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Abstract: The prediction of human mobility can facilitate resolving many kinds of urban problems,
such as reducing traffic congestion, and promote commercial activities, such as targeted advertising.
However, the requisite personal GPS data face privacy issues. Related organizations can only collect
limited data and they experience difficulties in sharing them. These data are in “isolated islands” and
cannot collectively contribute to improving the performance of applications. Thus, the method of
federated learning (FL) can be adopted, in which multiple entities collaborate to train a collective
model with their raw data stored locally and, therefore, not exchanged or transferred. However,
to predict long-term human mobility, the performance and practicality would be impaired if only
some models were simply combined with FL, due to the irregularity and complexity of long-term
mobility data. Therefore, we explored the optimized construction method based on the high-efficient
gradient-boosting decision tree (GBDT) model with FL and propose the novel federated voting
(FedVoting) mechanism, which aggregates the ensemble of differential privacy (DP)-protected GBDTs
by the multiple training, cross-validation and voting processes to generate the optimal model and can
achieve both good performance and privacy protection. The experiments show the great accuracy
in long-term predictions of special event attendance and point-of-interest visits. Compared with
training the model independently for each silo (organization) and state-of-art baselines, the FedVoting
method achieves a significant accuracy improvement, almost comparable to the centralized training,
at a negligible expense of privacy exposure.

Keywords: long-term human mobility prediction; privacy protection; federated learning; gradient-
boosting decision tree; differential privacy; GPS

1. Introduction

Human mobility has a huge impact on urban management and business activities.
The prediction of human mobility can estimate people flows at points of interest (POIs)
in advance based on the history of mobility data. Therefore, it can facilitate solving many
kinds of urban problems, such as traffic congestion, air pollution, epidemic spread, etc.
In commercial activities, human mobility is also fundamental for location-based services
(LBSs). Based on the prediction of human mobility, companies can acquire the future
location of users and supply more accurate services, such as advertisements and route
recommendations.

With the widespread use of smartphones and portable devices, a substantial amount of
valuable personal data (such as GPS trajectories) is generated every day, which could be put
together to improve the performance of human mobility prediction. However, to prevent
privacy leakage and private information abuse, the protection of personal data is becoming
a global concern. In 2018, the European Union enforced the General Data Protection

Sensors 2021, 21, 8282. https://doi.org/10.3390/s21248282 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1864-8430
https://orcid.org/0000-0003-4042-7888
https://doi.org/10.3390/s21248282
https://doi.org/10.3390/s21248282
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248282
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248282?type=check_update&version=2


Sensors 2021, 21, 8282 2 of 24

Regulation (GDPR) to protect individual privacy, which sets many constrains on companies’
usage of personal data. Thus, relevant companies, such as map service providers, can
collect very limited data; it is also hard for them to share these data with other companies.
These data are distributed in “isolated islands”, making it less possible to utilize them
efficiently. In this context, federated learning (FL) architecture is a very suitable method for
using private data in different entities to achieve a better performance of applications in
a privacy-preserving way. Federated learning is a machine learning technique that many
entities (also referred to as silos, when the participants are organizations) collaboratively
train a model under the orchestration of a central server [1,2]. The core characteristic is that
each entity’s raw data are stored locally and not exchanged or transferred in the whole
process. Therefore, data privacy can be effectively protected without uploading raw data
to the central server, which happens in traditional machine learning methods and raises
privacy concerns. By combining federated learning, the privacy issues in human mobility
prediction can be resolved.

In terms of the prediction period, long-term human mobility prediction is an impor-
tant but challenging research direction. Compared with short-term prediction (where
people would go in the next hours), long-term human mobility prediction usually focuses
on a longer period (where people would go in the next weeks or months), which can
supply a more sufficient response period for government or companies to take correlated
measurements, such as security strengthening or advertising. However, long-term human
mobility is more difficult to predict due to the complexity of mobility patterns over a longer
period. Generally, human mobility patterns include regular patterns (such as commuting
on weekdays) and irregular patterns (such as activities on weekends). Long-term human
mobility consists of more irregular patterns in addition to people’s daily routines. For
example, whether or not people would be attending special events or visiting specific POIs
in weeks or months, the mobility of which is irregular and where attendance is infrequent.
Therefore, it is an interesting topic to be further explored. Many research studies have
mainly focused on short-term human mobility prediction. For example, Ref. [3] proposed a
model called CityMomentum to predict human movements in the next hour based on a
clustering framework and a mixture of multiple random Markov chains. The authors of [4]
also supplied a model (DeepMove) to predict short-term mobility based on attentional
recurrent networks. Short-term human mobility prediction can only function on small
regions due to the limit of mobility speed; further, it cannot supply sufficient response time
in practical applications.

Thus, how can we effectively tackle the irregularity-related problems of long-term
mobility? In addition to extracting richer features from long-term trajectory data, the
selection of the base model is also crucial. The gradient-boosting decision tree (GBDT)
model is an ensemble model which trains a sequence of decision trees and uses these weak
trees to constitute strong decision trees in a boosted way. The GBDT model is a high-
performance machine learning model and won many awards in machine learning and data
mining competitions [5]. The tree structure of the GBDT can tackle high-dimensional data
very well and is suitable for the complex features extracted from long-term mobility data.
Combined with the architecture of federated learning, the optimized GBDT model can also
achieve high performance on the premise of privacy protection. There have been some
works on the GBDT model with federated learning for general datasets. The authors of [6]
designed a privacy-preserving scheme for the GBDT model, where individual data owners
can perform training locally based on differential privacy (DP); then, different trees trained
by multiple data owners can be securely aggregated into an ensemble. Federated extreme
gradient-boosting (FEDXGB) realized a federated GBDT structure where participants
upload their gradients and the central server serves as the training role by utilizing the
secure aggregation scheme based on secret sharing and homomorphic encryption (HE) [7].
The authors of [8] introduced a similarity-based federated learning structure where each
participant boosts a number of trees by exploiting gradients of similar instances from
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other participants; then, the trees generated by all participants can form an ensemble
GBDT model.

However, these state-of-art privacy-preserving GBDT models have some weaknesses.
In [6], both the splitting nodes and the leaf nodes are added the same-level noises with
differential privacy, which severely deteriorates the model’s performance. Moreover, the
ensembles of GBDTs are trained in a fixed sequence of participants. The model’s perfor-
mance is also impaired in conditions of non-balanced distribution of data volume or data
quality among participants. Therefore, we aim to design a kind of heterogeneous method
based on differential privacy to separately protect the splitting and leaf nodes; further-
more, the model can be trained flexibly in each round to achieve the best performance.
Additionally, in [7,8], participants need to transmit the gradients of their local data to the
server or each other. The gradients are mapped or queried from the original data, which
are very sensitive and can be inferred or deciphered by malicious or semi-honest entities
leading to privacy leakage. Although [7] applied homomorphic encryption and [8] utilized
local-sensitivity-hashing to serve as the protective measurements, these procedures lead to
the increase in computation complexity and communication costs. Therefore, we argue
that the GBDT model can be trained completely in the local silo to prevent raw data and
gradients from transferring, which can effectively avoid privacy leakage. By designing
an optimized construction method for the GBDT ensemble, long-term human mobility
prediction can be achieved with both good performance and privacy protection.

Specifically, the ensemble of GBDTs consists of decision trees in a boosted way, and,
when training, the new decision trees are added into the ensemble one by one, which means
that the GBDT ensemble can be constructed in a flexible way; namely, different participants
(silos) can train the decision trees locally on their raw data, and then upload these decision
trees to the server and aggregate them together to generate the final ensemble. In this way,
the silos just need to upload the parameters of the trained trees instead of more sensitive
raw data or gradients. Furthermore, the tree parameters can be protected by differential
privacy (DP) based on the addition of noises. By the specific analysis of the range and scale
of added noises, a balance between performance and privacy protection can be achieved.
More importantly, if the decision trees are just trained by sequenced silos, the performance
of the final ensemble of GBDT would be impaired due to the varied data conditions of
the silos. Therefore, we designed an optimized method to choose the best trees trained by
different silos in each iteration to construct the optimal ensemble of the GBDT model.

For long-term human mobility prediction, we propose a novel and practical federated
GBDT architecture with the constructing method called FedVoting, where trees are trained
locally by each silo, then cross-validated by other silos with their raw data and, in the
final voting step, the validation results serve as the votes to decide the optimal trees in the
current iteration. After multiple rounds of iterations, the optimal ensemble of GBDTs is
implemented with the voted trees in each iteration. As Figure 1 shows, the participated
silos just need to upload their model parameters and validation results to the server, while
their raw data can be kept locally without any uploading or transferring. The central server
(or one of the silos) just acts as the operation controller to conduct the FedVoting process
and update the voted model to all silos, without acquiring sensitive information.

In summary, we achieved the following key contributions:
(1) We propose a novel federated voting method to construct GBDT ensembles that

facilitates data owners in collaboratively training a more accurate model than a model
trained independently, without the risk of data leakage, in a concise and practical way.

(2) We designed a heterogeneous method to further protect the parameters of the
decision trees based on differential privacy. By adding different scales of noises separately
to splitting nodes and leaf nodes, an optimized compromise between privacy protection
and performance can be achieved.

(3) We analyze two cases of long-term human mobility prediction (including special
event attendance and POI visits) based on real-world GPS data. The experimental results
show that the federated GBDT model trained by the FedVoting process achieved excellent
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accuracy close to the original non-federated GBDT method, demonstrating a significant
improvement compared with the state-of-art baseline, as well as in respect to independent
training performed by each participant. We also propose the motivation mechanisms to
attract participants based on the quantified contributions.

Figure 1. The architecture of the cross-silo federated GBDT model.

2. Related Work

Urban computing: Urban computing has a very wide research scope, aiming to ad-
dress specific problems in urban life by utilizing different kinds of data, such as GPS
data [9–11], Wi-Fi and Bluetooth data [12,13], social network data [14], crowd-sourcing
temperature and humidity data [15], etc. We also focus on solving urban problems mainly
based on GPS data, which can show more accurate information of the locations and trajecto-
ries of people’s daily activities than other data sources. With big GPS data, rich patterns can
be extracted to make future predictions. Under the aspect of activity attendance prediction,
Ref. [16] proposed a singular value decomposition with multi-factor neighborhood (SVD-
MFN) algorithm to predict activity attendance by integrating the data sources of social
network services (SNS). The authors of [17] introduced a kind of attendance prediction
method for both outdoor and indoor activities based on weather data and the gradient-
boosting tree model. Regarding POIs, Ref. [18] proposed a POI recommendation approach
to help users make travel plans by utilizing the data collected from location-based social
networks (LBSNs). The aim of the authors of [19] was to predict potential visitors for a
given POI by designing a method to jointly model user preference and POI sequential
transition influence. In this research study, we integrate activity attendance prediction and
POI visit protection in one mobility problem, to achieve a more accurate prediction by
extracting rich features from big fine-grained GPS data.

Human mobility prediction: Human mobility has huge impacts on urban areas
under many aspects and is an attractive research field. There have been many researchers
that have explored problems related to human mobility prediction [20–22]. In addition,
Ref. [23] built the online system called DeepUrbanMomentum to conduct short-term
mobility prediction by using recurrent neural networks (RNNs) with currently observed
human mobility data. The authors of [24] proposed a kind of attention-based human
mobility predictor for short-term human mobility prediction, which can be trained and
predicted in a decentralized way without collecting user data in the server. The authors
of [25] constructed a hybrid Markov-based model considering the non-Gaussian and spatio-
temporal characteristics of real human mobility data to predict people’s future movements.
However, these works mainly designed network models exhibiting temporal dynamic
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behavior to predict short-term human mobility, e.g., in next hour. Long-term trajectories
would show significantly different patterns, such as commuting patterns on weekdays
and irregular mobility on weekends, which are also meaningful and can be extracted for
solving urban problems, such as the extracted travel-frequency patterns in this research
study. We abstracted the long-term prediction into a classification problem and designed
the novel model-construction method for prediction in a privacy-preserving way.

Federated learning: For the privacy protection of big data, there are a number of
privacy-preserving mechanisms in the life cycle of big data [26], such as k-anonymity
in data generation [27] and blockchain in data storage and management [28]. In data
processing and applications, there has been increasing research interest in traditional
machine learning models combined with the federated learning method to protect user
privacy or avoid data leakage, meanwhile attaining or remaining close to the original
performance [29–31]. Moreover, FedMA utilizes the federated-matched averaging algo-
rithm to combine federated learning with deep convolutional neural networks (DCNN) and
long short-term memory networks (LSTM), achieving good performance with real-world
datasets in terms of privacy protection [32]. The authors of [33] focused on image datasets
and implemented two mainstream object detection algorithms (YOLO and Faster R-CNN)
in federated learning scenarios. The authors of [34] proposed a federated transfer learning
(FTL) model to enhance the efficiency and security of existing models for collaborative
training under data federation by incorporating secret sharing (SS). Although these feder-
ated models constitute various effective models in a privacy-preserving way, they do not
shed light on the scenarios of human mobility prediction with irregular trajectory data. Fur-
thermore, Ref. [35] proposed a privacy-preserving mobility prediction framework called
PMF based on the long short-term memory (LSTM) model and federated learning method
to predict users’ next location. The authors of [36] proposed a personalized federated
learning model named AMF (adaptive model-fusion federated learning) with a mixture
of local model STSANs (spatial-temporal self-attention networks) and global model to
predict users’ next location. However, these models only function on short-term mobility
prediction by utilizing the sequential characteristics of mobility data. In this research
study, the federated GBDT model is constructed by the proposed FedVoting mechanism via
the extraction of high-dimensional features from long-term irregular GPS trajectory data.
Therefore, long-term human mobility (e.g., one month) can be accurately predicted in a
privacy-preserving way and the compromise between performance and privacy protection
can be effectively achieved by the designed heterogeneous differential-privacy method.

3. Preliminaries

There are two main settings related to the participants in federated learning, i.e., cross-
silo and cross-device. Cross-silo federated learning means the participants are organizations
(e.g., companies and data centers) with large volumes of data, while cross-device federated
learning consists of a very large number of mobile devices or IoT terminals with fewer
data [1]. We focus on the cross-silo setting because organizations hold the human mobility
data of their users and desire to acquire a more accurate model to predict the long-term
mobility of their users to supply better services. Cooperation to train a collective model
is an optimal choice among organizations. However, they cannot put the data together
or share the data with others due to privacy issues. Therefore, participating in federated
learning is a good pathway for both high-performance models and data privacy protection.
The features of the data in all the silos (we use silos to represent the participants in cross-
silo FL) are the same. Thus, it can also be classified as a horizontal federated-learning
problem [2].

The human mobility prediction in this research study is based on long-term GPS
trajectory data. Raw GPS data are pre-processed to the travel-frequency patterns and then
serve as the features for prediction. To clearly demonstrate these methods, in this section,
we define the terms and concepts frequently used through this paper.
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Definition 1 (Raw GPS data). GPS data is a kind of data format for human mobility recording
with relatively higher precision than check-in data or call detail records (CDRs); GPS data also
have a larger sampling frequency to generate fine-grained trajectories. In the trajectory history of a
user, GPS data contain many kinds of elements, among which timestamp, latitude and longitude,
consisting of a 3-tuple, are commonly utilized and can be formally represented as follows:

X = {(t, lat, lon)} (1)

where X represents one record of GPS data format. Then, the trajectory in the form of GPS for the
user u can be defined as follows:

Traju = {xu,i|xu,i ∈ Xu, i ∈ N} (2)

where xu,i represents the i-th GPS record in a temporal sequence.

Definition 2 (Grid-level trajectory). In the prediction of long-term human mobility, the destina-
tions are POIs or places for holding special events, which can be represented by grids (square area
with the same size). In the same way, the GPS coordinates in the trajectory can also be transformed
into grids for further processing. As grid information can show the characteristics of long-term
mobility in the frequency domain, it can facilitate the extraction of useful features. Moreover, in
the aspect of privacy protection, the grid-level trajectory is more coarse and less sensitive than
the temporal GPS trajectories with timestamps. We can formalize the locations in the grid as
D = {di = (lati, loni)|i ∈ (1, M)}, where di represents the grid id of the location, (lati, loni) is
the center of each grid with a fixed scale and M is the number of grids in the research area (refer to
Figure 2a). Thus, the GPS coordinates in the user trajectory can be matched to the nearest grids.
Further, the trajectory can be represented by the sequence of grids.

Traju = {du,i|du,i ∈ D, i ∈ (0, L− 1)} (3)

where L is the length of trajectory and i is the ith grid in the trajectory. To make the trajectory more
uniformly distributed, we conduct the interpolation for the trajectories to generate the grids in a
fixed time interval—for example, 15 min.

Definition 3 (Travel-frequency pattern). To better extract the trajectory features of the user, we
introduce the travel-frequency pattern to describe the characteristics of the user’s mobility in a long
period, such as weeks or months. Specifically, the travel-frequency pattern represents the visiting
frequency in the pre-defined grids at a fixed period. When there are enough grids, the features of a
travel pattern can be fully extracted in the wide-distributed grids. The travel-frequency pattern can
be formalized as follows:

ST
u = { f T

u,di
|di ∈ D, i ∈ (1, M)} (4)

where ST
u represents the travel-frequency pattern of user u in the period T and f T

u,di
means the

visiting frequency of the user u at grid di in the period T.

Definition 4 (Long-term human mobility prediction). In this study, we focus on the long-term
prediction of human mobility. Specifically, we predict whether the users would attend the special
event or visit the point of interest (POI) in the next month based on the whole current month’s
trajectory data (T = one month), which can be formalized as p(yu|ST

u ), where yu is a binary
classification, with 0—no; 1—yes.
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(a)

(b)

(c)

(d)

Figure 2. Illustration of travel-frequency pattern preprocessing. (a) Grid distribution. (b) The
procedures of preprocessing. (c) Travel pattern without distinguishing weekday from weekends.
(d) Travel pattern distinguishing weekdays from weekends.

4. Travel-Frequency Pattern PRE-PROCESSING

In this section, we introduce the procedures of preprocessing where the raw GPS data
of a fixed period (commonly one month) are finally transformed into visiting frequency
data among grids, namely, the travel-frequency pattern of users, which serve as the features
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to predict long-term human mobility. Specifically, we take the Great Tokyo Area as the
research region and generate the grid data based on the standard grid square and grid
square code [37]. Through the statistics of human mobility data, the most frequently visited
1600 grids are chosen as the research objects. The distribution of interested grids are shown
in Figure 2a, where the red points represent the center of grids.

The procedures of preprocessing are shown in Figure 2b. Firstly, the raw GPS data
are clustered to the nearest grids, which can transform the trajectory from the GPS format
into grid ID. In this process, forward-interpolating is utilized to generate the uniformly
distributed grid sequence. Commonly, the GPS trajectory is sampled in a fixed-time
interval, such as 15 min. However, if there are no trajectory records in the next 15 min,
forward-interpolating sets the current grid ID as the grid ID of the next 15 min. In this
way, the trajectory in grid format is temporally continuous and complete for conducting
further processing.

Next, the grid-level trajectory is transformed from the time domain into the frequency
domain, by which the travel-frequency pattern can be extracted. Specifically, for a user in
the given period (one month), the visiting frequencies of each grid in the research area are
counted and summarized. Then, we can obtain the one-month travel-frequency pattern of
this user (shown in Figure 2c), which can provide the features to conduct the prediction of
the user’s mobility in next month.

To extract more features from the long-term trajectories, we conduct further analyses.
As shown in Figure 2c, several grids are more frequently visited than others, which are nor-
mally the user’s home, work place and shopping or eating premises. Moreover, commonly,
the patterns of frequently visited places on weekdays are different from weekends for the
same user. On weekdays, the commuting pattern for workers dominates and work places
are more frequently visited, such as the grid in the red-dotted frame in the left graph in
Figure 2d. Conversely, on weekends, the grids of work places are less visited. Therefore,
to more accurately capture the features of travel-frequency patterns, we divide the total
month into weekdays and weekends and separately count the visiting frequency of all
grids; then, we concatenate these two groups to generate the final travel-frequency patterns.
In this way, the travel-frequency patterns are in a higher dimension with richer features.

5. Long-Term Human Mobility Prediction

This section introduces the specific implementations of the proposed FedVoting pro-
cess to construct federated GBDTs for long-term human mobility prediction and includes
three subsections. In the first subsection, “Base model selection”, we show the strengths
of selecting the GBDT model as the base model and introduce the characteristics of the
boosting training method. In the design of federated learning, even though we keep the
raw data and gradients in local positions, the parameters of the model are still uploaded
or transferred, which implies the risk of privacy leakage. Therefore, in the second sec-
tion, “Heterogeneous privacy protection with differential privacy (DP)”, we introduce the
designed heterogeneous method based on differential privacy to separately protect the
parameter of leaf nodes and splitting nodes in the GBDT ensemble. Finally, in the last
subsection, “FedVoting process to construct Federated GBDT model”, the core idea and
specific implementation processes are introduced in a detailed way.

5.1. Base Model Selection

Combined with the architecture of federated learning, the selection of a specific base
model is crucial for the performance of long-term human mobility prediction. Considering
the complexity and irregularity of long-term mobility, we extract higher-dimensional
features from the trajectory histories, called travel-frequency patterns. Therefore, the base
model needs to have a good capacity to tackle high-dimensional data and also needs to be
able to integrate efficiently with federated learning to protect data privacy.

There are many popular models that are powerful in processing high-dimensional
data, such as the gradient-boosting decision tree (GBDT) and random forest models, which
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are based on tree models, and support vector machine (SVM), multilayer perception
(MLP), etc. Another perspective is to decrease the complexity of the features when facing
high-dimensional data, such as in the case of the factorization machine (FM). However,
for long-term human mobility data, one instance represents one user, while the silos,
commonly, just have limited users. Therefore, the decision tree-based models are preferred
due to their strengths on datasets with small-volume instances. To quantitatively compare
the effectiveness of these models on travel-frequency patterns, we tested the prediction
accuracy of long-term human mobility on real-world GPS data. As shown in Table 1, the
GBDT model had a higher accuracy than other models, which shows that GBDT is the
optimal base model.

Table 1. The accuracy test of different base models.

Base Model GBDT Random Forest SVM (Linear) SVM (Sigmoid) MLP FM

Accuracy 0.7305 0.7195 0.65462 0.62269 0.60705 0.6397

GBDTs consist of a sequence of boosted decision trees. A decision tree contains multi-
layer nodes with optimal splitting values of chosen features, which can achieve a better
performance in the dataset with high-dimensional features. Given a dataset {(xi, yi)}, the
GBDT model can be formalized as ŷi = ∑t

k=1 fk(xi), where ŷi is the final prediction result,
fk(xi) is the prediction result of the k-th tree and t is the number of total trees. Thus, the
final prediction result of the GBDT model is the sum of each tree’s results.

GBDTs are trained in an additive way, with the decision trees being added into
the ensembles one by one, which is the foundation of the proposed FedVoting process
introduced later in the paper. This training method can be formalized as ŷ(t)i = ŷ(t−1)

i +

ft(xi), where ŷ(t−1)
i is the prediction result of previously generated (t− 1) trees and ft(xi)

is the t-th tree to be trained. The goal of training a tree is to minimize the loss of objective
function by selecting the splitting point. Formula (5) shows the objective function L(t):

L(t) =
n

∑
i=1

l(yi, ŷ(t)i ) +
t

∑
i=1

Ω( fi) (5)

where i is the index of each sample, n is the total number of training samples in the dataset
and yi is the label of the i-th sample; l(yi, ŷ(t)i ) represents the loss between the ground truth
and the predicted label in the t-th iteration and Ω( fi) is a regularization term to penalize
the complexity of the tree.

5.2. Heterogeneous Privacy Protection with Differential Privacy (DP)

Human mobility data are valuable and can be utilized to advance the performance
of applications. Therefore, all silos desire to acquire or infer more information about
the mobility data from other silos in federated learning. Moreover, these data belong to
individual privacy. Although the silos can hold the data of their users, they have difficulties
in sharing them due to the regulations. To decrease the leakage of individuals’ privacy, the
training processes of the GBDT model are conducted locally on participated silos and just
the trained model is uploaded to the server. Data privacy is naturally protected, without
uploading or transferring any raw data. However, in extreme conditions, the trained model
that each silo uploads or transfers is still at risk of exposing the original data [6,38]. This is
because the threshold values in the decision trees are related to the features of the original
data, while the leaf nodes are derived from the labels of the original data. We assume
that the participants are curious and semi-honest. The single participant (including the
server) or the collusion of participants all try to decipher more information from the models
trained by other participants.

Therefore, we need to protect the parameters of the decision trees trained in local silos
before any transferring or uploading happens. Differential privacy (DP) is an effective tool
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to protect the tree parameters and compromise between model accuracy and risk of privacy
leakage. The core idea of differential privacy is to add random noises locally to sensitive
data. After uploading or transferring the noise-added data, the original information
is hard to be inferred or obtained. Therefore, to control the scale of added noises for
the trade-off of performance and privacy protection, we apply the ε-differential privacy
mechanisms. ε is a positive real number used to indicate the magnitude of the noises added
into the dataset [39]. The noises are generated by randomized algorithms, such as the
Laplace distribution, exponential distribution, etc. We use A(x) to denote the randomized
algorithm; then, the ε-differential privacy can be shown as below:

Pr[A(D1) ∈ S] ≤ exp(ε) ∗ Pr[A(D2) ∈ S] (6)

where Pr[.] means the probability of related functions, D1 and D2 refer to the datasets that
differ by a single element in the dataset and S means the set-related dataset mapped by
the randomized algorithm. From Formula (6), two similar datasets are randomized by the
function A(x) and the probability ratio of both randomized datasets belonging to same
set is equal or lower than exp(ε), which can quantitatively indicate the difference between
two datasets with randomness. In specific applications, the randomized function A(x) can
be represented with a real-valued function, TA(x) = f (x) + Y, where f (x) is the original
query or function and Y is the noise added to the results of the query or function, which
satisfies the randomness of exp(ε). We use Laplace noise satisfying L(0,

√
2λ) and the ε

can be derived as ∆ f /λ, where ∆ f is the sensitivity of the certain dataset and is defined
as the L1 norm of the dataset, ∆ f = || f (D1)− f (D2)||. Therefore, we can apply noises to
the GBDT model following the Laplace distribution to protect the decision trees and their
hidden raw data.

However, the performance of the model would be severely impaired if we indiscrimi-
nately added the same noises to all the nodes of the GBDT model. For a single decision tree,
the components contain two different nodes, namely, splitting nodes and leaf nodes, where
splitting nodes are built based on the query of the features and leaf nodes are derived from
the labels in the training dataset. Therefore, based on the node type, heterogeneous privacy
protection is designed to achieve the trade-off between performance and privacy protection.

Specifically, heterogeneous privacy protection means that the noises with different
levels are added into the different kinds of nodes. The labels of the dataset are directly
acquired from the original data, which are very sensitive; thus, the leaf nodes demand
a strengthened protection. In contrast, the features in the dataset are travel-frequency
patterns (refer to Section 4), which are preprocessed through two steps, i.e., the original
GPS coordination data are first transformed into coarse grid-level trajectories, then grid-
level trajectories are transformed from the time domain to the frequency domain. Thus,
the original personal GPS trajectories are mapped into less sensitive visiting frequencies,
which are queried to generate the threshold value of the splitting nodes. Therefore, fewer
noises can be added into the splitting nodes.

Moreover, referring to Figure 3, the statistics of feature distribution in the long-term
mobility dataset vary a lot, from 250 to 2000 on each grid. Moreover, the feature dimension
is 3202, which means that the number of possible values of splitting nodes is very large,
over 4 million (feature dimension, 3202 *; then, average of visiting frequency on each grid,
1346 = 4,309,892). The max number of splitting nodes and leaf nodes in each decision tree
can be derived from the formula nsplitting_nodes = (2d−1 − 1) and nlea f _nodes = 2d−1, where
d is the max depth of the decision tree. For example, setting the depth of the decision tree
as d = 7, the number of splitting nodes is 63, which is quite small compared with the query
space of over 4 million (nearly 0.0014%). Oppositely, the labels have only two possible
values (1—visited; 0—not visited), which shows that, with splitting nodes, it is harder to
expose privacy information than with leaf nodes.



Sensors 2021, 21, 8282 11 of 24

Figure 3. The distribution of travel-frequency patterns in long-term mobility data.

Therefore, we add ε noises into the leaf nodes and (h ∗ ε) noises into the splitting nodes
in the decision trees, where h is a constant (h ≥ 1) to indicate the heterogeneity of noises.
The splitting nodes are essential for the performance of each decision tree, which can be
less impacted by heterogeneous privacy protection. By setting a proper heterogeneity
constant h, a better compromise between model performance and privacy protection can
be achieved.

5.3. FedVoting Process to Construct Federated GBDT Model

Following the analysis in the previous subsection, we add heterogeneous noises to
the leaf nodes and splitting nodes of decision trees in the GBDT model, which can prevent
the privacy leakage from tree parameters, also having a lesser impact on the performance.
Moreover, to protect raw data, the GBDT model is trained on the local position of each
silo without the transferring of any original data and derivatives. However, by only
implementing this procedure, other silos’ data would not be utilized in the training of the
current silo and the performance of the final model would be impaired. Therefore, we
propose the FedVoting architecture to construct the model based on the cooperation of
different silos, which includes three steps, namely, training, cross-validation and voting.

As Figure 4 shows, we suppose there are k silos, which can be viewed as the total
dataset divided into k folds, with each silo owning one fold of data. Further, the silos keep
their data in the local place and only exchange the trained model and validation results
with the server or other silos. The ensemble of the GBDT model contains n decision trees
and the number of one batch of decision trees is generated in each iteration. Therefore,
in iteration i, all silos own the (i − 1)th model trained in the last iteration (in the first
iteration, the (i− 1)th model is null). In Figure 4, we use the green-, blue- and orange-filled
squares separately to show the structure and process flows of training, cross-validation
and voting stages.

In the FedVoting process for one iteration, the first and second steps (training and
validation) are similar to K-fold cross-validation with a reverse order. Generally speaking,
in traditional K-fold cross-validation, the (k− 1) folds of data are utilized for training while
one fold of data serve as validation data. This training is repeated K times so that each fold
of data can serve as the validation role for sufficient model evaluation. However, in the
process of FedVoting, there is one silo (fold) training the model, while the other (k− 1) silos
(folds) serve as the validation roles; furthermore, each silo has an equal chance to train the
model. Thus, in this way, private data can be kept in the local position and validation data
are more sufficient for the cross validation procedures. After the training stage, the model
trained by each silo is transmitted to all other silos and is validated in these silos with their
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local data. In the voting stage, the model trained by one silo owns (k− 1) validated errors,
from which the average validation error of each model is calculated, serving as vote. Then,
the model with the smallest error is voted as the chosen model in the current iteration to
be broadcast to all other silos, called model update. In each iteration, a certain number
of trees (one batch) is trained continuously to promote the construction efficiency of the
model ensemble. After specific iterations, the whole ensemble of GBDTs is implemented.

Figure 4. The construction process of FedVoting.

Therefore, the federated GBDT model can be constructed by the federated voting
process (FedVoting) to achieve long-term human mobility prediction, which can keep these
sensitive data in local positions and protect the data privacy of users. Next, we introduce
these three steps in a detailed way.

(1) Training stage
The first stage of the FedVoting process is to train the decision trees in the GBDT

model with DP protection. As introduced in Section 5.1, the classification model of GBDTs
is utilized to achieve long-term human mobility prediction, namely, whether or not the user
would attend the special event or visit POIs in the next month based on the travel-frequency
patterns of the current month.

The total decision trees in the ensemble of GBDTs are trained by many iterations (N).
In one iteration, the number of decision trees to be trained is called batch (b). Therefore,
the tree number of the whole GBDT is the product of iteration number and batch (N ∗ b).
The batch should be equal or over 1; setting a bigger batch can improve the efficiency of
training. As Figure 4 shows, each silo participating in federated learning owns its local data
and the current models trained by the former (i− 1) iterations. When the training stage of
the current iteration begins, each participating silo trains a fixed number (batch) of decision
trees in a boosted way. Moreover, the training for each silo repeats m times to obtain m
groups of models, which can avoid the randomness that would disturb the performance
of the models. Then, the model with the best performance (i.e., with the smallest training
error on local data) is chosen as the candidate for the later cross-validation stage.

The processes to train one decision tree with DP protection are shown in the first part
of Algorithm 1. The first step (Algorithm 1, from line 1 to line 4) is similar to the common
process of building decision trees, the key of which is to set a proper sampling rate of both
features and instances to remove overfitting and achieve the best effect of generalization.
The second step (Algorithm 1, from line 5 to line 9) consists of adding Laplace noises into
the leaf nodes with budget ε, as well as splitting nodes with budget (h ∗ ε). The range of
noises is decided by the privacy budget, where the smaller the budget, the larger the noise.
Therefore, through adjusting the privacy budget, the noise added to the leaf nodes can be
controlled to satisfy the demands of both performance and privacy protection.
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(2) Cross validation stage
After the training stage, each silo generates m groups of decision trees with the number

of batches, but only the group with the smallest training error is transmitted to the other
(k− 1) silos for cross-validation. Therefore, in the cross-validation stage, each silo validates
(k− 1) models trained separately by the other (k− 1) silos on their local data. Then, the silo
transfers or uploads only the validation results to the other silos or to the server without
any exposure of the original data and privacy being also well protected.

The detailed flows are shown in Algorithm 1, from line 10 to line 15. Firstly, in the
current silo, the group of decision trees with the smallest loss is chosen from all the models
generated in the multiple training of the current iteration. Then, these decision trees are
transmitted to the other (k− 1) silos under the coordination of a central server or one of
the participated silos. The validation processes are then conducted on these silos based on
their local data. Finally, the validation results of the same model from different silos are
gathered for the next voting stage.

Algorithm 1: The FedVoting process among silos in one iteration.
Input: I, Instance set of each silo
Input: k, Number of silos
Input: m, Number of repeated training times
Input: b, Number of trained trees in one iteration
Input: d, The tree’s depth
Input: ε, Privacy budget; h, Heterogeneous constant
Output: A new batch decision trees

1 for i = 1 to k do
/* Conducted on silo Pi */

2 for j = 1 to m do
3 for t = 1 to b do
4 Train t-th decision tree with the max depth d

/* Adding noises with Laplace distribution to the nodes */
5 Calculate the sensitivity ∆ fl of leaf nodes and ∆ fs of splitting nodes for

the nodes f (x)
6 Model jt

l ← fl(x) + ∆ fl/ε ∗ r

7 Model jt
s ← fs(x) + ∆ fs/(h ∗ ε) ∗ r /* r is the Laplace noise:

r ∼ L(0, 1) . */

8 Acquire current GBDT with b decision trees Modelj
9 Lossj ← eval_error(Modelj, Ii)

10 Find the smallest Lossj
11 Modeli ← Modelj
12 Send the Modeli to the other silos
13 for j = 1 to k, j 6= i do

/* Conduct on silo Pj */
14 Errorj ← eval_error(Modeli, Ij)

15 Error_validationi ← Average(Error)

16 Find the smallest Error_validationi
17 Modeli is the optimal model in current iteration and updated to other (k− 1) silos.

(3) Voting stage
The voting stage is to select the best model for the current iteration. After the validation

stage, the model trained by each silo has (k− 1) validation results from the data of other
silos. Therefore, the validation result can be viewed as the ‘vote’ from other silos for
the current model. The ‘vote’ is based on the performance of the model in its local data
without exposing the original data, which is reasonable and privacy-preserving. Through
selecting the model with the most ‘votes’ (i.e., with the smallest validation error), the batch
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of decision trees can be decided and put into the final ensemble of GBDTs in the current
iteration (Algorithm 1, from line 16 to line 17).

In each iteration, all the silos train the local models with their raw data; then, these
models are cross-validated by other silos with totally different raw data. Therefore, the
performance of the model trained by one silo can be sufficiently evaluated; the average
validation errors of each trained model are calculated and can serve as the votes to facilitate
the optimal choice. Finally, the local model with the smallest error is chosen as the optimal
model to be aggregated to the GBDT ensemble in the current iteration. Then, the chosen
model is updated to all other (k− 1) silos.

Overall, after these three stages of one iteration, a batch of decision trees is generated
based on the data of all silos, in which one fold of data in one silo serves as the training
role and the other (k − 1) folds data serve for validating. Through this process, the
generated model can avoid over-fitting, compared with using only one silo’s local data.
More importantly, FedVoting can effectively protect raw data in a strengthened way, where
all individuals’ data and related derivatives are kept in the local position, without being
transferred and uploaded. Moreover, for the GBDT models which are transferred or
uploaded, we utilize heterogeneous differential privacy to protect the parameters in the
decision trees, which also drastically decreases the risk of privacy leakage. Compared with
other privacy-preserving methods, such as homomorphic encryption, which has complex
encrypting processes and can still be attacked, FedVoting not only protects the data better
than other methods, but also has a good performance, which is shown in the next section.

6. Experimental Results

In this section, first, we introduce the big GPS dataset and the experiments’ setup.
Then, we analyze the training process to show that the FedVoting process is very effective
and, as the training goes iteration by iteration, the optimal decision trees are selected
and the whole classification errors keep decreasing. After that, we demonstrate the great
performance of the FedVoting-constructed federated GBDT model in two long-term human
mobility prediction cases (long-term special event attendance and long-term POI visit),
compared with the two extreme settings (SOLO and ALLIN, which are introduced later)
and the state-of-art baseline. In the end, we elaborate the strengths of the proposed
heterogeneous method based on differential privacy in finding a compromise between
good performance and privacy protection; further, we show that the FedVoting-constructed
federated GBDT model can easily quantify the contributions of each silo to the cooperation,
which can facilitate the design of incentive mechanisms and attract more participants in
federated learning.

6.1. Data

We utilized the “Konzatsu-Tokei (R)” raw GPS log dataset, which refers to people flow
data collected by individual location data sent from mobile phones with enabled AUTO-
GPS function under users’ consent, through the “docomo map navi” service provided by
NTT DOCOMO, INC. These data were processed collectively and statistically in order to
conceal private information. Original location data were GPS coordinate data (latitude and
longitude) sent in about every 5 min minimum and did not include information to identify
individuals, such as gender or age.

In this study, we focused on the GPS dataset within the Greater Tokyo Area over a
one-year period (1 January 2012, to 31 December 2012). We divided the Great Tokyo Area
into 1 km × 1 km grids and extracted 1600 of the most frequently visited grids as POIs
based on the dataset, while the visited grids outside the POIs were considered outliers and
set to the same grid index (1601). A user’s trajectories of a specific month were preprocessed
to generate travel-frequency pattern data as features in the training and test datasets. In
this process, the users with trajectories shorter than 15 days were omitted to improve data
quality. Then, we set different special events or POIs as the goal of long-term human
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mobility prediction, namely, whether the users would have attended the special event or
visited the specific public area in the next month.

For special events, Comiket is a very popular activity mainly focusing on the sale
of doujin (self-published) works, which is normally held in Tokyo Big Sight twice a year.
The C82 Comiket was held from 10 August to 12 August 2012; we extracted the attendees’
information from the trajectories to acquire the labels of users. As shown in Table 2, there
were 1965 people who attended the C82 Comiket (positive instances) and 77,952 people
who did not attend (negative instances) from the objective users in the dataset. Compared
with the number of whole objective users, the users who attended Comiket occupied a
small portion, which would have led to severe bias in the prediction results. Therefore,
it is necessary to randomly extract the equal portion of negative instances and positive
instances to form the final dataset. The numbers in parentheses of Table 2 are the quantities
used in the dataset. In this research study, we focused on the horizontal federated learning
setting and the features of data were the same in all silos. Therefore, the whole dataset
could be divided equally or with different portions and then distributed to each silo.

For the prediction of visiting POIs, we chose Disneyland as the research POI. Similarly
to Comiket, we extracted the visiting information for the whole month of August, 2012,
in the original dataset. Specifically, if a user visited Tokyo Disneyland once or more in
the whole of August, he or she was considered a positive instance; otherwise, the user
was labeled as a negative instance. In this way, the dataset could be generated and then
adjusted to have an equal portion of positive and negative instances.

Table 2. Dataset overview.

Event Date Number of Positive Instances Number of Negative Instances

Attending Comiket 8.10∼8.12, 2012 1965 77,952 (2000)

Visiting Disneyland Total August, 2012 9680 80,850 (10,000)

6.2. Experiments’ Setup

We conducted the experiments on a workstation running Linux with Intel Xeon E5-
2690v4 CPU (2.6 GHz 14C 35M 9.60 GT/sec 135W), 2× TitanX Pascal 12 GB GDDR5X
graphics card, 128 GB (8× 16 GB DDR4-2400 ECC RDIMM) and a 1.2 TB Intel NVme DC
P3600 Series SSD. We used 70% of the dataset as training data and the remainder for testing.
Then, the training dataset was randomly divided into k equal parts as the local data of k
silos and the max depth of GBDTs was set to 7.

We first demonstrate the training process of the FedVoting architecture. Then, we
report the testing of two principal baselines, ALL-IN and SOLO, to compare with the
performance of FedVoting. ALL-IN means that the data in all silos were put together to
train a model, which represents the best situation where the data can be gathered together
without privacy concerns. SOLO means that each silo trained the model by using only their
own data, without cooperating with other silos, which represents the original conditions.
In addition to these two baselines, we also tested a baseline called SimFL, which is also
a federated GBDT model constructed based on the similarities among the instances of
different participants [8]. Then, we present the classification errors of FedVoting to compare
with these baselines, to show the high performance and practicality in the problems of
long-term prediction of POI visits, including both special event attendance and POI visit
prediction. Next, we analyze the privacy protection and incentives for participants joining
federated learning. To avoid the randomness, we ran FedVoting 10 times to acquire the
average results.

For the prediction of long-term human mobility, we used the classification error to
state the performance of the model, which equaled to (1− accuracy). The accuracy is
shown in Equation (7), where TP is true positive, FP is false positive, TN is true negative
and FN is false negative. As we focused on the conditions of a balanced ratio of positive to
negative samples, the classification error made it very clear and intuitive to demonstrate
the performance of models.
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Accuracy =
TP + TN

TP + TN + FP + FN
(7)

6.3. Analysis of the Training Process

As Figure 5a shows, the construction process of the GBDT model based on FedVoting
is similar to the normal training pattern. With the increase in tree numbers, the training
errors gradually decreased, while the validation errors first decreased and then remained
relatively constant. However, we also found that there were some sharp waves in the
classification error curve as the tree number increased, which represent the conditions of the
training batch and model selection based on the FedVoting process. We refer to Figure 5b
for the whole training process (silo number, 2; batch, 20). The blue curve and green curve
represent the validation error of the model trained by silo 0 and silo 1, respectively, which
is the average value of the validation errors validated by all other silos based on their local
data. For example, because there were just two silos, the blue curve of silo 0 is the final
validation error of its model, which was validated by silo 1. Based on the final validation
error of model, the model with the smallest error is chosen as the final model in the current
iteration and is updated to all other silos. For example, in the first iteration, the model (one
batch of total 20 trees) trained by silo 1 had the smallest validation error, as the green curve
shows. Thus, the model of silo 1 was chosen (shown in cyan-filled circles) and aggregated
to the GBDT ensemble, then updated to all other silos. In the second iteration, all silos
trained new batches of trees based on the previous model in a addictive way. Then, the
model of silo 0 had the smallest validation error, thus, it was chosen as the final model of
the iteration and updated to all other silos.

(a) (b)

Figure 5. The training process of FedVoting (Silo number = 2, batch = 20). (a) The training process in
tree numbers. (b) The training process in iterations.

Therefore, after a certain number of iterations, the ensemble of GBDTs could be
generated. The training error of the FedVoting process is shown by the dashed red line in
Figure 5b, from which we can see that the whole validation errors were low and decreased
until the end of the training process. Furthermore, the black line indicates the test error of
global test data, showing the generalization performance as the iteration increased. From
the above analysis, we can confirm that the FedVoting process could choose the models
with the best performance to construct the final ensemble.

6.4. Long-Term Prediction of Special Event Attendance

Special events are usually held in a very short period, and some large events can
attract tens of thousand people, which is concerning for the government in terms of
traffic congestion problems and represents an occasion for companies to promote business
activities. Therefore, it is important and beneficial to make attendance prediction in
advance. Here, we utilize the GPS dataset in the Great Tokyo Area to predict the attendance
of C82 Comiket and show the results.
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Table 3 shows the comparison among classification errors to show the performance.
There were four participating silos and the data volume was evenly distributed among
all silos. For the training of FedVoting, we set the parameter of ε in differential privacy
to 20 and h to 10 (default value, if no extra annotation). We can see that the classification
error of the proposed model (FedVoting) was lower than every silo’s training individually
(SOLO) and was close to the classification error of ALL-IN (training with all data put
together), which means it was beneficial for silos participating in federated learning, so as
to acquire the model with the highest performance. Especially, the federated GBDT model
constructed with the FedVoting process also had a better performance than the federated
GBDT model with similarity (SimFL). Moreover, compared with SimFL, which not only
transfers the gradients among participants with the risk of original data leakage but also
lacks protection of tree parameters, the decision trees in FedVoting process were trained
in local silos without any transferring of raw data or its derivatives. Furthermore, the
parameters of the federated GBDT model were protected by differential privacy, which can
avoid the privacy leakage and achieve a good performance.

Table 3. The comparison of classification errors in Comiket attendance prediction.

Model Classification Errors
Min Average Max

ALL_IN 0.26387 0.2695 0.27815

SOLO

Silo 1 0.28571 0.29311 0.30672
Silo 2 0.28487 0.29478 0.30588
Silo 3 0.28319 0.28823 0.29495
Silo 4 0.27647 0.29084 0.29916

FedVoting 0.26387 0.27605 0.28571

SimFL 0.27647 0.28958 0.3

Next, we analyzed the conditions for different numbers of participating silos to test the
effectiveness of the proposed model. As Figure 6a shows, the x-axis represents the number
of silos from 2 to 10 and the y-axis represents the classification error. The confidence interval
of the SOLO condition (green curve) represents the distribution of the classification errors
of the model trained by each silo. We can see that the classification errors of FedVoting
were smaller than those of all SOLO conditions and significantly better than the average
performance of all SOLO silos. At the same time, they were close to the ALL-IN conditions.
Compared with the performance of SimFL, FedVoting also had smaller classification errors
in all conditions for different silo numbers.

(a) (b)

Figure 6. The prediction results of Comiket attendance in different conditions. (a) Classification
errors of different numbers of silos (Data ratio = 0.5). (b) Classification errors of different ratios of the
data volume (Silo number = 2).
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The data volume of different silos may be not evenly distributed, which may impact
the models trained in federated learning. To show the performance of FedVoting in the
conditions of unevenly distributed data volume among silos, we tested the performance
with different ratios (θ) (from 60% to 90%) on the condition of two participating silos. As
Figure 6b shows, the classification errors of FedVoting were far better than the average of
SOLO conditions and mostly better than all single SOLO errors. Further, they were also
increasingly closer to the ALL-IN condition, with the increase in the ratio. Compared with
SimFL model, FedVoting also achieved a better performance.

From the above analyses, we can find that the federated GBDT constructed by the
FedVoting process had a good performance both for different silo numbers and varied
data ratios. In this way, the attendance of Comiket could be better predicted through the
cooperation of different silos at a negligible expense of privacy exposure.

6.5. Long-Term Prediction of POI Visit

In long-term human mobility prediction, another common aspect is the POI visit
prediction. In this research study, we used Disneyland as the POI to demonstrate the
performance of the proposed models. Disneyland is a very popular entertainment place
for most people around the world. Tokyo Disneyland, located in Great Tokyo Area, also
has many tourists. As introduced in Section 6.1, we utilized the travel-frequency patterns
of the current month to predict whether the user would have visited Tokyo Disneyland
in the next month. The classification errors are shown in Table 4; it can be seen that the
classification error of FedVoting was also better than all the SOLO conditions and SimFL
model and, at the same time, close to the ALL-IN condition.

Table 4. Comparison of classification errors in Disneyland visit prediction.

Model Classification Errors
Min Average Max

ALL_IN 0.25559 0.25837 0.26118

SOLO

Silo 1 0.27473 0.27680 0.27981
Silo 2 0.26762 0.27265 0.27558
Silo 3 0.27236 0.27476 0.27642
Silo 4 0.27473 0.27798 0.28083
Silo 5 0.27575 0.27818 0.28167
Silo 6 0.271 0.27476 0.27727

FedVoting 0.26236 0.26438 0.26634

SimFL 0.27575 0.27927 0.28421

Similar to the demonstration of Comiket attendance prediction, the Disneyland vis-
iting predictions are also displayed for different participating silos and different data
volume ratios, as shown in Figure 7. The classification errors of FedVoting were better
than all single SOLO errors. Further, they were also close to the classification error of the
ALL-IN condition. We can see that the SimFL model performed worse than even the SOLO
conditions, which indicates that the similarity patterns are not suitable for travel-frequency
pattern data; the similarity among different silos cannot contribute to a better performance
of prediction but, rather, worsen the prediction accuracy.
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(a) (b)

Figure 7. The prediction results of Disneyland visit in different conditions. (a) Classification errors of
different numbers of silos. (b) Classification errors of different ratios of data volume.

6.6. Privacy-Protection Analysis

As introduced in the previous sections, the federated GBDT model constructed with
the FedVoting process consists of decision trees separately trained by different silos on
their local data, which means that the original data in each silo are naturally protected.
However, the parameters of the decision tree in the GBDT model still contain some private
information, because these parameters are queried from the original data in the silos.
To further protect privacy, we analyzed the risk of privacy leakage for the different kinds of
tree parameters (splitting nodes and leaf nodes) and designed the heterogeneous privacy
protection method to prevent privacy leakage as well as improving the performance of
the model.

In differential privacy, ε (epsilon) denotes the amount of noise added. The smaller the
ε, the larger the noise added. In heterogeneous privacy protection, ε-Laplace noises are
added to the leaf nodes and (h ∗ ε)-Laplace noises are added to the splitting nodes. When
h is fixed (e.g., h = 20), the noises level can be adjusted by selecting different values of
ε. To further balance the performance and privacy protection, the appropriate ε should
be decided. As shown in Figure 8, for each graph, the green points represent the original
values of the splitting nodes and the blue points show the values with different Laplace
noises. Similar to leaf nodes, the red points are the original values and the yellow points
are the values with different ε-noises. We can see that the noises were significantly larger
than then the original values in the condition with ε = 0.5 (Figure 8a), which would lead
to terrible prediction accuracy, even though privacy would be well protected. Similarly,
when ε = 50 or ε = 100 (Figure 8e,f), the noises added were too small to realize privacy
protection, although the performance of the model would be less impacted. However,
in the condition with ε chosen as 5, 10 and 20, the noises were relatively intermediate;
therefore, they would be able to achieve a good performance.

After confirming the condition of the noises added into the model for different val-
ues of ε, we tested the real accuracy of long-term prediction of POI visit based on the
Comiket dataset, which is shown in Figure 9. The blue line shows the condition for h = 1,
which means the levels of added noise were the same in both the leaf nodes and splitting
nodes. We can see that the classification errors were very large, regardless of the ε chosen.
Differently, in the conditions of heterogeneous privacy protection, the classification error
drastically decreased with the increase in ε, shown as the green line (h = 10). Especially,
with ε = 20, the classification errors were pretty small, which would achieve a compromise
between performance and privacy protection.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. The noises added to the leaf nodes for different ε (h = 10). (a) ε = 0.5. (b) ε = 5. (c) ε = 10.
(d) ε = 20. (e) ε = 50. (f) ε = 100.

Figure 9. The classification errors for different ε (silo number = 4).

Overall, the FedVoting process chooses the DP-protected decision trees with the
smallest validation error into the final ensemble of federated GBDTs in each iteration. The
degree of privacy protection can be set by the parameter ε with the heterogeneous method.
For different levels of privacy protection, FedVoting can acquire the model with the best
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performance. In common cases, we should choose the intermediate value of ε to achieve a
good balance between performance and privacy protection.

6.7. Motivation Mechanism Analysis

In federated learning, many participants cooperate together to train a collective model
based on their local data. However, the premise of cooperation is that there are enough
motivations for silos to be willing to join in. As introduced above, the most important
motivation for which all silos can acquire a collective model with better performance than
models trained by a single silo and at the same time is that the original data of each silo
can be kept locally without uploading or transferring to protect user privacy. However,
this cannot guarantee fairness, because all silos obtain the same benefits (high-performance
model), while the contributions to model training may be varied. Therefore, we need
to explore the mechanism of incentives to guarantee fairness and attract silos to join
federated learning.

Firstly, we should acquire the specific contributions of different silos in federated
GBDTs. The FedVoting process supplies a very objective indicator of the contribution.
In each iteration, the FedVoting process selects a batch of decision trees with the best
performance to put into the final ensemble of GBDTs. This batch of decision trees is trained
by a specific silo. After finishing all the iterations, the trees in the final ensemble can be
counted from the suppliers (silos). The larger the number of trees trained by a silo, the
greater the contribution of this silo. Therefore, we acquire the indicator of the contribution
of each silo, which is the proportion of the decision trees trained by each silo in the final
ensemble. As Figure 10 shows, there are two silos (silo 0 and silo 1) and the ratio of data
volume among them varies (from 50% to 90%). When the data volumes are equal, the
model contribution is same. As the ratio of data volume in silo 0 increases, the model
contribution also increases and the contribution of silo 1 decreases.

Figure 10. The proportion of model contribution of silos in different data volumes.

Therefore, based on the quantilized indicator of model contribution for each silo, there
are some incentives that can be designed to achieve fairness and attract participants. For
example, the silo with low contribution can pay money to the silo with high contribution;
this is beneficial for both silos, because the silo with low contribution would acquire a much
better model and the silo with high contribution would obtain some payback with money.

7. Conclusions and Future Work

Long-term human mobility predictions are irregular and difficult to make. However,
we can first extract rich features from the GPS trajectories of users to generate travel-
frequency patterns as the input; then, we can choose GBDTs as the base model to conduct
the classification, because GBDTs, as a tree model, can better tackle the high-dimensional
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features and achieve a good performance compared with other methods, such as matrix
factorization, deep neural network, etc. Considering the privacy protection of local data,
we apply federated learning to the construction of the GBDT ensemble and propose the
FedVoting process to conduct optimal model selection in the iterations of the training
process. At the same time, to further protect user privacy, we design the heterogeneous
method to separately protect the leaf nodes and splitting nodes in the decision trees based
on differential privacy, which can achieve a good compromise between performance and
privacy protection. Finally, we tested the proposed model in two kinds of long-term human
mobility prediction scenarios (special event attendance and POI visit) and conducted
the comparison with the baselines of ALL-IN, SOLO and start-of-art prediction models.
As shown in the figures in the previous section, the classification errors of FedVoting
were all better than the SOLO conditions and the SimFL model and very close to the
ideal ALL-IN conditions without privacy concerns. From the privacy analyses, we can
see that, as the ε became smaller (namely, more noises were added into the model), the
classification errors increased rapidly. However, with the proposed heterogeneous method
based on differential privacy, the classification errors were smaller in the same ε, which
achieved a good compromise between performance and privacy protection. Furthermore,
the federated GBDT model trained by the proposed FedVoting process could easily provide
the quantitative contributions for each participated silos, which can facilitate the design of
incentives to attract silos to join federated learning.

For further exploration, in the aspect of practicability, we believe that more conditions
for different participating silos could be considered, such as one silo having more GPS
data in a certain region or more accurate GPS resolutions. The dataset would be non-
independent and identically distributed; utilizing the federated learning method would
achieve good performance. Combined with the FedVoting process, we can try to optimize
the tree structure based on all silo’s data with tolerable privacy leakage. Furthermore, some
effective strategies can be tested and combined with the federated GBDT model for a better
performance of long-term human mobility prediction, such as context prediction [40,41],
similarity analysis of history trajectories [42] and ensemble methods [43].
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