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Abstract: With the widespread application of machine learning methods, the continuous improve-
ment of forecast accuracy has become an important task, which is especially crucial for landslide
displacement predictions. This study aimed to propose a novel prediction model to improve accuracy
in landslide prediction, based on the combination of multiple new algorithms. The proposed new
method includes three parts: data preparation, multi-swarm intelligence (MSI) optimization, and dis-
placement prediction. In the data preparation, the complete ensemble empirical mode decomposition
(CEEMD) is adopted to separate the trend and periodic displacements from the observed cumula-
tive landslide displacement. The frequency component and residual component of reconstructed
inducing factors that related to landslide movements are also extracted by the CEEMD and t-test, and
then picked out with edit distance on real sequence (EDR) as input variables for the support vector
regression (SVR) model. MSI optimization algorithms are used to optimize the SVR model in the
MSI optimization; thus, six predictions models can be obtained that can be used in the displacement
prediction part. Finally, the trend and periodic displacements are predicted by six optimized SVR
models, respectively. The trend displacement and periodic displacement with the highest prediction
accuracy are added and regarded as the final prediction result. The case study of the Shiliushubao
landslide shows that the prediction results match the observed data well with an improvement in
the aspect of average relative error, which indicates that the proposed model can predict landslide
displacements with high precision, even when the displacements are characterized by stepped curves
that under the influence of multiple time-varying factors.

Keywords: landslide displacement prediction; complete ensemble empirical mode decomposition
(CEEMD); edit distance for real sequence (EDR); multi-swarm intelligence (MSI); support vector
regression (SVR)

1. Introduction

Landslides reactivated by the impoundment of a reservoir or rainfall can cause catas-
trophic losses such as casualties, road burying, and house damages, which seriously
threaten the property and life safety of human society [1,2]. In 2019, there were approxi-
mately 6181 geological hazard events in China, causing economic losses of 2.77 billion yuan.
Among these, 4220 were landslides, accounting for 68% of the geological hazards [3]. The
development of more accurate and effective landslide displacement prediction methods is
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of great significance for the early warning of catastrophic landslide movements and is an ac-
tive research area [4–7]. Through the information obtained from the prediction approaches,
the landslide status can be evaluated, and the corresponding mitigation measures can be
taken in advance to reduce the destructive effects of landslides.

Landslide prediction models can generally be divided into physical–mechanical and
phenomenological models [8,9]. The physical–mechanical models are generally recognized
as originating from the empirical formula proposed by Saito in 1965 [10], and a series
of models have been developed based on creep theory in the following decades [11,12].
Owing to the complexity, strict application conditions, and time-consuming shortcomings
of the physical–mechanical models, research on phenomenological models is becoming
more and more popular nowadays [13]. By means of mathematical statistics and machine
learning, measured landslide displacements are analyzed and modeled while considering
the related factors, such as rainfall, the reservoir water level, groundwater level, etc.,
allowing for the prediction of landslide displacements [12,14].

The support vector machine (SVM) is a frequently used method among all phenomeno-
logical models. Nevertheless, when solving regression problems, the performance of the
SVM model, also known as support vector regression (SVR), is highly influenced by the
determination of penalty parameter C and kernel parameters g [15]. Therefore, research
has focused on improving the predictive ability of SVR models for landslide displacements
through optimization algorithms. In addition to some classical optimization algorithms
such as the genetic algorithm (GA) [16], particle swarm optimization (PSO) [17–19], artifi-
cial bee colony (ABC) [20], and ant colony optimization (ACO) [21], recently, studies have
advanced with the times, and some newly developed optimization algorithms start to be
used [22,23]. Moreover, the continuous enhancement process of the optimization algorithm,
as well as the evaluation of the prediction effect after using different frameworks, are also
carried out at the same time. Miao et al. [24] adopted a variety of algorithms to optimize
the SVR model and achieved a good application effect in the prediction of Baishuihe land-
slide displacement. Zhang et al. [25] made comparisons of the predictive capability of the
SVR model optimized by ACO and GA and found the advantage of ACO-SVR with the
consideration of the inducing factors’ frequency component. At present, the application of
optimization algorithms on SVR-based landslide prediction model parameter optimization
is limited. It is still necessary to apply new optimization algorithms to these SVR-based
models and compare their performance in landslide prediction.

Although based on the no free lunch (NFL) theorem, any optimization algorithms are
equivalent when their performance is averaged across all possible problems; the swarm
intelligence optimization algorithms (SIs) still show competitive results in solving opti-
mization problems [26]. Similar to evolutionary algorithms (EA) [27] and artificial neural
network algorithms (ANN) [28], the SIs also belong to the nature-inspired metaheuristics
method [29]. With its high robustness, the SIs have been applied in many fields, including
data clustering, network traffic forecast, data classification, UAV control, etc. Liu et al. [30]
proposed a model of a global artificial fish swarm algorithm optimized support vector
regression (GAFSA-SVR) for the network traffic forecast; the simulation shows an improve-
ment of forecast precision and is superior to GA and chaos particle swarm optimization
(CPSO)-optimized SVR model. Ali et al. [31] adopted the ant lion optimization algorithm
(ALOA) in optimal allocation and sizing of renewable distributed generation sources in
various distribution networks and results confirmed the effectiveness of the proposed
algorithm. Jiang et al. [32] proposed an opposition-based seagull optimization algorithm
(OSOA) to overcome the shortage of classification models such as slow computation, in-
stability, and sensitivity to noise. In this paper, six new SIs proposed after 2010, including
the bat algorithm (BA) [33], grey wolf optimization (GWO) [34], dragonfly optimization
algorithm (DA) [35], whale optimization algorithm (WOA) [36], grasshopper optimization
algorithm (GOA) [37], and sparrow search algorithm (SSA) [38], have been tested and
compared in the proposed model, and the most suitable optimization algorithm has been
identified.



Sensors 2021, 21, 8352 3 of 28

Decomposition of landslide displacement is also a vital step in a prediction model
and will directly affect the prediction effect. At present, decomposition method based on
signal processing technology, for instance, Fourier transform (FT), discrete wavelet trans-
forms (DWT), wavelet transform (WT), empirical mode decomposition (EMD), variational
mode decomposition (VMD), and ensemble empirical mode decomposition (EEMD), are
massively used in this field [39–42]. With these methods, the landslide displacement can
be decomposed into a trend term and a periodic term, and then these components of the
displacement can be predicted by different models. However, when using the CEEMD
(complete ensemble empirical mode decomposition), the residual term shows a trend of
first decreasing and then increasing, which is difficult to predict as a trend term compared
with the residual terms of EMD and EEMD (Figure 1). Hence, a novel prediction model
needs to be designed when the CEEMD is adopted in the decomposition of landslide
displacement.
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The screening of input parameters for an SVR model from related factors is an im-
portant part of prediction model optimization. Grey relational analysis (GRA) is a usual
approach for this and has achieved convincing results [43]. Meanwhile, many other statisti-
cal methods such as maximal information coefficient (MIC) [23] and mean influence value
(MIV) [44] have also been tried for this purpose. Zhang et al. [25] found that, as a similarity
measuring method of time series, dynamic time warping (DTW) can be employed and
works well in optimal input parameters selection of the SVR model. However, the DTW
has the limitation of insensitive to the noise of the time series. To overcome this, the edit
distance on real sequence (EDR) has been chosen and utilized in this study [45]. The EDR
method is a classic trajectory similarity measurement that calculates the minimal number
of editing operations needed for altering one sequence to another. With the advantages
of robustness and accuracy, it has been utilized in traffic trajectory classification, physical
movement similarity, and fiber segmentation, etc. [46]. It can also be applied in the related
components selection for the prediction of landslides. Through calculating the similarity
between restructured related factors sequence and periodic displacements sequence after
normalization, two restructured related factors with minimum EDR value are the input
variables of the SVR model.
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This paper aims to improve the accuracy of landslide displacement prediction by
constructing a novel model combined with the EDR method and multi-swarm intelligence
(MSI). The new method can provide useful predictions of landslide displacements, allow-
ing for the landslide status to be evaluated and the corresponding landslide mitigation
measures to be taken before destructive movements occur.

In this paper, the next content is arranged as follows. In Section 2, the CEEMD, EDR,
and MSI algorithms are briefly introduced. Section 3 considers the geological conditions
and deformation features of the study case, the Shiliushubao landslide. The data prepa-
ration and statistical analysis of related factors are shown in Section 4. The predicted
results and analysis are shown in Section 5. Section 6 discusses the proposed method, and
conclusions are given in Section 7.

2. Methodology
2.1. Data Preprocessing with CEEMD

The CEEMD method is an effective improvement of the EMD method and EEMD
method. By adding the white noise in the way of positive and negative pairs to the initial
sequence of data, the residual auxiliary noise in the reconstruction signal can be better
eliminated. Furthermore, the number of noise sets added can be very low, resulting in
higher calculation efficiency. In CEEMD, based on local characteristics, the sequence can
be converted to a limited number of intrinsic mode functions (IMF) and a residue. The
operation of CEEMD includes three steps [47]:

Step 1: Add white noise consisting of positive and negative pairs to the original
sequence data. [

P
T

]
=

[
1 1
1 −1

][
η(t)
N

]
(1)

where the original sequence is η(t), N is the added white noise, and P and T are two reverse
white noise. The number of the decomposed sequences is 2n, with j as the jth sample.

Step 2: Obtain a series of IMFs by decomposing P and N with the EMD method to
generate two sets of IMFs. 

P =
m
∑

i=1
IMF+

ji

T =
m
∑

i=1
IMF−ji

(2)

where IMF+
ji is the ith IMF after adding the positive white noise, IMF−ji is the ith IMF after

adding the negative white noise, and m is the number of IMFs.
Step 3: Repeat step 1 and step 2 to get the corresponding IMF terms, and calculate the

average of all the IMFs:

IMFj =
∑n

i=1

(
IMF+

ij + IMF−ij
)

2n
(3)

Through this method, the original sequence can be expressed as the sum of some IMFs
and a residue rn(t).

Zhang et al. pointed out that the CEEMD method combined with a t-test can obtain
the high-frequency and low-frequency components from related factors such as rainfall and
the reservoir water level through a fine-to-coarse reconstruction [25]. Moreover, according
to the time series theory, the landslide displacement can be separated into a trend term and
a periodic term by methods presented in the Introduction section. In this paper, the CEEMD
is adopted as the decomposition method, and the obtained residual term is considered as
the trend term. The result after the trend term is subtracted by the cumulative displacement
of the landslide is regarded as the period term. Due to the special shape of the trend
displacement time series after CEEMD decomposition, the displacement trend term and
the period term will be predicted by the SVR model, respectively, later.
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2.2. Selection of Optimal Related Factors via EDR

The EDR, which is based on Levenshtein distance, is a traditional and well-established
similarity measurement method proposed by Chen et al. [45] and has been used for judging
trajectory similarity since [48,49]. The EDR calculates the number of insertions, deletions,
or replacement operations required to change the sequence R to T when the threshold is ε.
It reduces the effect of noise by quantifying the distance into 0 and 1, and the Levenshtein
distance method itself improves the local time-shifting situation (especially when the local
time-shifting is not very large). Based on this, the displacement trend term sequence and
residue of restructured related factors sequence were set as a reference sample sequence
R = {r1, r2, . . . , rn} and a test sample sequence T = {t1, t2, . . . , tm} after normalization.
Then, the EDR(R, T) can be calculated as follows:

match
(
ri, tj

)
= true; i f

∣∣rix − tjx
∣∣ ≤ ε and

∣∣riy − tjy
∣∣ ≤ ε (4)

DEDR(R, T) =


n; i f m = 0
m; i f n = 0

Min


DEDR(Rest(R), Rest(T)) + subcost,
DEDR(Rest(R), T) + 1,
DEDR(R, Rest(T)) + 1

; otherwise
(5)

subcost =
{

0, match(r1, t1) = true
1, otherwise

(6)

where the real number 0 < ε < 1 is the matching threshold. The cost for a replace, insert,
or delete operation is set to 1. Therefore, through calculating the edit distance between two
sequences, the smaller the EDR is, the greater the similarity will be. After calculating the
EDR between the displacement trend term sequence and residues of original related factors
sequence and restructured related factors sequence, three residues with the highest similar-
ity were chosen as the input variable of the SVR model for predicting the displacement
trend term.

Similarly, three optimal input variables for predicting the displacement periodic term
with an SVR model can be obtained by calculating the EDR between displacement periodic
term sequence and original related factors, restructured related factors and related factors
frequency sequence.

2.3. Support Vector Regression (SVR)

The support vector regression (SVR) algorithm is a classic landslide displacement
prediction model developed from statistical learning theory. With a powerful generalization
ability and robust performance, the SVR model can easily solve quadratic programming
problems with constraints. The main steps of an SVR model are summarized as follows [50].

Suppose that a nonlinear sample set in low dimensional space is: {xi, yi}, where
xi =

{
xi1, xi2, . . . , xip

}
is the input vector, yi is the corresponding output vector, i is the

number of samples and j is the number of input vectors. Then, the regression estimation
function is:

f (x) = wT ϕ(x) + b (7)

where w is the weight vector, ϕ(x) is the nonlinear mapping function and b is the offset.
Through minimizing the following equation, the value of w and b can be obtained:

minJ =
1
2
‖w‖2 + C

n

∑
i=1

(
ξ+i + ξ−i

)
(8)

s.t.


yi − wT ϕ(xi)− b ≤ ε + ξ+i
wT ϕ(xi) + b− yi ≤ ε + ξ−i
ξ+i , ξ−i ≥ 0, i = 1, 2, ..., n

(9)
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where C and ε are the penalty parameter and the size of the insensitive loss function,
respectively. ξ+i and ξ−i are the relaxation factors. By solving the quadratic optimization
problem, the weight vector w can be expressed as:

w =
n

∑
i=1

(β∗i − βi)ϕ(xi) (10)

where β∗i and βi are Lagrange multipliers. Therefore, the SVR model can be denoted as
follows:

f (x) =
n

∑
i=1

(β∗i − βi)K
(
xi, xp

)
+ b (11)

where K
(

xi, xp
)

is the kernel function. The SVR kernel function has various forms; in this
study, the Gaussian radial basis function (RBF function) is chosen and adopted. Since
algorithms for the determination of the penalty factor and the kernel function parameter
(C, g) vary, the approach for selecting C and g must be further studied. Different forms of
MSI algorithms were explored for the parameter optimization of the SVR model and all of
them are briefly described next.

2.4. Multiple Swarm Intelligence
2.4.1. Bat Algorithm (BA)

The bat algorithm (BA), proposed in 2010 by Yang et al., is a novel swarm intelligence
optimization technique that simulates the echolocation behavior of microbats [33]. Based
on iteration, this algorithm describes the echolocation of microbats and uses it to minimize
any objective function and solve optimization problems. In BA, after initializing a group of
random solutions, the optimal solution is searched by iteration, and a new local solution
is generated by a random flight around the optimal solution, which strengthens the local
search. BA is an accurate and effective method of finding the optimal parameter values for
an SVR model with few parameters to adjust.

2.4.2. Grey Wolf Optimization (GWO)

The grey wolf optimization (GWO) algorithm is a new swarm intelligent optimization
algorithm proposed by Mirjalili et al. [23,51]. Based on the predatory behavior and strict
social dominant hierarchy of grey wolves, this algorithm first randomly generates a group
of gray wolves in the search space. Then, the wolves are divided into four social hierarchies
according to the fitness from high to low, each marked with alpha, beta, delta, and omega.
The location and distance between the grey wolves and the prey, which is the possible
solution of the optimized SVR model, is obtained through iterative calculation. Finally,
through the evolution of the wolf group itself, the distance between them is gradually
reduced to realize the optimal hunting of prey. The algorithm has the advantages of strong
convergence, few parameters, and easy implementation.

2.4.3. Dragonfly Algorithm (DA)

The dragonfly optimization algorithm (DA) is a swarm intelligent optimization algo-
rithm proposed by Mirjalili et al. [35,52]. The algorithm is based on the dynamic and static
swarm behavior of dragonflies in nature, which includes separation behavior, alignment
behavior, cohesion behavior, foraging behavior, and distraction from enemy behavior. By
establishing a mathematical model of all these behaviors, the dragonfly’s latest position
vector, which is a possible solution of the objective function, is calculated. This algorithm
has the advantages of simple calculation, low complexity, few control parameters, and fast
convergence speed.
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2.4.4. Whale Optimization Algorithm (WOA)

The WOA algorithm is a new heuristic optimization algorithm. The key idea is to
simulate the behavior of humpback whales [36]. The humpback whales hunt in a special
way using bubble nets, which can be described as two mechanisms: upward spirals and
double loops. The WOA optimization algorithm has three steps: searching and encircling
prey, the bubble-net argument attacking method (exploitation phase), and search for prey
(exploration phase). Through this, the position vector of humpback whales with the best
fitness value can be obtained by satisfying a termination criterion, and the final position
vector is chosen as the best solution of the optimized SVR model parameters. The algorithm
has the advantages of simple operation, few parameters to adjust, and a strong ability to
jump out of a local optimum.

2.4.5. Grasshopper Optimization Algorithm (GOA)

The grasshopper optimization algorithm (GOA), proposed by Saremi et al., in 2017,
is a metaheuristic bionic optimization algorithm that mimics the swarming behavior
of grasshoppers during population migration (exploration) and foraging behavior (ex-
ploitation) [37]. The grasshoppers’ position vector is equal to the value of an objective
function [53]. When the grasshoppers reach a food source, the parameters reach the optimal
variable, and the optimal value of the SVR model parameters is obtained. The algorithm
provides a balanced condition between local and global search operators to achieve the
final target. Two forces in grasshoppers, attraction and repulsion, provide global search and
local search, respectively. To obtained effective solutions, the influence of the grasshopper’s
current position, its relative position to other grasshoppers, and the position of the target
point are regarded as the effective agents to determine the search vector. It has higher
search efficiency and faster convergence speed, and its special adaptive mechanism can
balance the global and local search processes with better optimization accuracy.

2.4.6. Sparrow Search Algorithm (SSA)

The sparrow search algorithm (SSA), as proposed by Xue et al. [38], was mainly
inspired by the foraging behavior and anti-predation behavior of sparrows. Some sparrows
are in charge of seeking food and providing locations for the entire population, while
the remaining sparrows use the locations to obtain food. Meanwhile, when a sparrow is
aware of the danger and alarms, the entire population will immediately take anti-predation
behavior. Although idealized, these behaviors are formulated with corresponding rules,
and the algorithm classifying the sparrows into producers and scroungers. Their positions
are updated according to their own rules, separately. In SSA, the position of each sparrow is
equal to a possible solution of the objective function, and the best solution can be obtained
when meeting iteration conditions. The algorithm is novel and has the advantages of a
strong optimization ability, fast convergence speed, fewer adjustment parameters, and
simple calculation.

2.5. Procedure of the Proposed Hybrid Algorithm

The framework of the proposed ensemble prediction model is shown in Figure 2.
The entire forecasting process is divided into three steps: data preparation, multi-swarm
intelligence (MSI) optimization, and displacement prediction. In the data preparation step,
the time-sequences of factors related to the landslide movements, such as rainfall and
reservoir water level, are restructured. The frequency component and residual component
of all original and restructured sequences are then obtained through the combined appli-
cation of CEEMD and t-test. In the MSI optimization step, MSI optimization algorithms
are used to select the optimal C and g for the SVR model. In the displacement prediction
step, the trend and periodic displacements are extracted from the observed cumulative
landslide displacement through CEEMD. Then EDR is used to select the input variables of
the periodic displacement prediction SVR model by calculating the EDR value between
the periodic displacement and original related factors, restructured related factors, and
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frequency related factors after normalization. Similarly, the input variables of the trend
displacement prediction SVR model are obtained by calculating the EDR value between
the trend term displacement and all residue terms after normalization. Finally, the predic-
tions of the trend and the periodic displacements are performed separately, and the total
predicted displacement is obtained by adding them together.
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2.6. Performance Evaluation Formula

The most commonly used indicators to evaluate the performance of prediction models
are coefficient of determination (R2), root mean square error (RMSE), mean absolute error
(MAE), and mean average percentage error (MAPE). These indicators were used in this
study and are defined as:

R2 = 1− ∑N
i=1(yt − ŷt)

2

∑N
i=1
(
yt − ŷt

)2 (12)
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RMSE =

√√√√ 1
N

N

∑
i=1

(
(yt − ŷt)

2
)

(13)

MAE =
1
N

N

∑
i=1
|yt − ŷt| (14)

MAPE =
1
N

(
N

∑
i=1

∣∣∣∣ ŷt − yt

yt

∣∣∣∣
)
× 100% (15)

where yt is the tth measured value, yt is the mean of the measured value, ŷt is the tth

predicted value, and ŷt is the mean value of the prediction.

3. Cases Study
3.1. Geological Conditions

The Shiliushubao landslide is part of the famous Huanglashi landslide group, one of
the large-scale landslides in the Three Gorges Reservoir Area (TGRA). It is located on the
north bank of the Yangtze River, 1.5 km east of Badong county, 66 km away from the Three
Gorges Dam (TGD) (Figure 3). The landslide’s geographical coordinates are 110◦26′ east
longitude and 31◦02′ north latitude. The Shiliushubao landslide is bordered by the Lijiawan
valley on the east and the Gan valley on the west, with a tongue-like shape. It is bigger
than the well-known Baishuihe landslide with an estimated volume of 11.8 × 106 m3 and
covers an area of 0.34 km2. The top of the landslide is at an elevation of 340 to 358 m with a
width of 140 m, and the toe of the landslide is at an elevation of 68 to 80 m with a width of
570 m.
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The cross-section of the ground surface is shown in Figure 4 by the profile B-B’. The
average slope angle is 26◦ along the sliding direction. However, the slope contains a gently
sloping bench at an elevation near 200 m, and the slope is much steeper than 26◦ above
and below the bench. The slope angle is up to 40◦ at elevations below the reservoir level.
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Figure 4. Geological section of the Shiliushubao landslide (B-B’).

The geological profile B-B’ in Figure 4. shows that the Shiliushubao landslide occurs
in the Triassic Badong Group consisting of red mudstone, siltstone, gray-green marl,
and limestone. These rocks are characterized by high clay mineral content (about 68%).
Exposure of the rock to water allows the rock to soften and weaken. The sliding mass
also includes near-surface Quaternary soils. The rear edge of the landslide is mainly
a loose accumulation of gravel and clay. This soil is weak and is prone to collapses or
sliding along the bedrock surface. The sliding zone consists of clay or silty clay with
some gravel. The thickness of the sliding zone varies from 1.0 to 4.9 m, with an average
thickness of 2.0 m.

The topography of the lower part of the Shiliushubao landslide was mostly altered
by the newly formed Hengping landslide (Figure 5), and some landslide materials under
100 m elevation have been removed by erosion. There are some small gullies near the
landslide’s front edge caused by surface water runoff, which are the main channels for
gathering and draining surface water.

3.2. Rainfall and Reservoir Levels

The Shiliushubao landslide is located in a subtropical zone, in which rainfall is con-
tinuous and concentrated in the summer. The rainy season generally occurs from May
to September, which accounts for 70% of the yearly rainfall. Rainfall is one factor that
increases the movement of the Shiliushubao landslide. Fluctuation in the reservoir level in
the TGRA is another factor influencing the landslide movements, especially the sudden
reservoir drops before the flood season.
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3.3. Deformation Characteristics

Since the reservoir was first impounded in June 2003, the toe area of the slope has
experienced repeated small collapses (Figure 6). From 4 to 14 June 2004, four sliding events
occurred during a period of rainfall, involving an estimated volume of 6000 m3. The toe
area is very unstable, and slope movements at the toe affect the rest of the slope. At present,
the slope’s deformation processes are causing small collapses under the influence of rainfall
or reservoir level fluctuations.

Slope movements have created ground fissures that have gradually intensified. Areas
of subsidence have also occurred. While the existing main cracks continued to expand,
a series of new cracks gradually formed at the landslide’s rear edge. These cracks have
connected and coalesced inside the sliding mass. The maximum crack length obtained by
field monitoring is 345 m with opening widths up to 0.5 m and depths over 1 m. Many
cracks have occurred in a concrete-lined drainage ditch at the front edge of the landslide.
Moreover, some feathery cracks are also scattered along both sides of the landslide.
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3.4. Landslide Monitoring

From February 2004 to December 2009, field monitoring was conducted to study the
Shiliushubao landslide movements, based on which, the deformation evolution charac-
teristics and development trend of the Shiliushubao landslide can be mastered. A total
of sixteen GPS monitoring points and 15 boreholes were arranged on the surface of the
sliding mass (Figure 5). Some monitoring points were destroyed due to rainfall, landslide
movement, and other reasons. Thus, only monitoring data from February 2004 to December
2009 have been recorded and preserved. The cumulative displacement data from GPS
points G1, G2, G4, G8, plus the rainfall and reservoir water levels were selected and shown
in Figure 7.
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3.5. Analysis of Monitoring Data

Monitoring data show that the displacement of the sliding mass increases with time
in an obvious stepped shape. From February 2004 to December 2009, due to rainfall, the
five displacement jumps occurred in the rainy season (May to September). After the rainy
season, the landslide resumes movement at a slow, roughly constant speed.

The fluctuation of the reservoir water level is another factor affecting the deformation
of the sliding mass. When the reservoir level drops sharply, the movement of the sliding
mass accelerates. For example, from January to May 2007, the water level dropped from
155.4 m to 144.7 m, and the landslide displacement rate reached 16.2 mm/month in March
when the water level dropped by 5 m. In May, when the water level dropped by 10.7 m,
the landslide displacement rate was 44.4 mm/month. Similarly, when the reservoir water
level fell in other periods, such as January to July 2009, the landslide displacement rate
increased from 1.5 to 47.1 mm/month.
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For a better understanding of this seasonal deformation acceleration’s related factors,
a correlation analysis between displacement velocity at G1 (located at the northeast edge
of the landslide) and rainfall, rate of reservoir level change, and reservoir level are shown
in Figure 8. The size of the bubbles represents the deformation velocity. The larger bubbles
tend to plot where the rainfall is higher. Meanwhile, the large bubbles are mainly con-
centrated where the reservoir level is between 140 and 150 m and are located where the
reservoir level fluctuates slowly (between−4.4 and 9.0 m/month). This indicates that reser-
voir level fluctuations mainly trigger accelerated landslide movements when the reservoir
level is low. The maximum size bubble appears where the rainfall is about 325 mm/month,
and the water level rises between 4.5 and 9.0 m/month. The combined effect of heavy
rainfall and rising reservoir level on landslide deformation is more significant than low
rainfall combined with reservoir level drawdown.

Inclinometer D7 indicates that the main sliding zone is located at a depth of 22 to
26 m (Figure 9). The data show that before June 2003, the shear deformation in the slip
zone was slow. Then, with the operation of the TGRA, the displacement in the shear zone
increases. Therefore, it can be judged that the Shiliushubao landslide is in the stage of
accumulative creep deformation, and the deformation tends to be intensified under the
influence of reservoir water.
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In conclusion, the formation of the Shiliushubao landslide is the result of a series of
related factors including internal inducing factors and external inducing factors. Weak
rock formations are the inherent cause of deformation. In the Badong Formation, soft rocks
characterized by high clay mineral content account for about 68%. The hydrophilicity
of the rock determines that the rock has the characteristics of easy softening, muddy
and weathering, and lays the material foundation for the deformation and failure of the
slope. Water is the external cause of deformation. The impact of concentrated high intensity
rainfall and periodic water storage activities in the TGRA, especially the sudden drop before
the flood season, are main external inducing factors for the reactive of the Shiliushubao
landslide.

4. Data Processing and Statistical Analysis
4.1. CEEMD Decomposition of Landslide Displacement Versus Time Data

Since all displacements at the Shiliushubao landslide show a similar step-like defor-
mation curve, only the displacement data at site G1 is chosen for model validation in this
study. The CEEMD method can be used to extract the trend displacements and the periodic
displacements. The following parameters were used [2]:

• ensemble member = 200
• standard deviation of added white noise in each ensemble member = 0.2
• threshold variance = 0.2
• threshold for first iteration = 4

The landslide displacement sequence was decomposed into a few IMFs and a residue
through CEEMD. The residue is considered to be the trend displacement of the landslide,
and the periodic displacement was obtained by adding all the IMFs together.

The results show that the trend displacement component of G1 has local fluctu-
ations and an increasing trend over time, which is consistent with a long-term trend
of cumulative displacements. The periodic displacement component shows a cyclical
variation in displacements ranging from −800 to 917 mm. The maximum variation
range of periodic displacement occurred in the 2007 rainy season when the TGR was
first impounded. As the periodic displacement and trend displacement are important
components of the cumulative displacement, they will be separately modeled and pre-
dicted. Once the best prediction for each component is obtained, the best prediction for
cumulative displacement is obtained.

The displacement data are divided into training and testing data sets to establish
the SVR prediction model of periodic and trend displacements (Figure 10). The SVR
model is organized with the training dataset to establish the regression relationships
between displacement and selected variables. The trained SVR model can then be used to
predict the current month periodic displacement and compared with the testing dataset
to verify the model’s accuracy. In this study, the displacement data from February 2004
to September 2008 were selected as the training dataset, and the rest were used as the
testing dataset.

4.2. CEEMD Decomposition of Related Factors

Before selecting the input various parameters, the factors related to the landslide
deformation are usually restructured first [24]. Original related factors such as the rainfall,
reservoir level, and date of displacement were restructured. The current monthly rainfall
sequence (L1) was restructured as the accrued precipitation of the previous two months
(L2), as were the accrued precipitation of the previous month and the current month (L3),
and the accrued precipitation of the previous two and the current month (L4). The current
monthly reservoir level data (X1) were restructured as the reservoir level monthly change
(X2) and the change of reservoir level between two months (X3). The displacement data (D)
were restructured as the previous month displacement (D1) and the accrued displacement
of the previous month and the current month (D2).



Sensors 2021, 21, 8352 16 of 28

Sensors 2021, 21, x FOR PEER REVIEW 16 of 28 
 

 

organized with the training dataset to establish the regression relationships between dis-
placement and selected variables. The trained SVR model can then be used to predict the 
current month periodic displacement and compared with the testing dataset to verify the 
model’s accuracy. In this study, the displacement data from February 2004 to September 
2008 were selected as the training dataset, and the rest were used as the testing dataset. 

 
Figure 10. Periodic and trend displacement at site G1 obtained through CEEMD. 

4.2. CEEMD Decomposition of Related Factors 
Before selecting the input various parameters, the factors related to the landslide de-

formation are usually restructured first [24]. Original related factors such as the rainfall, 
reservoir level, and date of displacement were restructured. The current monthly rainfall 
sequence (L1) was restructured as the accrued precipitation of the previous two months 
(L2), as were the accrued precipitation of the previous month and the current month (L3), 
and the accrued precipitation of the previous two and the current month (L4). The current 
monthly reservoir level data (X1) were restructured as the reservoir level monthly change 
(X2) and the change of reservoir level between two months (X3). The displacement data 
(D) were restructured as the previous month displacement (D1) and the accrued displace-
ment of the previous month and the current month (D2). 

Keeping the CEEMD parameters fixed, L1–L4, X1–X3, and D1–D2, can be decom-
posed into a few IMFs sorted by frequency from highest to lowest and a residue. The mean 
of IMF1 was compared to the other IMFs by a paired t-test with a significance set at 0.05 
(two-tailed) for each decomposed and restructured factor. If the significance values of 
IMFi are greater than 0.05, the difference between IMF1 and IMFi is not significant. There-
fore, the superposition of IMFs from IMF1 to IMFi is the high-frequency component, and 
the superposition of the remaining IMFs is the low-frequency component. The IMFs of 
each restructured factors are shown in Figure 11, and the results of the paired t-test are 
shown in Table 1. 
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Keeping the CEEMD parameters fixed, L1–L4, X1–X3, and D1–D2, can be decomposed
into a few IMFs sorted by frequency from highest to lowest and a residue. The mean of
IMF1 was compared to the other IMFs by a paired t-test with a significance set at 0.05
(two-tailed) for each decomposed and restructured factor. If the significance values of IMFi
are greater than 0.05, the difference between IMF1 and IMFi is not significant. Therefore,
the superposition of IMFs from IMF1 to IMFi is the high-frequency component, and the
superposition of the remaining IMFs is the low-frequency component. The IMFs of each
restructured factors are shown in Figure 11, and the results of the paired t-test are shown
in Table 1.

The results reveal that the IMFs obtained from the decomposition of all factors show
a certain periodicity. Their frequency varies, and IMF1 usually has the highest frequency
and fluctuation amplitude. Since there is only one IMF after the CEEMD decomposition
of D2, it is considered that there are only high-frequency components in D2. The paired
t-test results indicate that only IMF3 in X1 and IMF4 in X3 has a significance value that
is less than 0.05, which denotes that the low-frequency components only exist in X1 and
X3. Taking these two as the low-frequency components of X1 and X3, the high-frequency
components of the other factors will be the sum of the remaining IMFs. Therefore, in
addition to the variables mentioned above, new variables can also be chosen as input to
an SVR model of the periodic displacements after reconstruction: high-frequency current
monthly rainfall sequence (L1H), high-frequency accrued precipitation of the previous two
months (L2H), high-frequency accrued precipitation of the previous month and the current
month (L3H), high-frequency accrued precipitation of the previous two and the current
months (L4H), high-frequency current monthly reservoir level data (X1H), low-frequency
current monthly reservoir level data (X1L), high-frequency reservoir level monthly change
(X2H), high-frequency change of reservoir level between two months (X3H), low-frequency
change of reservoir level between two months (X3L), high-frequency previous month
displacement (D1H), and high-frequency accrued displacement of the previous month and
the current month (D2H).
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Table 1. Paired t-test results of all decomposed IMF.

Groups Restructured
Factor Component t Sig. Mean

(mm)
Std. Deviation

(mm)

Rainfall

L1

IMF2 0.22 0.83 1.50 56.92
IMF3 −0.20 0.84 −1.23 50.75
IMF4 0.60 0.55 3.02 42.24
IMF5 0.10 0.92 0.41 36.49

L2
IMF2 0.47 0.64 6.16 110.1
IMF3 −1.34 0.18 −10.09 63.28

L3
IMF2 0.23 0.82 3.05 111.1
IMF3 −1.70 0.09 −12.42 61.56
IMF4 −1.08 0.28 −6.75 52.48

L4
IMF2 0.38 0.70 5.43 120.1
IMF3 −0.61 0.54 −5.02 69.11

Reservoir water
level

X1
IMF2 0.47 0.64 0.26 4.73
IMF3 2.07 0.04 0.66 2.70

X2
IMF2 0.22 0.83 2.91 111.6
IMF3 −1.58 0.12 −11.65 62.23
IMF4 −0.98 0.33 −6.13 52.64

X3
IMF2 −0.17 0.86 −0.37 18.16
IMF3 −0.52 0.61 −1.49 24.30
IMF4 −2.19 0.03 −10.94 42.05

Displacement D1
IMF2 −0.04 0.97 −1.16 229.4
IMF3 −1.07 0.29 −40.82 320.5
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The residue terms of restructured factors derived through CEEMD are shown in
Figure 12. The results demonstrate that, except for L1, all the residue terms show a roughly
increasing trend that is similar to the trend displacement term. This suggests that the
residual terms roughly reflect the trend of the cumulative displacement, allowing the
residue terms to be used as input parameters for the SVR to predict the displacement trend
term.
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4.3. Factors Affecting Landslide Displacement Selected by EDR

Previous analyzes demonstrated a strong association between the landslide displace-
ment and the aforementioned factors. Thus, it is vital to determine which factors that
have the greatest influence on landslide displacement. The EDR distance was determined
between each factor and the displacements to determine the specific factors most closely
related to the landslide’s periodic displacement and trend displacement, respectively. This
helps to identify the best factors to use the SVR model. The original restructured factors and
their frequency components were chosen to compute the EDR distance with the periodic
displacement. Simultaneously, the residue term for each factor and restructured factors
were utilized to compute the EDR distance with the trend displacement. Normalization
can be used to eliminate the influence of the numerical magnitude on analysis results due
to the dimension difference between the displacement time series and the related factors.
The calculated EDR distances are shown in Table 2.
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Table 2. EDR distance between periodic displacements and related factors.

Groups Component
Periodic Displacement Trend

DisplacementOrigin High Low

Rainfall

L1 61 60 / 68
L2 56 53 / 24
L3 56 53 / 42
L4 54 49 / 42

Reservoir
level

X1 53 33 44 22
X2 56 53 / 41
X3 69 41 58 60

Displacement D1 67 21 / 3
D2 66 32 / 2

After dividing all the related factors into rainfall, reservoir water level, and displace-
ment groups, the factors with a smaller EDR distance can be regarded as more interrelated
with the landslide displacement component in each group. The results show that, for
periodic displacement, the high-frequency accrued precipitation of the previous two and
current months (L4H), the high-frequency current monthly reservoir level data (X1H), and
the high-frequency previous month displacement (D1H) are the most relevant factors in
each group. Thus, when predicting periodic displacement, L4H, X1H, and D1H are the
input variables for the periodic displacement SVR model. Similarly, related factors for
predicting trend displacement are the residual terms of L2, X1, and D2 according to the
EDR results in each group, and these were chosen as the input parameters for the trend
displacement SVR model.

To verify the effectiveness of the EDR method, grey relational analysis (GRA), a
common method for selecting input variables in landslide displacement prediction, was
used to calculate the grey relational degree (GRD) between the selected factors and the
displacement component. The periodic displacement component is chosen as the research
object, and the factor’s GRD and periodic displacement velocity are shown and compared in
Figure 13. The factors with a GRD value higher than 0.6 are regarded as closely interrelated
with the periodic displacement. Therefore, the high-frequency accrued precipitation of
the previous two and current months (L4H), the high-frequency current monthly reservoir
level data (X1H), and the high-frequency previous month displacement (D1H) are the most
relevant related factors in each group, which is consistent with the results selected by EDR.
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5. Prediction Results and Comparison
5.1. Parameter Optimization

For quantitatively measuring the optimization performance of the six SIs adopted
in this study, three selected benchmark functions (Table 3) with different features are
employed as test functions and results are shown in Figure 14. Different from F2(x) and
F3(x), the F1(x) is smoother and has a unique extreme point in the solution space of x1
and x2. The calculation results and process show that the slopes of the convergence curves
of SSA and GWO are close, indicating that the convergence performance of the two is
close and is the best among the six algorithms. The solutions obtained by each SI in F1(x)
and F3(x) are relatively scattered, and some algorithms (such as BA) will fall into a local
optimum.

Table 3. Three benchmark functions.

Function Range Theoretical Minimum Value

F1(x) = ∑n
i=1 x2

i xi ∈ [−100, 100], i = 1, 2 0
F2(x) = ∑n

i−1 ix4
i + random(0, 1) xi ∈ [−1.28, 1.28], i = 1, 2 0

F3(x) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

xi ∈ [−5.12, 5.12], i = 1, 2 0
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Determining the optimal value of the penalty factor C and the kernel function param-
eter g of the SVR model is a vital procedure dominating the accuracy of a displacement
prediction. The parameters C and g in this study are optimized with MSI algorithms and
are conducted independently for periodic and trend terms. For each MSI algorithm, the
parameters C and g make a two-dimensional searching space. A population of simple
agents communicate locally with each other and with their environment and move in
specific patterns to search for the best result. The parameter settings and initial conditions
in the MSI algorithm jointly affect the result. The parameter settings are iteratively adjusted
and recalculated according to the optimal prediction effect. The results of the optimization
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are shown in Table 4. The optimized C and g are later used in the SVR-based model to
predict the periodic and trend displacements.

Table 4. Parameter and results of each optimization algorithm.

Algorithm Parameters
Periodic Trend

C g C g

BA-SVR

Sizepop = 20 Max_iter. = 200 A = 0.2

220.67 0.00109 657.16 0.00106Lb = 1 × 10−2 Ub =1 × 102 r = 0.5

Freq_min = 0.1 Freq_min = 0.2 Alpha = 0.2

DA-SVR

Sizepop = 30 Max_iter. = 200 e = f = 0.1

66506 0.00001 83702 0.00001lb = 1 × 10−5 ub = 1 × 105 c = 0.7

w = 0.5 s = 0.1 a = 0.1

GOA-SVR
Sizepop = 30 Max_iter. = 200 l = 1.5

16.13 0.00100 29.68 0.01000
lb = 1 × 10−3 ub = 1 × 103 f = 0.5

GWO-SVR
Sizepop = 30 Max_iter. = 200 dim = 2

474.94 0.00100 706.29 0.00100
lb = 1 × 10−3 ub = 1 × 103 /

SSA-SVR
Sizepop = 30 Max_iter. = 200 pNum = 20%

16.17 0.00100 9677.9 0.00014
lb = 1 × 10−4 ub = 1 × 104 sNum = 20%

OA-SVR
Sizepop = 20 Max_iter. = 200 dim = 2

1.74 0.01000 48277.4 0.00001
lb = 1 × 10−5 ub = 1 × 105 b = 1

5.2. Prediction of Periodic and Trend Displacements

An MSI-based SVR prediction model was developed with the optimized input factors
to predict the periodic displacements and the trend displacements separately, as shown in
Figure 15. The prediction accuracy and error of each model are shown and compared in
Figure 16. For the periodic displacements, the prediction accuracy with the largest R2 and
smallest MAPE, RMSE, and MAE was obtained using the DA algorithm among all of the
given models. The corresponding result of MAPE, RMSE, MAE, and R2 is 3.654173, 63.0435,
119.2786, 0.824217, respectively. Meanwhile, the GWO-based SVR model gave the best
prediction for the trend displacements compared to the other optimization algorithms, with
the result of MAPE, RMSE, MAE, and R2 being 0.010273, 95.9178, 184.4194, and 0.99473,
respectively. Overall, the prediction results provided by the SVR model optimized by MSI
matched well with the observation results.

5.3. Prediction of Cumulative Displacements

The predicted cumulative displacements of the Shiliushubao landslide can be obtained
by adding the predicted periodic and trend displacements. The predicted cumulative
displacements are shown in Figure 17, and these are in good agreement with the observed
displacements. The maximum relative error of monthly displacement is generally less
than 3% and the average relative error of less than 1%. The results show the usefulness of
the proposed model. The most appropriate optimization algorithm and the most relevant
landslide related factors were selected and applied.
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To further verify the effectiveness of the proposed prediction model, the displacement
at ZG93 of the well-known Baishuihe landslide is chosen as another case and predicted.
The prediction accuracy of each SI and cumulative displacement prediction result are
shown and compared in Table 5 and Figure 18.

Table 5. Prediction accuracy of each SI in Baishuihe landslide.

Optimization
Algorithm

Periodic Displacement Trend Displacement

MAPE RMSE MAE R2 MAPE RMSE MAE R2

BA 0.688 13.691 30.118 0.757 0.395 1065.132 926.683 0.8621
DA 0.788 13.652 30.367 0.761 0.008 20.448 66.336 0.9997

GOA 0.692 13.663 30.110 0.758 0.008 19.649 66.214 0.9997
GWO 0.680 13.592 29.558 0.751 0.008 20.448 66.336 0.9997
SSA 0.786 13.589 30.307 0.762 0.009 22.766 64.733 0.9998

WOA 0.788 13.629 30.329 0.761 0.008 20.448 66.336 0.9997
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The SSA method has achieved the best results in predicting both periodic displacement
and trend displacement, with the largest value of R2, which is 0.762 and 0.9998, respectively.
The cumulative displacement prediction results are in good agreement with the measured
displacement, with an absolute error of monthly displacement that is generally less than
67mm and the maximum relative error of monthly displacement that less than 3%. The
average relative error of the proposed prediction model is 0.898%, which is slightly smaller
than the result obtained by the prediction model of Deng et al. [54]. The comparative study
shows the effective improvement of the proposed model in terms of prediction performance
and the universality of it to predict the displacement of slow-moving landslides all around
the world.

6. Discussion

This paper aims to improve the accuracy of landslide displacement prediction by
constructing a novel prediction model combined with the CEEMD method, EDR method,
and multi-swarm-intelligence (MSI) algorithm. The new prediction model can forecast
landslide movements so that the landslide status can be evaluated, and appropriate sta-
bilization measures can be implemented in advance to reduce the destructive effects of
landslide movements. The CEEMD method was first employed for the landslide dis-
placement decomposition, and a new prediction based on this was proposed to overcome
its defect by optimizing the model’s framework. The trend displacement obtained from
CEEMD decomposition can reflect the long-term trend of landslide deformation. The
periodic displacement obtained from CEEMD decomposition shows a cyclical variation
in displacements consistent with periodic changes of related factors such as rainfall and
reservoir levels. The frequency components of related factors that change periodically can
be decomposed by the CEEMD. Combining with the t-test, the high-frequency and low-
frequency components of related factors can be separated. With the EDR method, the most
relevant factors related to the landslide displacements among the original related factors,
reconstruction related factors, and frequency related factors can be selected by calculating
the distance between all related factors and the extracted displacement component. The
relevant factors that were identified are consistent with the results obtained by GRA.

The factors related to landslide displacement prediction can be separated into three
groups: rainfall, reservoir level, and previous displacement. The most relevant factors
for the Shiliushubao landslide’s periodic displacement are L4H, X1H, and D1H, and the
most relevant factors for the trend displacements are the residual terms of L2, X1, and D2.
MSI (BA, DA, GOA, GWO, SSA, and WOA) was used to optimize the proposed prediction
model. For the Shiliushubao landslide, the DA-based SVR model performs best to predict
periodic displacements, and the GWO-based SVR model works best for predicting trend
displacements. The prediction of cumulative displacements is in good agreement with the
measured displacements with a maximum relative error of monthly displacement of less
than 3%. The trail of the proposed model on the Baishuihe landslide, another landslide in
the reservoir area, is also satisfied with the average relative error of 0.898%, which performs
slightly better than that from the previous study.

While the proposed methodology yielded satisfactory results, there are also some
limitations. First, the CEEMD method has limits in the decomposition of measured displace-
ments and related factors when the time series does not have enough extreme points, which
limits the applicability of this method. When there is only one IMF sequence after CEEMD
decomposition, a t-test cannot be carried out, and the IMF itself is high frequency. Second,
the trend displacement and residue term for related factors after CEEMD decomposition
may still have local fluctuations. It might contain some periodic fluctuation information,
which can lead to prediction error, which needs to be further studied in the future. Third,
the values of thrsh, sthresh, N, and alpha used in CEEMD will have an indirect impact on
the prediction results. The appropriate range of these parameters and their influence on
the results are still unclear. Fourth, when using MSI to optimize the parameters of the SVR
model, the search for the g value is usually close to the lowest value of the search interval,
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and the result does not gradually increase as the search boundary continues to widen.
Different SI optimization algorithms may perform differently for different landslides, so
for new landslide data, the trial of different optimization algorithms for the best results is
needed.

The deformation and failure of landslides are usually closely bonded with the ground-
water effect [55]. The evaluation of the landslide stability with groundwater nowadays has
developed into several hotspot branches, which includes analytical methods, such as the
Limit Equilibrium Analysis with the Reliability Analysis and the Intelligent Algorithms on
sliding zone searching, and numerical methods, such as the Fast Lagrange Analysis, the
Finite Element Method, and the Discrete Element Method coupled with hydraulic calcula-
tions. These advanced evaluation methods have their status in the practical industry on the
slope stability and deformation assessment, based on the current state and data gathered
in the field and laboratory; however, these mechanism-based methods took insufficient
account of the history state and data of the slope. The novel prediction model proposed in
this paper can consider the historical influence of rainfall and reservoir fluctuation that pre-
cisely related to the displacement periodic component and displacement trend component
with the help of the CEEMD method and EDR, thus improving the accuracy of landslide
displacement prediction. It is a profitable attempt and a good way to improve the accuracy
of landslide movement prediction. Although some in-depth research in consideration
of historical factors of inducing factors has been carried out in this study, the predictive
capability of the proposed model is still flawed in the sense that they cannot say anything
about changes that are caused by external factors not captured by the available data series.
Therefore, it is very important to develop multi-field (displacement field, seepage field,
stress field, etc.) monitoring technology for the landslides, and the innovative prediction
models based on this can more reflect the evolution process of the sliding mass.

Landslides in complex water environments could develop different deformation pat-
terns, both categorized by history data and potential failure mechanism [4]. The pattern
is highly related to the interaction between soil and water in a certain engineering geo-
logical condition. In the proposed novel displacement prediction model, the interaction
mechanism is still not included, which limits the adaptability and comparability among
different landslide cases. A better insight into the landslide development patterns is to
be developed, combining the failure-mechanism-based evaluation method, in the future
model for displacement prediction. Other than from the pure displacement prediction
based on displacement, rainfall, and water level data sequence, an evaluation of the critical
rainfall intensity and critical water level fluctuation rate is needed to be conducted under
certain landslide development patterns in the further study.

In addition, landslide displacement is a noisy and non-stationary process that varies
with time, which is highly affected by internal factors such as formation lithology and
geological structure and external factors such as the rainfall, reservoir water level, and snow
melting. Due to the complex nonlinear relationship between all these various inducing
factors and landslide displacement, the landslide displacement prediction is subject to
considerable uncertainties [56]. The limitations of the machine learning model, parameter
selection, and data noise will increase the uncertainty of prediction [57]. The prediction
model proposed in this paper is a deterministic point prediction model which cannot
estimate the variability and uncertainty related to a given landslide displacement prediction,
which limits its reliability under uncertain conditions. This should be addressed in the
future study.

7. Conclusions

A reservoir landslide’s movement is closely associated with the related factors includ-
ing reservoir level fluctuations, rainfall intensity, and previous deformations. The complex
nonlinear relationship between all these various inducing factors and landslide displace-
ment increased the challenge of forecasting in the form of considerable uncertainties. In
this study, a novel prediction model for landslide displacement prediction was proposed
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to improve the accuracy by the combination of multiple algorithms. The EDR method can
identify the most relevant factors influencing a landslide’s movements to use as input vari-
ables for an SVR model. The CEEMD method is suitable for the decomposition of various
time series and can be used to extract the trend displacement of slow-moving landslide
displacement. The CEEMD method can also highlight local fluctuations in the time series
of related factors, and the frequency components of these time series can be extracted by
combining the t-test method. With the help of MSI optimization algorithms, the optimal
value of the penalty factor C and the kernel function parameter g for an SVR model can be
obtained. This paper proposes an SVR model based on the CEEMD method, EDR selection,
and MSI optimization algorithm that can capture the deformation characteristics of the
landslide before failure.

Measurements of landslide displacements for the Shiliushubao landslide in the TGRA
were used to demonstrate the novel displacement prediction model. The predicted displace-
ments, including season fluctuations and the long-term trend, were found to be consistent
with the observed data, which indicates that the proposed model has good predictive
performance, even when the displacement characteristics are cyclic and complex. The DA-
and GWO-based SVR model provided the best prediction of periodic displacement and
trend displacement, respectively. The prediction model proposed in this paper has wider
applicability. It can enhance the prediction of landslide displacements characterized by
slow-moving, step-like displacements that are influenced by multiple related factors with
frequency conversion characteristics.
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