures, raycasting can be performed in all three direc-

Figure 7. Triangle voxelisation. (a) uniform ray casting (b) rasterisation techniques; in red, the bounding box, in green tiles
that are outside; in purple tiles that are inside; in yellow tiles that are intersecting the triangle are presented.

3.3.1. Rasterisation

Rasterisation approaches mainly rely on bringing triangles into 2D space to identify
quickly which pixels should be filled using inside/outside checks. To optimise which pixels
to check, as presented in Figure 7b, the simplest approach is to consider only pixels that are
covered by the bounding box of a triangle [63]. However, for elongated triangles, many
pixels that are outside still need testing, which can be considered as wasted computation.
As a result, an approach tessellating a bounding box space into tiles is proposed (Figure 7b),
which can quickly eliminate large blocks of pixels that are outside but also inside of a
triangle [64]. At the same time, many rasterisation approaches target various pixel traversal
ways to quickly identify which to fill. Thus, algorithms considering backtrack traversal [65],
zigzag traversal [66], central-line traversal [63,67], tiled traversal [68–70] and midpoint
traversal [71] are available. Tiled traversal algorithms are considered the best out of them,
also reducing the needed power consumption. However, this might not be the case if
triangles are smaller compared to a selected pixel size [72], requiring to split them into
groups for faster processing [26].

DDA and Bresenham algorithms can be used for triangle rasterisation, but they can
be difficult to implement in hardware resulting in a few approaches relying on them for
triangle voxelisation [71]. However, researchers are trying to come up with new approaches
that actually involve line rasterisation [41,62], achieving compareble preformance with
above mentioned approaches.

3.3.2. Raycasting

Many algorithms are targeting ray-triangle intersections to derive which triangles to
render on a screen [73,74]. Ray casting can be performed from a specific point of view using
a perspective camera or an orthogonal camera, where rays are uniformly sent towards an
area of interest. Both approaches are commonly used in rendering scenes, keeping depth
and other parameters (e.g., colour, reflectivity, etc.) for each pixel that is closest to a camera
within Z-buffer. However, voxels do not cover the same area in the scene if a perspective
camera is used. The latter approach considers casting rays from a uniform grid (Figure 7a)
which can generate uniformed size voxels. Moreover, if all intersections with triangles are
identified, the whole scene can be voxelised at once with the same size voxels. In order not
to miss thin structures, raycasting can be performed in all three directions. To reduce the
intersection checks between triangles and rays an algorithm is proposed which checks first
if bounding boxes of triangles are inside the view frustum [75]. The same technique can be
applied for any area of interest to eliminate quickly triangles that are not inside.

Sensors 2021, 21, 8241 10 of 22

Similar techniques are used for the efficient calculation of ray-polygon intersections.
For convex polygons dividing them into triangles and performing inside-outside check is
suggested [76], while for non-convex and self-intersecting polygons odd/even parity can be
used for a ray-polygon intersection [77]. Another set of algorithms achieving 6-connected
and 26-connected voxelisation are presented [55], which are based on targets intersections
previously mentioned in Section 3.2.3. These approaches can be considered as sending rays
in all three directions and diagonally to achieve 26-connected and 6-connected voxelisation,
respectively. These approaches are also extended to support surface voxelisation.

3.3.3. Comparison of Triangle Voxelisation Algorithms

Rasterisation techniques are predominantly used for voxelisation of triangles (Table 2).
Although ray casting techniques are slower than rasterisation ones, they can be used at
the same time to obtain shadows and reflections more accurately for computer graphics
applications. Using rasterisation it is possible to obtain different voxelisation properties,
which are usually driven by application requirements. On the other hand, using raycasting
it is not possible to achieve conservative voxelisation since edges of triangles can be easily
missed. The rasterisation techniques rely on fast traversal of pixels within a bounding
box or tiles, but it is possible to use line rasterisation techniques as well. Ray-triangle and
ray-polygon intersection can be used to voxelise triangles and polygons, respectively.

Table 2. Triangle voxelisation algorithms.

Method Type Property Main Technique

[3,63,65–67,71] Rasterisation 6/26-connected & conservative Bounding box, backtrack, zigzag, central-line,
and midpoint traversal

[3,26,68–70] Rasterisation 6/26-connected & conservative Tile-based
[55,73–75,77] Raycasting 6/26-connected Ray-triangle and ray-polygon intersection

[41,62] Rasterisation 6/26-connected & conservative Line rasterisation

3.4. Surface Voxelisation

A surface usually represents a continuous object resembling a deformed plane. There
are many algorithms successfully performing surface voxelisation of 3D objects. To achieve
a surface voxelisation there are two main approaches. The first approach is based on
slicing of a scene or an object from one or more viewing directions. The second one
considers rasterisation of triangles in 2D based on the dominant axis and the identification
of overlapping voxels in 3D space. Another known classification divides approaches using
graphics pipeline and computational voxelisation [78].

3.4.1. Slice-Based

Regarding slice-based voxelisation, several algorithms are proposed [14,43]. The main
idea behind these approaches is to perform voxelisation from a viewpoint slice-wise. The
main disadvantages of these approaches are related to missing thin structures and having
discontinuity between voxels (Figure 8), especially in the case of considering one viewing
direction [3]. Thus, these approaches cannot guarantee that connectivity or any other
property will be preserved during voxelisation. For instance, voxelising thin objects such
as trees’ branches can easily have disconnected voxels. To capture all pixels overlapped
by triangles and then identity for each pixel depth range along the viewing direction,
conservative voxelisation is proposed [38]. This can definitely address the issues, but
some additional voxels may be set in the depth range computation due to robustness
problems [3].

Sensors 2021, 21, 8241 11 of 22

Sensors 2021, 21, x FOR PEER REVIEW 11 of 22

some additional voxels may be set in the depth range computation due to robustness

problems [3].

Figure 8. Limitations of one-side slicing seen from the bottom up. (a) view frustum of a perspective

camera where the left object is completely missed, and the right object has disconnected voxels (b)

depth slice of an orthogonal camera.

3.4.2. Rasterisation

Many approaches perform triangle rasterisation obtaining a voxelised model. Some

of them use bounding boxes of triangles to test which voxels to cover [3,72,79], while oth-

ers rely on a tile-based voxelisation [26,80,81] where triangles are assigned to each tile they

overlap, which are checked sequentially for voxels coverage afterwards.

Using a triangle/box overlapping technique it is possible to assign one thread per

triangle and test each pixel for coverage. This approach relies on a 2D axis-aligned box to

test coverage. Tile-based approaches as discussed previously can boost voxelisation per-

formance since not all pixels will be tested. Both approaches are suitable for running the

voxelisation in parallel to achieve fast performance [3,26]. However, there can be a huge

overhead if models are represented by small triangles compared to a selected pixel size

[82]. To mitigate this issue Pantaleoni introduced coarse and fine rasterisation, where tiles

are split based on the number of triangles during the coarse rasterisation for better load

balancing in the fine rasterisation step afterwards. A similar approach was presented by

Kalojanov [83] concentrating more on fast rendering, keeping all overlapping triangles

per voxel, where conservative voxelisation was not strictly identified. Another approach

using point-tessellated voxelisation is proposed afterwards [40]. The method calculates a

triangle tessellation factor to subdivide triangles into micro triangles, in which centroids

are voxelised afterwards to obtain a voxelised model. However, this approach can miss

voxelising some voxels and it is not necessarily quicker. Recent work uses line voxelisa-

tion at its core to identify filled voxels for each triangle of a surface model [41]. By using

either SLV or ILV approach a suvercover or 26-tunnel-free surface voxelisation can be

identified. The method can downgrade the voxelisation to generate tinner surfaces like

18- or 6-tunnel-free ones. A hybrid approach relying on tile-based rasterisation and

raycasting is also proposed for effective rendering of surface and solid voxelisation [45].

3.4.3. Comparison of Surface Voxelisation Algorithms

Table 3 shows the most recent methods used to achieve fast surface voxelisation,

where most of them use rasterisation to identify a voxel representation. Some of the meth-

ods are more flexible and can achieve with small modifications different voxelisation

properties, whereas others are more specific. Researchers used a variety of techniques to

acquire surface voxelisation for different applications. It is hard to tell which method is

the most robust, but possibly the methods by Pantaleoni [26] and Zhang [41] can be sug-

gested as the best. In comparison, the method presented by Zhang outperformed the ones

Figure 8. Limitations of one-side slicing seen from the bottom up. (a) view frustum of a perspective
camera where the left object is completely missed, and the right object has disconnected voxels (b)
depth slice of an orthogonal camera.

3.4.2. Rasterisation

Many approaches perform triangle rasterisation obtaining a voxelised model. Some of
them use bounding boxes of triangles to test which voxels to cover [3,72,79], while others
rely on a tile-based voxelisation [26,80,81] where triangles are assigned to each tile they
overlap, which are checked sequentially for voxels coverage afterwards.

Using a triangle/box overlapping technique it is possible to assign one thread per
triangle and test each pixel for coverage. This approach relies on a 2D axis-aligned box
to test coverage. Tile-based approaches as discussed previously can boost voxelisation
performance since not all pixels will be tested. Both approaches are suitable for running
the voxelisation in parallel to achieve fast performance [3,26]. However, there can be a
huge overhead if models are represented by small triangles compared to a selected pixel
size [82]. To mitigate this issue Pantaleoni introduced coarse and fine rasterisation, where
tiles are split based on the number of triangles during the coarse rasterisation for better
load balancing in the fine rasterisation step afterwards. A similar approach was presented
by Kalojanov [83] concentrating more on fast rendering, keeping all overlapping triangles
per voxel, where conservative voxelisation was not strictly identified. Another approach
using point-tessellated voxelisation is proposed afterwards [40]. The method calculates a
triangle tessellation factor to subdivide triangles into micro triangles, in which centroids
are voxelised afterwards to obtain a voxelised model. However, this approach can miss
voxelising some voxels and it is not necessarily quicker. Recent work uses line voxelisation
at its core to identify filled voxels for each triangle of a surface model [41]. By using
either SLV or ILV approach a suvercover or 26-tunnel-free surface voxelisation can be
identified. The method can downgrade the voxelisation to generate tinner surfaces like 18-
or 6-tunnel-free ones. A hybrid approach relying on tile-based rasterisation and raycasting
is also proposed for effective rendering of surface and solid voxelisation [45].

3.4.3. Comparison of Surface Voxelisation Algorithms

Table 3 shows the most recent methods used to achieve fast surface voxelisation, where
most of them use rasterisation to identify a voxel representation. Some of the methods are
more flexible and can achieve with small modifications different voxelisation properties,
whereas others are more specific. Researchers used a variety of techniques to acquire
surface voxelisation for different applications. It is hard to tell which method is the most
robust, but possibly the methods by Pantaleoni [26] and Zhang [41] can be suggested as the
best. In comparison, the method presented by Zhang outperformed the ones presented by
Pantaleoni, where the ILV method generated slightly more voxels. However, it is pointed

Sensors 2021, 21, 8241 12 of 22

out by the authors that additional information (colour, surface normal vectors, and so on)
cannot be stored during voxelisation, which is not the case with Pantaleoni’s approaches.

Table 3. Surface voxelisation algorithms.

Method Type Property Main Technique General Purpose

[43] Slice-based ‘26-connected’ Plane slicing Rendering
[14] Slice-based ‘26-connected’ Depth peeling Rendering
[38] Slice-based Conservative Bounding box Collision detection
[72] Rasterisation 26-connected Bounding box Rendering
[79] Rasterisation 26-connected Bounding box Rendering
[81] Rasterisation 26-connected Tile-based Voxelisation
[3] Rasterisation Conservative & 26-connected Bounding box Voxelisation

[83] Rasterisation ‘Conservative’ Two level grids Rendering
[26] Rasterisation Conservative & 26-connected Tile-based & bucketing Voxelisation & rendering
[40] Rasterisation 26-connected Point tessellation Voxelisation
[55] Raycasting 6/26-connected Intersecting targets Voxelisation
[41] Rasterisation 6/26-connected ILV Voxelisation

[45] Rasterisation &
raycasting Conservative Tile-based + ray-triangle

intersection Voxelisation & rendering

3.5. Solid Voxelisation

As opposed to voxels covering a shell (i.e., surface) of an object, in a solid voxelisation,
voxels whose centroids are inside the object are taken into account. Sometimes a boundary
representing the surface of a solid object can be voxelised as well [43]. Methods utilised to
acquire solid voxelisation are similar to the surface ones, considering either rasterisation [3]
or slicing [2,28,39,43,84]. Achieving quick solid voxelisation is a less studied topic than
surface voxelisation mainly due to its need and speed to acquire interior voxels of a 3D
model. However, solid voxelisation can be used for translucency effects, volume visualisa-
tions used to show CT scans, particle collision detection and interaction, morphological
operations, and CSG operations [39]. By counting the number of voxels representing an
object, volume can be calculated [85], which can be identified even more accurately if
object-voxel coverage factor is recorded [3].

However, all current approaches are concentrating on solid voxelisation of watertight
models. In watertight models, all points of each connected component have a clear sepa-
ration between interior and exterior. For example, a point in space belongs to an interior
or exterior if the number of intersections of a ray with the model from that point in any
direction is odd or even, respectively (Jordan theorem) (https://en.wikipedia.org/wiki/
Jordan_curve_theorem (accessed on 30 November 2021)) [86]. Figure 9 shows the difference
between watertight and non-watertight models.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 22

presented by Pantaleoni, where the ILV method generated slightly more voxels. However,

it is pointed out by the authors that additional information (colour, surface normal vec-

tors, and so on) cannot be stored during voxelisation, which is not the case with Pantale-

oni’s approaches.

Table 3. Surface voxelisation algorithms.

Method Type Property Main Technique General Purpose

[43] Slice-based ‘26-connected’ Plane slicing Rendering

[14] Slice-based ‘26-connected’ Depth peeling Rendering

[38] Slice-based Conservative Bounding box Collision detection

[72] Rasterisation 26-connected Bounding box Rendering

[79] Rasterisation 26-connected Bounding box Rendering

[81] Rasterisation 26-connected Tile-based Voxelisation

[3] Rasterisation Conservative & 26-connected Bounding box Voxelisation

[83] Rasterisation ‘Conservative’ Two level grids Rendering

[26] Rasterisation Conservative & 26-connected Tile-based & bucketing Voxelisation & rendering

[40] Rasterisation 26-connected Point tessellation Voxelisation

[55] Raycasting 6/26-connected Intersecting targets Voxelisation

[41] Rasterisation 6/26-connected ILV Voxelisation

[45]
Rasterisation &

raycasting
Conservative

Tile-based + ray-triangle

intersection
Voxelisation & rendering

3.5. Solid Voxelisation

As opposed to voxels covering a shell (i.e., surface) of an object, in a solid voxelisa-

tion, voxels whose centroids are inside the object are taken into account. Sometimes a

boundary representing the surface of a solid object can be voxelised as well [43]. Methods

utilised to acquire solid voxelisation are similar to the surface ones, considering either

rasterisation [3] or slicing [2,28,39,43,84]. Achieving quick solid voxelisation is a less stud-

ied topic than surface voxelisation mainly due to its need and speed to acquire interior

voxels of a 3D model. However, solid voxelisation can be used for translucency effects,

volume visualisations used to show CT scans, particle collision detection and interaction,

morphological operations, and CSG operations [39]. By counting the number of voxels

representing an object, volume can be calculated [85], which can be identified even more

accurately if object-voxel coverage factor is recorded [3].

However, all current approaches are concentrating on solid voxelisation of water-

tight models. In watertight models, all points of each connected component have a clear

separation between interior and exterior. For example, a point in space belongs to an in-

terior or exterior if the number of intersections of a ray with the model from that point in

any direction is odd or even, respectively (Jordan theorem) (https://en.wikipe-

dia.org/wiki/Jordan_curve_theorem (accessed on 4 December 2021)) [86]. Figure 9 shows

the difference between watertight and non-watertight models.

(a) (b) (c) (d)

Figure 9. Different 3D solids. None-watertight models: enclosed object (a), object with an inner wall (b). Watertight solid

models: enclosed object (c), object with a hole (d).
Figure 9. Different 3D solids. None-watertight models: enclosed object (a), object with an inner wall (b). Watertight solid
models: enclosed object (c), object with a hole (d).

https://en.wikipedia.org/wiki/Jordan_curve_theorem
https://en.wikipedia.org/wiki/Jordan_curve_theorem

Sensors 2021, 21, 8241 13 of 22

3.5.1. Slice-Based

A slice-based algorithm for solid voxelisation using a clipping plane to generate a 2D
slice is proposed [43], where a logical XOR operation between the previous and current
slices are used to achieve a solid voxelisation. However, only a binary voxelisation is
generated due to XOR operations, and some voxels can be missed. An approach relying on
surface voxelisation and consequent 2D scan-filling in all three directions is proposed [84].
This approach suggests encoding binary voxels in separate bits of multiple targets, enabling
processing many slices in a single pass. However, the algorithm fails if two fragments
are located in the same voxel. An algorithm achieving multi-valued solid voxelisation is
suggested using depth buffer and stencil buffer to create a mask for solid slice creation [28].
Building on top of their previous research [2], an approach for solid voxelisation is pre-
sented where all slices are processed at a time using more robust bitwise OR operation [39].
The authors also presented how to achieve solid conservative voxelisation, combining their
solid voxelisation and conservative surface voxelisation of Zhang [38].

3.5.2. Rasterisation

Two types of triangles-based solid voxelisation are presented [3]. The first one is based
on rasterisation of each triangle considering their bounding boxes, while the other one
assigns triangles into tiles to speed up the voxelisation process for situations when the
grid size is high, or the model contains many triangles. For both approaches, flipping the
voxels in one direction is necessary to achieve solid voxelisation. The authors proposed one
more approach which uses sparse octree performing first slightly modified conservative
surface voxelisation to identify active voxels that will be stored in an octree, followed by
hierarchical inside/outside propagation to achieve solid voxelisation. This approach is
slower than the other two, whereas it requires less memory and enables direct rendering
into a sparse spatial data structure.

3.5.3. Comparison of Solid Voxelisation Algorithms

Table 4 shows the most recent approaches used for solid voxelisation, where the
approaches by Schwarz and Seidel [3] and Eisemann and Décoret [39] represent state-
of-the-art methods for solid voxelisation. In general, Schwarz and Seidel approaches
outperformed the approach of Eisemann and Décoret for smaller grid sizes, while the
former one was faster for more complex models. The inner part of objects is usually
voxelised, but these methods can be relatively easily extended to obtain the surface’s voxels
at the same time.

Table 4. Solid voxelisation algorithms.

Method Type Property Main Technique General Purpose

[43] Slice-based Interior only Plane slicing Voxelisation

[84] Slice-based Interior only Surface voxelisation + 2D
scan-filling Voxelisation

[2] Slice-based Interior only Bitwise OR operation Rendering
[28] Slice-based Interior only Mask creation Voxelisation
[39] Slice-based Interior only & conservative Single pass & bitwise OR operation Voxelisation

[3] Rasterisation Interior only Tile-based, bounding box, sparse
octree Voxelisation & storage

4. Voxel Data Technology and Structures

To quickly perform some computational tasks related to voxels and voxelisation the
use of a graphics processing unit (GPU) is suggested. Apart from using GPUs to perform
calculations and render some output, they can be used purely for fast computation, where
the results are stored in video memory as data. At the same time, there are different ways
to store the output while performing a voxelisation, which can be immediately optimised
for usage in different application domains.

Sensors 2021, 21, 8241 14 of 22

4.1. Voxel Hardware Technology

Fixed-functions and programmable pipelines are two techniques used to hardware-
accelerate 3D data processing. In the last decade, programmable pipelines are mainly used
due to their flexibility to configure not only the rendering pipeline but also the way vertices
are transformed and lighting is calculated. To do any type of computations by a GPU, an
API is needed to interact with it. For computational purposes, the most common APIs
include CUDA (https://developer.nvidia.com/cuda-zone (accessed on 30 August 2021))
and OpenCL.(https://www.khronos.org/opencl/ (accessed on 30 August 2021)) In terms
of rendering, APIs like OpenGL (https://en.wikipedia.org/wiki/OpenGL (accessed on 30
August 2021)), DirectX (https://en.wikipedia.org/wiki/DirectX (accessed on 30 August
2021)) and Vulkan (https://www.vulkan.org/ (accessed on 30 August 2021)) are commonly
used, which can perform calculations but this is not their general purpose [62].

Many voxelisation approaches have taken the advantage of a GPU to perform fast
voxelisations [2,3,26,28,35,39,45,87,88]. Additionally, the use of general purpose graphics
processing units (GPGPUs) has become a common tool for high-performance computing,
which allows access to many GPUs and parallelisation of many computational tasks [82].

4.2. Voxel Data Structures

Considering the structure of discrete objects, the results can be structured as a regular
grid [89], general 2D lattices [90], distance transform [47], sparse octree [3,35], inverse
sparse octree [91], sparse block grid [30], dynamic tubular grid [32], volumetric dynamic
grid [33], sparse paged grid [34], etc.

As we can see, there are many voxel data structures, where each can be evaluated
separately. For simplicity, we split the methods into static and dynamic grids based on the
frequency to update the data structure. This does not indicate that methods evaluated as
part of static grids cannot change or recreate the data structure, but it is not their general
purpose. For example, rendering as an application area can be considered requiring static
grids, while simulations performing constant updates need a dynamic grid data structure.

4.2.1. Static Grids

The use of a regular grid is the most standard way to represent voxelised objects.
Voxels are stored as three-dimensional arrays, which allows for quick and easy check of
neighbouring voxels. Storage and fast retrieval of voxels to perform different analyses and
tasks are also investigated suggesting the use of a multidimensional array database system
which is called RasDaMan (https://rasdaman.com/ (accessed on 30 August 2021)) [92].
The approach relies on SQL-based arrays using a flexible tiling system and compression.
However, to represent large objects or scenes a more space-efficient representation is usually
needed. This transformation can be performed after a voxelisation, while some approaches
are even suggesting a direct use of a hierarchical structure like sparse voxel octree (SVO)
for surface [35] and solid voxelisation [3,70].

In this regard SVO is proposed as more memory efficiency keeping only the occupied
voxels, fast culling and collision tests using ray casting, and adjustable depth level which
implicitly provides a levels-of-detail mechanism [93,94]. However, SVOs only allow han-
dling moderate scene sizes and resolutions while requiring relatively high memory cost
and memory bandwidth [95]. To go beyond the available memory an out-of-core approach
is presented [96], being able to construct a sparse voxel octree from a triangle mesh. In this
way, large scenes can be voxelised without exhausting a computer’s main memory.

For many extremely compact representations of high-resolution volumetric models,
common in volume rendering, a compression method is presented [97], but the increased
compression rates impact the decompression and traversal costs, making them hardly
usable in other areas. To identify a more robust solution achieving a compact voxel repre-
sentation with reasonable memory footprint and without decompression overhead, the use
of a sparse voxel directed acyclic graph (SVDAG) is suggested [98]. The main idea behind
this method is simply merging identical subtrees, creating a compact solution where nodes

https://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl/
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/DirectX
https://www.vulkan.org/
https://rasdaman.com/

Sensors 2021, 21, 8241 15 of 22

can share pointers to identical subtrees and still being as fast as regular SVOs and other
octrees, since it does not affect the tracing process. For comparison, the authors suggest
that with the use of an SVDAG it is possible to store 19 billion voxels representing 128 K3

scene size, a required memory on a GPU is 945MB, which is substantially less compared to
an SVO requiring 5.1GB without even counting pointers. Considering this technique, a
symmetrically-aware sparse voxel directed acyclic graph (SSVDAG) is presented suggest-
ing memory compression of nearly two times as opposed to SVDAG [95,99]. This method
in addition to the original SVDAG method for nodes that are identified as similar creates
tagged pointers on the level above which keep the transformation that needs to be ap-
plied to recover the original subtree, and compact similar nodes based on their occurrence
frequency. By compressing arbitrary data such as colour, vectors normal and reflectance
information apart from the geometry different methods are proposed [100–102].

Table 5 shows in the hierarchical order some of the most prominent static grid methods
and their characteristics. One of the conclusions is that researchers in recent years are
considering predominantly voxelised surface models which usually require a smaller
memory footprint and even faster creation compared to solid voxelised models. We see the
diverse use of technology to interact with voxel models, where CUDA, OpenGL and DirectX
are mainly the GPU-based APIs used, which can indicate that they have high usability.
When it comes to the voxel data structures, the main focus has been on minimising the
memory output through some clever techniques allowing to render impressively large
scenes. Attribute conservation was an important aspect to many researchers trying to deal
with several characteristics at once required in computer graphics areas. Using out-of-core
techniques has become a standard to process voxel data. The next steps are hard to predict,
but we can definitely expect voxel data structures to efficiently manage city-scale models.

Table 5. Static grids methods.

Method Geometry
Voxelisation Type GPU API/CPU Voxel Data

Structure
Attribute

Conservation Out-of-Core

[92] Any CPU Regular grid x x
[39] Solid OpenGL & DirectX 10 Regular grid x -
[28] Solid OpenGL 2 Regular grid x -
[3] Solid CUDA SVO - -

[93,94] Surface CUDA SVO x -
[26] Surface CUDA Regular grid x -
[40] Surface OpenGL 4 & DirectX 11 Regular grid x -

[103] Surface DirectX 11 SVO x -
[96] Surface CPU SVO - x
[98] Surface CUDA SVDAG - x

[104] Surface CUDA SVO x x
[95,99] Surface OpenGL SSVDAG - x
[100] Surface GPU SVDAG x x

[101,102] Surface CUDA SVDAG x x

4.2.2. Dynamic Grids

Data structures, to be efficient, are characterised usually by two attributes, memory
efficiency and computational efficiency. Although it is relatively easy to design a fast
(e.g., dense grid) or compact (e.g., octree) voxel data structure, it is very challenging to
identify a data structure that possesses both. For example, tree-based approaches intend to
reduce the needed memory footprint, but the main issue is slowness in accessing data and
modification of data structure. This led to the development of many new sparse volumetric
data structures to support simulations and real-time applications [105].

Sparse block grid (SBG) was introduced by Bridson [30] dividing a voxel model into
smaller cubic blocks and keeping only pointers to occupied cubes which retains constant
time access to grids. After that, the run-length encoding (RLE) method was introduced
suggesting to compress regions from the narrow band while storing the narrowband

Sensors 2021, 21, 8241 16 of 22

regions with full precision [106]. To deal with both storage and computational requirements
the dynamic tubular grid (DT-Grid) is identified [32]. This data structure is proposed as
fast, cache efficient and low memory required. It can expand and contract freely without
the need to predefine a bounding box. Hierarchical run-length encoded (H-RLE) grid [31]
combines DT-Grid and RLE achieving slight improvements over DT-Grid [107].

Considering sparse time-varying volumetric data, a hierarchical voxel data structure
is proposed [33]. It uses a Volumetric Dynamic grid that shares a few characteristics
with B+trees (VDB), which considers spatial coherency of time-varying data to separately
and compactly store data and grid topology. Thus, grid values can be stored out-of-
core, keeping only grid topology in memory. The data structure is represented by a
tree with a high branching factor having a large uniform grid at leaf nodes. OpenVDB
(https://www.openvdb.org/ (accessed on 25 September 2021)) is an open-source version
of this approach, which has been widely used due to its effectiveness. A sparse paged grid
(SPGrid) data structure is proposed which allows storing simulation data in a pyramid
of sparsely populated uniform grids optimising data access [34]. A GPU version of VDB
is proposed [108], relying on dense n3 bricks to represent leaf nodes, where the grid size
does not have to be predefined. This approach is extended afterwards with dynamic
topology update for fluid simulations being able to deal with tens of millions of particles
(https://github.com/NVIDIA/gvdb-voxels (accessed on 25 September 2021)) [109]. For
physically and topologically complex material point method (MPM) simulations harnessing
the power of GPUs and SPGrid, highly parallelised data structure is presented dealing
with millions of particles [110]. To create a more robust method for high-performance
computations on spatially sparse data structures Taichi language is proposed [111], which
is open source (https://github.com/yuanming-hu/taichi (accessed on 25 September 2021))
as well. Apart from the high achievable performance, this language is greatly extendible
and easy to learn to support different simulation demands. This programming language
allows selecting between VDB, GSPGrid or even custom-based sparse data structure.
Recently, NanoVDB data structure is introduced as a linearised version of an OpenVDB
data structure [105], with several advantages including the use of GPUs, a stand-alone
raytracer that is compatible with most graphics APIs, being fast and efficient in copying
data between devices (e.g., CPU and GPU) and randomly accessing voxels, etc.

Table 6 shows the most prominent methods presented in the last two decades trying
to come up with data structures dealing with efficient storage, fast random and sequential
data access, calculations and rendering. Regarding the technology, GPU approaches are
becoming dominant while also focusing on compatibility with more APIs. Researchers
are identifying more advanced voxel data structures trading-off between several aspects.
Most of the methods are relying on the available memory to perform all tasks, whereas
OpenVDB and NanoVDB are using out-of-core methods which gives them the advantage
to process unlimited size scenes, which is clearly observable based on the maximum tested
grid size for OpenVDB. The general-purpose aspect shows that some of the data structures
are problem-specific while others are more general. Simulations and rendering are the
most commonly investigated aspects, where the support for additional functionalities like
3D deep learning increase the usability of a data structure.

https://www.openvdb.org/
https://github.com/NVIDIA/gvdb-voxels
https://github.com/yuanming-hu/taichi

Sensors 2021, 21, 8241 17 of 22

Table 6. Dynamic grids methods.

Method GPU API/CPU Voxel Data
Structure Out-of-Core Maximum Tested

Grid Size General Purpose

[30] CPU SBG - 2000 3 Simulation and
rendering

[106] CPU RLE - 624 × 554 × 488 Rendering
[32] CPU DT-Grid - 1024 3 Fluid simulation
[31] CPU H-RLE - 5K × 3K × 3K Fluid simulation

[33] CPU VDB x 15K × 900 × 500 Simulation and
rendering

[34] CPU SPGrid - 2K × 2K × 4K Fluid simulation

[108] CUDA GVDB - 2048 3 Simulation and
rendering

[109] CUDA GVDB - 1056 × 288 × 768 Fluid simulation
[110] CUDA GSPGrid - 512 3 MPM simulation

[111] CUDA, OpenGL, Apple
Metal

GVDB, GSPGrid,
custom - 4096 3 Simulation, rendering,

and 3D deep learning

[105]
CUDA, OpenCL, OptiX

OpenGL, DirectX12,
WebGL, HLSL & GLSL

NanoVDB x / Simulation and
rendering

5. Conclusions and Future Works

In this review, we see that voxelisation has been used in many areas, and it can be
quite diverse in many aspects. In Section 2, we covered the main concepts considered
in voxelisation such as connectivity, separability, coverage, as well as tunnel-freeness.
We can say that 26-connected voxelisation usually requires less time and memory to be
created and stored compared to 6-connected and conservative voxelisation. A 6-separated
voxelisation is usually sufficient for applications such as fluid simulations. Regarding
coverage, it strongly depends on the area in which it is used. For instance, for collision
detection, occlusion culling and visibility processing conservative voxelisation is highly
desirable. Tunnelling can be addressed if 6-connected voxelised lines are used to send rays
or to intersect with objects. The other option would be to consider either 6-connected or
conservative voxelisation for all objects. The usage of binary and non-binary voxelisation
is presented in Section 2.2, indicating that non-binary voxelisation might be even more
applicable than binary one.

Regarding 3D primitives, we examined voxelisation of points, lines, triangles, surfaces,
and solids. In terms of line voxelisation, we split the algorithms into three groups, where
the first two deal with different types of connectivity, while the third group focuses on
voxelisation of curves. In terms of triangles, we examined how using rasterisation and
raycasting triangles can be voxelised. For surfaces and solids, we identified that slice-based
and rasterisation techniques are mainly used to perform voxelisation. We can see that
surface voxelisation is investigated by the greatest number of researchers. There are several
reasons for this. Firstly, surface voxelisation achieves smaller memory output and is faster
compared to solid voxelisation. Secondly, some of the very common requirements such as
collision detection, fluid simulations and ray tracing can be easily achieved over them. We
should point out that all algorithms for solid voxelisation concentrate on the voxelisation
of watertight models, which is not necessarily sufficient for some application domains like
building information modelling (BIM) where objects may have overlaps.

In Section 4, the current technology used to perform voxelisation and to deal with
voxels in general is elaborated. It is pointed out that all the newest approaches rely on a
fast performance achieved using GPUs. We saw that there are many voxel data structures
identified so far. We divided the data structures into static and dynamic grids considering
the frequency to update a data structure. Real-time storage of voxels using SVO is suggested
for larger objects reducing the memory requirements and allowing quick ray tracing. The
memory footprint can be reduced even further if SVDAG and SSVDAG are used as data

Sensors 2021, 21, 8241 18 of 22

structures. Regarding dynamic grids, the state-of-the-art voxel data structure is NanoVDB
which is superior to the rest in terms of speed as well as support for out-of-core processing
which can handle infinite size scenes and models.

We presented here a vast number of algorithms targeting voxelisation of different
geometric primitives. However, the greatest challenge is the availability of these algorithms
for testing and further research, which usually requires building them from scratch in
a possibly nonoptimal way. Therefore, creating a library with these algorithms would
definitely facilitate the development of new approaches for voxelisations. Another even
more interesting idea is to develop a database that would also use some of the presented
data structures to effectively store and process voxels. For instance, RasDaMan uses arrays
and tiles to manipulate voxels, which can be greatly improved using more advanced voxel
data structures. At the same time, many algorithms currently used in image processing can
be speeded up with the use of these voxel data structures. This will allow understanding
in which scenarios the presented voxel data structures perform better compared to the rest.

Author Contributions: Conceptualisation, M.A. and S.Z.; Methodology, M.A.; Investigation, M.A.;
Resources, M.A. and S.Z.; writing—original draft preparation, M.A. and S.Z.; writing—review and
editing, M.A.; supervision S.Z. and D.J.H.; project administration D.J.H.; funding acquisition D.J.H.
and S.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Leidos, Australia and the University of New South Wales
(UNSW Sydney), School of Built Environment.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The valuable comments from the anonymous reviewers are highly appreciated.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Amanatides, J.; Woo, A. A Fast Voxel Traversal Algorithm for Ray Tracing; Eurographic: Goslar, Germany, 1987; Volume 87, pp. 3–10.
2. Eisemann, E.; Décoret, X. Fast scene voxelization and applications. In Proceedings of the 2006 Symposium on Interactive 3D

Graphics and Games, Redwood City, CA, USA, 14–17 March 2006; pp. 71–78.
3. Schwarz, M.; Seidel, H.-P. Fast parallel surface and solid voxelization on GPUs. ACM Trans. Graph. 2010, 29, 1–10. [CrossRef]
4. Gorte, B.G.H.; Zhou, K.; van der Sande, C.J.; Valk, C. A computationally cheap trick to determine shadow in a voxel model.

ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 67–71. [CrossRef]
5. Reinbothe, C.K.; Boubekeur, T.; Alexa, M. Hybrid Ambient Occlusion; Eurographics: Goslar, Germany, 2009; pp. 51–57.
6. Nichols, G.; Penmatsa, R.; Wyman, C. Interactive, multiresolution image-space rendering for dynamic area lighting. In Computer

Graphics Forum; Blackwell Publishing Ltd.: Oxford, UK, 2010; Volume 29, pp. 1279–1288.
7. Aleksandrov, M.; Zlatanova, S.; Kimmel, L.; Barton, J.; Gorte, B. Voxel-based visibility analysis for safety assessment of urban

environments. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Singapore, 24–27 September 2019; Volume 4. [CrossRef]

8. Petoussi-Henss, N.; Zankl, M.; Fill, U.; Regulla, D. The GSF family of voxel phantoms. Phys. Med. Biol. 2001, 47, 89–106. [CrossRef]
9. Caon, M. Voxel-based computational models of real human anatomy: A review. Radiat. Environ. Biophys. 2004, 42, 229–235.

[CrossRef]
10. Nießner, M.; Zollhöfer, M.; Izadi, S.; Stamminger, M. Real-time 3D reconstruction at scale using voxel hashing. ACM Trans. Graph.

2013, 32, 1–11. [CrossRef]
11. Beckhaus, S.; Wind, J.; Strothotte, T. Hardware-based voxelization for 3D spatial analysis. In Proceedings of the 5th International

Conference on Computer Graphics and Imaging, Athens, Greece, 8–10 July 2002; Volume 20.
12. Jørgensen, F.; Møller, R.R.; Nebel, L.; Jensen, N.-P.; Christiansen, A.V.; Sandersen, P.B.E. A method for cognitive 3D geological

voxel modelling of AEM data. Bull. Eng. Geol. Environ. 2013, 72, 421–432. [CrossRef]
13. Stafleu, J.; Dubelaar, C.W. Product specification subsurface model GeoTOP. TNO Rep. 2016, R10133. [CrossRef]
14. Li, W.; Fan, Z.; Wei, X.; Kaufman, A. GPU-based flow simulation with complex boundaries. GPU Gems 2003, 2, 747–764.
15. Huang, M.; Wei, P.; Liu, X. An efficient encoding voxel-based segmentation (EVBS) algorithm based on fast adjacent voxel search

for point cloud plane segmentation. Remote Sens. 2019, 11, 2727. [CrossRef]
16. Poux, F.; Billen, R. Voxel-based 3D point cloud semantic segmentation: Unsupervised geometric and relationship featuring vs

deep learning methods. ISPRS Int. J. Geo-Inf. 2019, 8, 213. [CrossRef]

http://doi.org/10.1145/1882261.1866201
http://doi.org/10.5194/isprs-annals-IV-4-67-2018
http://doi.org/10.5194/isprs-annals-IV-4-W8-11-2019
http://doi.org/10.1088/0031-9155/47/1/307
http://doi.org/10.1007/s00411-003-0221-8
http://doi.org/10.1145/2508363.2508374
http://doi.org/10.1007/s10064-013-0487-2
http://doi.org/10.13140/RG.2.2.33738.36805
http://doi.org/10.3390/rs11232727
http://doi.org/10.3390/ijgi8050213

Sensors 2021, 21, 8241 19 of 22

17. Vo, A.-V.; Truong-Hong, L.; Laefer, D.F.; Bertolotto, M. Octree-based region growing for point cloud segmentation. ISPRS J.
Photogramm. Remote Sens. 2015, 104, 88–100. [CrossRef]

18. Kyaw, A.S. Unity 4. X Game AI Programming; Packt Publishing Ltd.: Birmingham, UK, 2013.
19. Gorte, B.; Aleksandrov, M.; Zlatanova, S. Towards egress modelling in voxel building models. ISPRS annals of the photogramme-

try, remote sensing and spatial information sciences. In Proceedings of the 4th International Conference on Smart Data and Smart
Cities, Kuala Lumpur, Malaysia, 1–3 October 2019; Volume 4. [CrossRef]

20. Gorte, B.; Zlatanova, S.; Fadli, F. Navigation in indoor voxel models. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4,
279–283. [CrossRef]

21. Boyles, M.; Fang, S. Slicing-based volumetric collision detection. J. Graph. Tools 1999, 4, 23–32. [CrossRef]
22. Silver, D.; Gagvani, N. Shape-based volumetric collision detection. In Proceedings of the 2000 IEEE Symposium on Volume

Visualization (VV 2000), Salt Lake City, UT, USA, 9–10 October 2000; pp. 57–61.
23. Cohen-Or, D.; Kaufman, A. 3D line voxelization and connectivity control. IEEE Comput. Graph. Appl. 1997, 17, 80–87.
24. Dachille, F., IX; Kaufman, A. Incremental triangle voxelization. In Proceedings of the Graphics Interface, Montreal, QC, Canada,

15–17 May 2000; pp. 205–212.
25. Kaufman, A.; Shimony, E. 3D scan-conversion algorithms for voxel-based graphics. In Proceedings of the 1986 workshop on

Interactive 3D graphics, New York, NY, USA, 1 January 1987; pp. 45–75.
26. Pantaleoni, J. VoxelPipe: A programmable pipeline for 3D voxelization. In Proceedings of the ACM SIGGRAPH Symposium on

High Performance Graphics, Vancouver, BC, Canada, 5–7 August 2011; pp. 99–106.
27. Cohen-Or, D.; Kaufman, A. Fundamentals of surface voxelization. Graph. Model. Image Process. 1995, 57, 453–461. [CrossRef]
28. Liao, D. GPU-accelerated multi-valued solid voxelization by slice functions in real time. In Proceedings of the 24th Spring

Conference on Computer Graphics, Budmerice, Slovakia, 21–23 April 2008; pp. 113–120.
29. Wang, S.W.; Kaufman, A.E. Volume sampled voxelization of geometric primitives. In Proceedings Visualization’93, San Jose, CA,

USA, 25–29 October 1993; IEEE: New York, NY, USA, 1999; pp. 78–84.
30. Bridson, R.E. Computational Aspects of Dynamic Surfaces; Stanford University: Stanford, CA, USA, 2003.
31. Houston, B.; Nielsen, M.B.; Batty, C.; Nilsson, O.; Museth, K. Hierarchical RLE level set: A compact and versatile deformable

surface representation. ACM Trans. Graph. 2006, 25, 151–175. [CrossRef]
32. Nielsen, M.B.; Museth, K. Dynamic Tubular Grid: An efficient data structure and algorithms for high resolution level sets. J. Sci.

Comput. 2006, 26, 261–299. [CrossRef]
33. Museth, K. VDB: High-resolution sparse volumes with dynamic topology. ACM Trans. Graph. 2013, 32, 1–22. [CrossRef]
34. Setaluri, R.; Aanjaneya, M.; Bauer, S.; Sifakis, E. SPGrid: A sparse paged grid structure applied to adaptive smoke simulation.

ACM Trans. Graph. 2014, 33, 1–12. [CrossRef]
35. Crassin, C.; Green, S. Octree-based sparse voxelization using the GPU hardware rasterizer. OpenGL Insights 2012, 303–318.

Available online: https://research.nvidia.com/publication/octree-based-sparse-voxelization-using-gpu-hardware-rasterizer
(accessed on 30 November 2021).

36. Janßen, C.F.; Koliha, N.; Rung, T. A fast and rigorously parallel surface voxelization technique for GPU-accelerated CFD
simulations. Commun. Comput. Phys. 2015, 17, 1246–1270. [CrossRef]

37. Hasselgren, J.; Akenine-Möller, T.; Ohlsson, L. Conservative rasterization. In GPU Gems 2; Nvidia Developer: Santa Clara, CA,
USA, 2005; pp. 677–690.

38. Zhang, L.; Chen, W.; Ebert, D.S.; Peng, Q. Conservative voxelization. Vis. Comput. 2007, 23, 783–792. [CrossRef]
39. Eisemann, E.; Décoret, X. Single-pass gpu solid voxelization and applications. In Proceedings of the GI’08: Proceedings of the

Graphics Interface, Windsor, ON, Canada, 28–30 May 2008.
40. Fei, Y.; Wang, B.; Chen, J. Point-tessellated voxelization. In Proceedings of the Graphics Interface 2012, Toronto, ON, Canada,

28–30 May 2012; pp. 9–18.
41. Zhang, Y.; Garcia, S.; Xu, W.; Shao, T.; Yang, Y. Efficient voxelization using projected optimal scanline. Graph. Models 2018, 100,

61–70. [CrossRef]
42. Sramek, M.; Kaufman, A.E. Alias-free voxelization of geometric objects. IEEE Trans. Vis. Comput. Graph. 1999, 5, 251–267.

[CrossRef]
43. Fang, S.; Chen, H. Hardware accelerated voxelization. Comput. Graph. 2000, 24, 433–442. [CrossRef]
44. Heidelberger, B.; Teschner, M.; Gross, M.H. Volumetric collision detection for derformable objects. CS Tech. Rep. 2003, 395, 9.

[CrossRef]
45. Young, G.; Krishnamurthy, A. GPU-accelerated generation and rendering of multi-level voxel representations of solid models.

Comput. Graph. 2018, 75, 11–24. [CrossRef]
46. Zhang, Z.; Morishima, S.; Wang, C. Thickness-aware voxelization. Comput. Animat. Virtual Worlds 2018, 29, e1832. [CrossRef]
47. Sigg, C.; Peikert, R.; Gross, M. Signed distance transform using graphics hardware. In Proceedings of the IEEE Visualization,

Seattle, WA, USA, 22–24 October 2003; IEEE: Manhattan, NY, USA, 2003; pp. 83–90.
48. Varadhan, G.; Krishnan, S.; Kim, Y.J.; Diggavi, S.; Manocha, D. Efficient max-norm distance computation and reliable voxelization.

In Symposium on Geometry Processing; ACM Digital Library: New York, NY, USA, 2003; pp. 116–126.
49. Jones, M.W.; Baerentzen, J.A.; Sramek, M. 3D distance fields: A survey of techniques and applications. IEEE Trans. Vis. Comput.

Graph. 2006, 12, 581–599. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2015.01.011
http://doi.org/10.5194/isprs-annals-IV-4-W9-43-2019
http://doi.org/10.5194/isprs-annals-IV-2-W5-279-2019
http://doi.org/10.1080/10867651.1999.10487512
http://doi.org/10.1006/gmip.1995.1039
http://doi.org/10.1145/1122501.1122508
http://doi.org/10.1007/s10915-005-9062-8
http://doi.org/10.1145/2487228.2487235
http://doi.org/10.1145/2661229.2661269
https://research.nvidia.com/publication/octree-based-sparse-voxelization-using-gpu-hardware-rasterizer
http://doi.org/10.4208/cicp.2014.m414
http://doi.org/10.1007/s00371-007-0149-0
http://doi.org/10.1016/j.gmod.2017.06.004
http://doi.org/10.1109/2945.795216
http://doi.org/10.1016/S0097-8493(00)00038-8
http://doi.org/10.3929/ethz-a-006665865
http://doi.org/10.1016/j.cag.2018.07.003
http://doi.org/10.1002/cav.1832
http://doi.org/10.1109/TVCG.2006.56

Sensors 2021, 21, 8241 20 of 22

50. Novotny, P.; Dimitrov, L.I.; Sramek, M. Enhanced voxelization and representation of objects with sharp details in truncated
distance fields. IEEE Trans. Vis. Comput. Graph. 2009, 16, 484–498. [CrossRef]

51. Sramek, M.; Kaufman, A. Object voxelization by filtering. In Proceedings of the IEEE Symposium on Volume Visualization (Cat.
No. 989EX300), Research Triangle Park, NC, USA, 19–20 October 1998; pp. 111–118.

52. Stolte, N. Robust Voxelization of Surfaces; Center for Visual Computing and Computer Science Department, State University of
New York at Stony Brook: Stony Brook, NY, USA, 1997. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.22.1047&rep=rep1&type=pdf (accessed on 30 November 2021).

53. Liao, D.; Fang, S. Fast CSG voxelization by frame buffer pixel mapping. In Proceedings of the 2000 IEEE Symposium on Volume
Visualization (VV 2000), Salt Lake City, UT, USA, 9–10 October 2000; IEEE: Manhattan, NY, USA, 2000; pp. 43–48.

54. Gorte, B.; Zlatanova, S. Rasterization and Voxelization of Two- and Three-dimensional Space Partitionings. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2016, 41, 283–288. [CrossRef]

55. Nourian, P.; Gonçalves, R.; Zlatanova, S.; Ohori, K.A.; Vo, A.V. Voxelization Algorithms for Geospatial Applications: Com-
putational Methods for Voxelating Spatial Datasets of 3D City Models Containing 3D Surface, Curve and Point Data Models.
MethodsX 2016, 3, 69–86. [CrossRef]

56. Birdsall, C.K. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC. IEEE Trans.
Plasma Sci. 1991, 19, 65–85. [CrossRef]

57. Wu, X. An efficient antialiasing technique. ACM Siggraph Comput. Graph. 1991, 25, 143–152. [CrossRef]
58. Bresenham, J.E. Algorithm for computer control of a digital plotter. IBM Syst. J. 1965, 4, 25–30. [CrossRef]
59. Fujimoto, A.; Tanaka, T.; Iwata, K. Arts: Accelerated ray-tracing system. IEEE Comput. Graph. Appl. 1986, 6, 16–26. [CrossRef]
60. Liu, X.W.; Cheng, K. Three-dimensional extension of Bresenham’s algorithm and its application in straight-line interpolation.

Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2002, 216, 459–463. [CrossRef]
61. Laine, S. A topological approach to voxelization. Comput. Graph. Forum 2013, 32, 77–86. [CrossRef]
62. Håkansson, T. A Comparison of Optimal Scanline Voxelization Algorithms. Master’s Thesis, Computer Science and Software

Engineering, Linköping University, Linköping, Sweden, 2020.
63. Pineda, J. A parallel algorithm for polygon rasterization. In Proceedings of the 15th Annual Conference on Computer Graphics

and Interactive Techniques, New York, NY, USA, 1–5 August 1988; pp. 17–20.
64. Akenine-Möller, T.; Aila, T. Conservative and tiled rasterization using a modified triangle set-up. J. Graph. Tools 2005, 10, 1–8.

[CrossRef]
65. Woo, R.; Choi, S.; Sohn, J.-H.; Song, S.-J.; Bae, Y.-D.; Yoo, H.-J. A low-power 3D rendering engine with two texture units and

29-Mb embedded DRAM for 3G multimedia terminals. IEEE J. Solid-State Circuits 2004, 39, 1101–1109. [CrossRef]
66. Akenine-Möller, T.; Ström, J. Graphics for the masses: A hardware rasterization architecture for mobile phones. In ACM

SIGGRAPH 2003 Papers; Association for Computing Machinery: New York, NY, USA, 2003; pp. 801–808.
67. Ma, Y.; Wang, X.; Zhu, M.; Wan, W. Rasterization of geometric primitive in graphics based on FPGA. In Proceedings of the 2010

International Conference on Audio, Language and Image Processing, Shanghai, China, 23–25 November 2010; IEEE: Manhattan,
NY, USA, 2010; pp. 1211–1216.

68. McCormack, J.; McNamara, R. Tiled polygon traversal using half-plane edge functions. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware, Interlaken, Switzerland, 21–22 August 2000; Association for
Computing Machinery: New York, NY, USA, 2000; pp. 15–21.

69. Abrash, M. Rasterization on Larrabee. Dr. Dobbs J. 1 May 2009. Available online: http://www.cs.cmu.edu/afs/cs.cmu.edu/
academic/class/15869-f11/www/readings/abrash09_lrbrast.pdf (accessed on 30 November 2021).

70. Sun, C.-H.; Tsao, Y.-M.; Lok, K.-H.; Chien, S.-Y. Universal Rasterizer with edge equations and tile-scan triangle traversal algorithm
for graphics processing units. In Proceedings of the 2009 IEEE International Conference on Multimedia and Expo, New York, NY,
USA, 28 June–3 July 2009; IEEE: New York, NY, USA, 2009; pp. 1358–1361.

71. Wang, X.; Guo, F.; Zhu, M. A more efficient triangle rasterization algorithm implemented in FPGA. In Proceedings of the 2012
International Conference on Audio, Language and Image Processing, Shanghai, China, 16–18 July 2012; pp. 1108–1113.

72. Fatahalian, K.; Luong, E.; Boulos, S.; Akeley, K.; Mark, W.R.; Hanrahan, P. Data-parallel rasterization of micropolygons with
defocus and motion blur. In Proceedings of the Conference on High Performance Graphics 2009, New York, NY, USA, 1–3 August
2009; pp. 59–68.

73. Möller, T.; Trumbore, B. Fast, minimum storage ray-triangle intersection. J. Graph. Tools 1997, 2, 21–28. [CrossRef]
74. Shevtsov, M.; Soupikov, A.; Kapustin, A.; Novorod, N. Ray-triangle intersection algorithm for modern CPU architectures. In

Proceedings of the GraphiCon, Moscow, Russia, 30 October 2007; Volume 2007, pp. 33–39.
75. Assarsson, U.; Moller, T. Optimized view frustum culling algorithms for bounding boxes. J. Graph. Tools 2000, 5, 9–22. [CrossRef]
76. Badouel, D. An efficient ray-polygon intersection. In Graphics Gems; Academic Press Professional: San Diego, CA, USA, 1990;

pp. 390–393.
77. Haines, E. Point in Polygon Strategies. Graph. Gems 1994, 4, 24–46.
78. Rauwendaal, R. Hybrid Computational Voxelization Using the Graphics Pipeline. Master’s Thesis, Oregon State University,

Corvallis, OR, USA, 2012.

http://doi.org/10.1109/TVCG.2009.74
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.1047&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.1047&rep=rep1&type=pdf
http://doi.org/10.5194/isprs-archives-XLI-B4-283-2016
http://doi.org/10.1016/j.mex.2016.01.001
http://doi.org/10.1109/27.106800
http://doi.org/10.1145/127719.122734
http://doi.org/10.1147/sj.41.0025
http://doi.org/10.1109/MCG.1986.276715
http://doi.org/10.1243/0954405021519979
http://doi.org/10.1111/cgf.12153
http://doi.org/10.1080/2151237X.2005.10129198
http://doi.org/10.1109/JSSC.2004.829406
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/readings/abrash09_lrbrast.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/readings/abrash09_lrbrast.pdf
http://doi.org/10.1080/10867651.1997.10487468
http://doi.org/10.1080/10867651.2000.10487517

Sensors 2021, 21, 8241 21 of 22

79. Liu, F.; Huang, M.-C.; Liu, X.-H.; Wu, E.-H. Freepipe: A programmable parallel rendering architecture for efficient multi-fragment
effects. In Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, Washington, DC, USA,
19–21 February 2010; pp. 75–82.

80. Seiler, L.; Carmean, D.; Sprangle, E.; Forsyth, T.; Dubey, P.; Junkins, S.; Lake, A.; Cavin, R.; Espasa, R.; Grochowski, E.; et al.
Larrabee: A many-core x86 architecture for visual computing. ACM Trans. Graph. 2009, 29, 10–21. [CrossRef]

81. Eisenacher, C.; Loop, C.T. Data-parallel micropolygon rasterization. In Eurographics (Short Papers); European Association for
Computer Graphics: Norrköping, Sweden, 2010; pp. 53–56.

82. Faieghi, M.; Tutunea-Fatan, O.R.; Eagleson, R. Fast and cross-vendor OpenCL-based implementation for voxelization of triangular
mesh models. Comput. Aided. Des. Appl. 2018, 15, 852–862. [CrossRef]

83. Kalojanov, J.; Billeter, M.; Slusallek, P. Two-level grids for ray tracing on GPUs. Comput. Graph. Forum 2011, 30, 307–314. [CrossRef]
84. Dong, Z.; Chen, W.; Bao, H.; Zhang, H.; Peng, Q. Real-time voxelization for complex polygonal models. In Proceedings of the

12th Pacific Conference on Computer Graphics and Applications, Seoul, Korea, 6–8 October 2004; IEEE: Manhattan, NY, USA,
2004; pp. 43–50.

85. Reitinger, B.; Bornik, A.; Beichel, R. Efficient volume measurement using voxelization. In Proceedings of the 19th Spring
Conference on Computer Graphics, New York, NY, USA, 24–26 April 2003; pp. 47–54.

86. Nooruddin, F.S.; Turk, G. Simplification and repair of polygonal models using volumetric techniques. IEEE Trans. Vis. Comput.
Graph. 2003, 9, 191–205. [CrossRef]

87. Forest, V.; Barthe, L.; Paulin, M. Real-time hierarchical binary-scene voxelization. J. Graph. Gpu Game Tools 2009, 14, 21–34.
[CrossRef]

88. Lopez-Moreno, J.; Miraut, D.; Cirio, G.; Otaduy, M.A. Sparse GPU Voxelization of Yarn-Level Cloth. Comput. Graph. Forum 2017,
36, 22–34. [CrossRef]

89. Wang, S.W.; Kaufman, A.E. Volume-sampled 3D modeling. IEEE Comput. Graph. Appl. 1994, 14, 26–32. [CrossRef]
90. Widjaya, H.; Moller, T.; Entezari, A. Voxelization in common sampling lattices. In Proceedings of the 11th Pacific Conference on

Computer Graphics and Applications, Canmore, AB, Canada, 8–10 October 2003; IEEE: New York, NY, USA, 2003; pp. 497–501.
91. Bergs, T.; Henrichs, O.; Wilms, M.; Prümmer, M.; Arntz, K. Development of a voxelization tool for the calculation of vector-based

workpiece representations. Procedia CIRP 2021, 100, 7–12. [CrossRef]
92. Baumann, P.; Dehmel, A.; Furtado, P.; Ritsch, R.; Widmann, N. The multidimensional database system RasDaMan. In Proceedings

of the 1998 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 1–4 June 1998; pp. 575–577.
93. Laine, S.; Karras, T. Efficient sparse voxel octrees. IEEE Trans. Vis. Comput. Graph. 2010, 17, 1048–1059. [CrossRef]
94. Laine, S.; Karras, T. Efficient Sparse Voxel Octrees–Analysis, Extensions, and Implementation; NVIDIA Research: Santa Clara, CA, USA,

2010; Volume 2. Available online: https://research.nvidia.com/publication/efficient-sparse-voxel-octrees-analysis-extensions-
and-implementation (accessed on 30 November 2021).

95. Villanueva, A.J.; Marton, F.; Gobbetti, E. SSVDAGs: Symmetry-aware sparse voxel DAGs. In Proceedings of the 20th ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, New York, NY, USA, 27–28 February 2016; pp. 7–14.

96. Baert, J.; Lagae, A.; Dutré, P. Out-of-core construction of sparse voxel octrees. In Proceedings of the 5th high-performance graphics
conference, New York, NY, USA, 19–21 July 2013; pp. 27–32.

97. Rodríguez, M.B.; Gobbetti, E.; Guitián, J.A.I.; Makhinya, M.; Marton, F.; Pajarola, R.; Suter, K.S. State-of-the-art in compressed
GPU-based direct volume rendering. Comput. Graph. Forum 2014, 33, 77–100. [CrossRef]

98. Kämpe, V.; Sintorn, E.; Assarsson, U. High resolution sparse voxel dags. ACM Trans. Graph. 2013, 32, 1–13. [CrossRef]
99. Villanueva, A.J.; Marton, F.; Gobbetti, E. Symmetry-aware Sparse Voxel DAGs (SSVDAGs) for compression-domain tracing of

high-resolution geometric scenes. J. Comput. Graph. Tech. Vol. 2017, 6, 1–30.
100. Dado, B.; Kol, T.R.; Bauszat, P.; Thiery, J.; Eisemann, E. Geometry and attribute compression for voxel scenes. Comput. Graph.

Forum 2016, 35, 397–407. [CrossRef]
101. Dolonius, D.; Sintorn, E.; Kämpe, V.; Assarsson, U. Compressing color data for voxelized surface geometry. IEEE Trans. Vis.

Comput. Graph. 2017, 25, 1270–1282. [CrossRef] [PubMed]
102. Careil, V.; Billeter, M.; Eisemann, E. Interactively Modifying Compressed Sparse Voxel Representations scenes. Comput. Graph.

Forum 2020, 39, 111–119. [CrossRef]
103. Loop, C.; Zhang, C.; Zhang, Z. Real-time high-resolution sparse voxelization with application to image-based modeling. In

Proceedings of the 5th High-performance Graphics Conference, New York, NY, USA, 19–21 July 2013; pp. 73–79.
104. Pätzold, M.; Kolb, A. Grid-free out-of-core voxelization to sparse voxel octrees on GPU. In Proceedings of the 7th Conference on

High-Performance Graphics, Los Angeles, CA, USA, 7–9 August 2015; pp. 95–103.
105. Museth, K. NanoVDB: A GPU-friendly and portable VDB data structure for real-time rendering and simulation. In Proceedings

of the ACM SIGGRAPH 2021 Talks, New York, NY, USA, 2021, 9–13 August; pp. 1–2.
106. Houston, B.; Wiebe, M.; Batty, C. RLE sparse level sets. In Proceedings of the ACM SIGGRAPH 2004 Sketches, New York, NY,

USA, 8–12 August 2004; p. 137.
107. Nielsen, M.B. Efficient and High Resolution Level Set Simulations. Ph.D. Thesis, Aarhus University, Aarhus, Denmark, 2006.
108. Hoetzlein, R.K. GVDB: Raytracing sparse voxel database structures on the GPU. In Proceedings of the High Performance Graphics,

Dublin, Ireland, 20–22 June 2016; pp. 109–117.

http://doi.org/10.1109/MM.2009.9
http://doi.org/10.1080/16864360.2018.1486961
http://doi.org/10.1111/j.1467-8659.2011.01862.x
http://doi.org/10.1109/TVCG.2003.1196006
http://doi.org/10.1080/2151237X.2009.10129283
http://doi.org/10.1111/cgf.12782
http://doi.org/10.1109/38.310721
http://doi.org/10.1016/j.procir.2021.05.022
http://doi.org/10.1109/TVCG.2010.240
https://research.nvidia.com/publication/efficient-sparse-voxel-octrees-analysis-extensions-and-implementation
https://research.nvidia.com/publication/efficient-sparse-voxel-octrees-analysis-extensions-and-implementation
http://doi.org/10.1111/cgf.12280
http://doi.org/10.1145/2461912.2462024
http://doi.org/10.1111/cgf.12841
http://doi.org/10.1109/TVCG.2017.2741480
http://www.ncbi.nlm.nih.gov/pubmed/28829311
http://doi.org/10.1111/cgf.13916

Sensors 2021, 21, 8241 22 of 22

109. Wu, K.; Truong, N.; Yuksel, C.; Hoetzlein, R. Fast fluid simulations with sparse volumes on the GPU. Comput. Graph. Forum 2018,
37, 157–167. [CrossRef]

110. Gao, M.; Wang, X.; Wu, K.; Pradhana, A.; Sifakis, E.; Yuksel, C.; Jiang, C. GPU optimization of material point methods. ACM
Trans. Graph. 2019, 37, 1–12. [CrossRef]

111. Hu, Y.; Li, T.; Anderson, L.; Ragan-Kelley, J.; Durand, F. Taichi: A language for high-performance computation on spatially sparse
data structures. ACM Trans. Graph. 2019, 38, 1–16. [CrossRef]

http://doi.org/10.1111/cgf.13350
http://doi.org/10.1145/3272127.3275044
http://doi.org/10.1145/3355089.3356506

	Introduction
	Voxelisation Properties
	Common Voxelisation Properties
	Binary and Non-Binary Voxelisation

	Voxelisation of 3D Geometric Primitives
	Point Voxelisation
	Line Voxelisation
	6-Connected Voxelisation Algorithms
	26-Connected Voxelisation Algorithms
	Spline Voxelisation Algorithms
	Comparison of Line Voxelisation Algorithms

	Triangle Voxelisation
	Rasterisation
	Raycasting
	Comparison of Triangle Voxelisation Algorithms

	Surface Voxelisation
	Slice-Based
	Rasterisation
	Comparison of Surface Voxelisation Algorithms

	Solid Voxelisation
	Slice-Based
	Rasterisation
	Comparison of Solid Voxelisation Algorithms

	Voxel Data Technology and Structures
	Voxel Hardware Technology
	Voxel Data Structures
	Static Grids
	Dynamic Grids

	Conclusions and Future Works
	References

