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Abstract: Human segmentation and tracking often use the outcome of person detection in the video.
Thus, the results of segmentation and tracking depend heavily on human detection results in the
video. With the advent of Convolutional Neural Networks (CNNs), there are excellent results in
this field. Segmentation and tracking of the person in the video have significant applications in
monitoring and estimating human pose in 2D images and 3D space. In this paper, we performed
a survey of many studies, methods, datasets, and results for human segmentation and tracking in
video. We also touch upon detecting persons as it affects the results of human segmentation and
human tracking. The survey is performed in great detail up to source code paths. The MADS (Martial
Arts, Dancing and Sports) dataset comprises fast and complex activities. It has been published for
the task of estimating human posture. However, before determining the human pose, the person
needs to be detected as a segment in the video. Moreover, in the paper, we publish a mask dataset
to evaluate the segmentation and tracking of people in the video. In our MASK MADS dataset, we
have prepared 28 k mask images. We also evaluated the MADS dataset for segmenting and tracking
people in the video with many recently published CNNs methods.

Keywords: MADS dataset; human segmentation; human tracking; convolutional neural networks

1. Introduction

Human segmentation and tracking in the video are two crucial problems in computer
vision. Segmentation is the process of separating human data from other data in a complex
scene of an image. This problem is widely applied in recognizing the activities of humans
in the video. Human tracking extracts the person’s position during the video and is applied
in many tasks such as monitoring and surveillance.

The MADS dataset is a benchmark dataset for evaluating human pose estimation.
This dataset includes activities in traditional martial arts (tai-chi and karate), dancing
(hip-hop and jazz), and sports (basketball, volleyball, football, rugby, tennis, badminton).
The fast execution speed of actions poses many challenges for human segmentation and
tracking methods. In [1], the authors report on the results of human tracking in the
video; however, the results are evaluated based on baseline tracking methods. Human
tracking and segmentation evaluation are based on the segmented person data based on
the constraint of the context. In the MADS dataset, only two sets of human mask data are
provided (tai-chi and karate).

The human data needs to be segmented and tracked in the video to reduce the es-
timated space and computations in human pose estimation in 2D images or 3D space.
Specifically, to reduce the space to estimate 3D human pose on the 3D data/point cloud
in future studies, we have prepared manually masked data of humans in the single view
(depth video) of various actions (jazz, hip-hop, sports). Nowadays, with the strong de-
velopment of CNNs, many studies have applied CNN methods in the task of estimating,
detecting, and tracking humans. Human tracking in the video can be done based on two
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methods. The first method is based on human detection in each frame, the results of human
being detected and marked with a bounding box. The CNNs (Faster R-CNN [2], SSD [3],
YOLO [4–6], etc.) used to detect humans were surveyed in the study of Xu et al. [7] and
Tsai et al. [8]. The second method to track humans is motion-based [9]. In this paper, we
survey studies that use CNNs to segment and track humans in the video. We manually
prepared the masked data for the MADS dataset (MASK MADS). We also fine-tuned a
set of parameters on the depth videos of the MADS dataset. Moreover, we trained and
evaluated human segmentation and tracking by various state-of-the-art CNNs.

The main contribution of the paper is as follows:

• We manually prepared human masks for nearly 28 k images captured from a single-
view. The marking process was performed using the interactive-segmentation tool
(http://web.archive.org/web/20110827170646/, http://kspace.cdvp.dcu.ie/public/
interactive-segmentation/index.html (accessed on 18 April 2021)).

• We summarised significant studies on human segmentation and human tracking
in RGB images, in which we focus on survey studies that use CNNs for human
segmentation and tracking in video. Our survey process is based on methods, datasets,
evaluations, and metrics for human segmentation and human tracking. We ultimately
analyze the challenges during the process. We also refer to the implementation or the
source code path of each study. In particular, we investigate the challenges and results
in human segmentation and human tracking in images and video.

• We fine-tuned a set of parameters of the recently published CNNs (Mask R-CNN,
PointRend, TridentNet, TensorMask, CenterMask, etc.) to retrain the model for human
segmentation and tracking on the video that was captured from single-views of the
MADS dataset, as illustred in Figure 1. The data of the MADS dataset was divided
into different ratios for training and evaluation.

• We evaluated the results of human segmentation in images based on the retrained
CNN models (Mask R-CNN, PointRend, TridentNet, TensorMask, CenterMask) ac-
cording to the data rates of the MADS dataset. We used the most significant CNNs in
recent years for object segmentation.

Convolutional Neural 

Networks

Resnet,

Unet, 

Deeplabv, 

HRNet, 

PSPNet, 

FastSCNN,

…

Input frames Human segmentation Human tracking

Mask R-CNN,

PointRend,

TridentNet,

TensorMask,

CenterMask,

…

Figure 1. Illustrating of the process of segmenting and tracking humans in image sequences
and video.

The paper is organized as follows. Section 2 discusses related works by the methods,
results of the human segmentation, and tracking. Section 3 presents the survey of human
segmentation and tracking methods based on CNNs, and Section 4 our MASK MADS
dataset. Section 5 shows and discusses the experimental results of human segmentation
and tracking on state-of-the-art CNNs, and Section 6 concludes the paper.

http://web.archive.org/web/20110827170646/
http://kspace.cdvp.dcu.ie/public/interactive-segmentation/index.html
http://kspace.cdvp.dcu.ie/public/interactive-segmentation/index.html
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2. Related Works

Human segmentation and tracking in video are highly applicable in activity recog-
nition and surveillance. Therefore, these two issues have spurred research interest for
many years. Especially in the past five years, with the advent of CNNs, their performance
improved significantly in terms of processing time and accuracy. Since then, many studies
have been investigated these two issues based on CNNs.

In the research of Xu et al. [10], the authors performed a survey of segments of human
data in images obtained from still cameras using CNN. In their work, a person is detected
and marked with a bounding box in their work. In this study, the authors also presented
the method to segment the human data based on detecting humans in images. Among
these, there are some awe-inspiring results of CNNs: Fast R-CNN [11], Faster R-CNN and
YOLO, etc. The precision of SSD300, SSD512, YOLO on the Pascal VOC 2007 is reported
79.4%, 82.5%, 63.5% [12], respectively. The processing speed of Faster R-CNN and YOLO
is 10 fps and 45 fps, respectively. In this study, the authors are also presented pixel-level
segmentation of human data that uses CNNs for fine-tuning. The CNNs are introduced as
Fully Convolutional Network [13], AlexNet [14], VGGNet [15].

Yao et al. [9] conducted an overall survey of methods and challenges in object seg-
mentation and tracking in video. They divided the methods for segmenting and tracking
objects into five groups as follows: unsupervised methods for object segmentation, semi-
supervised methods for object segmentation, interactive methods for object segmentation,
weakly supervised methods for object segmentation, and segmentation-based methods for
object tracking. The authors also presented challenges in the process of object segmentation
and tracking in video, namely: complex background of the scene, low resolution, occlusion,
deformation, motion blur, and scale variation. The authors attempt to present approaches
to answering questions such as: What is the application context of segmentation and audi-
ence tracking? What form is the object represented (point, superpixel, pixel)? What are the
features that can be extracted from the image for object segmentation and tracking? How
to build an object’s motion model? Which datasets are suitable for object segmentation and
tracking? Although the authors have introduced datasets and metrics for the evaluating of
subject tracking in the video, the results on these datasets have not been presented.

Ciaparrone et al. [16] performed a surveyed of deep learning-based multi-object
tracking in the video captured from a single camera. The authors have presented the
methods, measurements, and datasets of multi-object tracking. Therein, the used methods
for multi-object tracking are presented in the following direction: object detection for
tracking. According to the objects, the stages of the process are listed as follows: object
detection with output marked with the bounding box, appearance feature extraction to
predict the motion; computing a similarity between pairs of detections; assigning an ID
for each object. In this study, the authors also presented metrics that evaluate the tracking
of objects in the image: an evaluation based on trajectories, ground-truth trajectories are
marked on the frames in the video; evaluation based on Jaccard similarity coefficient based
on accuracy, precision, and recall of the detected, labeled bounding box of each object [17].
In [1], the authors were followed by the Bayesian tracker algorithm [18] and twin Gaussian
processes algorithm [19] for multi-view tracking; Personalized Depth Tracker [20] and
Gaussian Mixture Model tracker [21]. Although these methods are the start of human
tracking, many CNNs have recently been introduced to solve this problem. We will
introduce them in the next section.

The process of detecting, segmenting, and tracking people in the video is sequential in
computer vision. To track people in videos, people need to be detected and segmented in
each frame; to segment people in videos at the pixel level, people’s data must be detected
and marked with a bounding box. As described above, each step of detecting, segmenting,
and tracking people in videos is surveyed in our study. To provide an overview of the
whole process, we conducted a survey covering all three stages: detecting, segmenting,
and tracking people in the video.
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In our future studies, we will use human mask data to segment human point cloud
(3D point) data with the scene, supporting the estimation and evaluation of 3D human
pose estimation. The point cloud data of a human is generated based on depth data and
color data a human segmented from a human mask. The process of converting to point
cloud data is done [22]. Each 3D point (P) is created from a pixel with coordinates (x, y)
on the depth image and a corresponding pixel on the color image that has a color value
C(r, g, b). P includes the following information: coordinates (Px, Py, Pz) in 3D space, the
color value of that point (Pr, Pg, Pb), where the depth value (D) of point P(x, y) must be
greater than 0. P is computed according to the Formula (1).

Px =
(x− cx) ∗ D

fx

Py =
(y− cy) ∗ D

fy

Pz = D

Pr = Cr

Pg = Cg

Pb = Cb

(1)

where ( fx, fy—focal length), (cx, cy—center of the images) are intrinsics of the depth camera.
There are now many CNNs for estimating 3D human pose from human point cloud

data such as HandpointNet [23], V2V [24], Point-to-Point [25]. Especially, there are many
studies on 3D human pose estimation with amazing results on depth image data and point
cloud data [26–28]. These studies have been examined in detail in our previous study on
3D human pose estimation [29]. In the future, we will study more deeply about using point
cloud data in the MASK MADS dataset.

3. Human Segmentation and Tracking by CNNs—Survey
3.1. CNN-Based Human Segmentation
3.1.1. Methods

Human segmentation is applicable in many practical and real-world scenarios, for
example, surveillance person activities, virtual reality, action localization, 3D human
modeling, etc. Human segmentation is the process of separating human data and scene
data [10]. The methods for segmenting human data can be divided into three directions:
top-down (semantic segmentation), bottom-up (instance segmentation), and combined. The
top-down methods are based on training human-extracted features (shapes, appearance
characteristics, and texture) to generate a classification model to classify the human pixels
and scene pixels. This family of methods only segments persons into one class; despite
there being many people and cars in the image, people are classified into one class, cars
into another class. The bottom-up methods are based on generating the candidate regions
that include a human and then identifying these regions following texture and bounding
contours. Thus they segment the details of each person in the image. Figure 2 shows the
differences between the approaches for human segmentation in images. The combined
methods synergistically promote the advantages of both top-down and bottom-up methods
to obtain the best effect. The human segmentation process is usually based on three steps
described later on, as illustrated in Figure 3.
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Figure 2. An explanation of object detection and semantic and instance segmentation [30].

Input 
Images

Human detection
Instance

identification 
Segmentation Output

Figure 3. Illustration of the model of human segmentation in images.

a. Human detection
Object detection, and specifically human detection in images or videos, is one of

the most important problems in computer vision. During appearance-based methods,
traditional machine learning often uses hand-crafted features and a classification algorithm
(e.g., SVM, AdaBoost, random forest, etc.) to train the human detection model. In recent
years, most of the studies and applications have used CNNs to detect persons and objects
in general and demonstrated many impressive results.

Girshick et al. [31] proposed a Region-based Convolutional Neural Network (R-CNN)
for object detection. This network can be applied as a bottom-up method for localizing
and segmenting objects of region proposals and improved classification efficiency by using
supervised pre-training for labeled training data. He et al. [32] proposed SPPnet (Spatial
Pyramid Pooling network) to train the object detection model. Traditional CNNs include
two main components: convolutional layers and fully connected layers. To overcome the
fixed-size constraint of the network, SPPnet adds an SPP layer to the last convolutional
layer. The fixed-length output features are generated from the SPP layer pools. SPP is
robust with object deformations. The extracted features of variable scales are pooled by
SPP. Karen et al. [15] based their assumptions on the characteristics of CNNs that the
depth of the CNNs affects the accuracy. The greater the depth, the greater the identi-
fication detection accuracy. Therefore, the authors have proposed the VGG16 network
with the input size of the convolutional layer of 224 × 224 RGB image. After that, the
input image passed a stack of convolutional layers. The final output size of the convo-
lutional layer is 3 × 3. Recently, Xiangyu et al. [33] improved the VGG model in Fast
R-CNN for object classification and detection; Haque et al. [34] also applied the VGG
model to ResNet to detect objects. Implementation details of VGG for object detection
are shown under the links (https://www.robots.ox.ac.uk/~vgg/research/very_deep/,
https://neurohive.io/en/popular-networks/vgg16/ (accessed on 20 May 2021)). To
improve the results of R-CNN and SPPnet, Girshick et al. [11] proposed Fast R-CNN,
which input is the entire image and a set of region proposals. Fast R-CNN performs
two main computational steps: processes several convolutional and max-pooling lay-
ers on the whole image to generate a feature map. Each proposal interest region of
the pooling layer then extracts a fixed-length feature vector from the generated feature
map, and the input of a sequence of fully connected layers is the extracted feature vec-
tor. Implementation details of Fast R-CNN for object detection are shown under link
(https://github.com/rbgirshick/fast-rcnn (accessed on 25 May 2021)). The SPPnet [32]

https://www.robots.ox.ac.uk/~vgg/research/very_deep/
https://neurohive.io/en/popular-networks/vgg16/
https://neurohive.io/en/popular-networks/vgg16/
https://github.com/rbgirshick/fast-rcnn


Sensors 2021, 21, 8397 6 of 22

and Fast R-CNN [11] models work on region proposals that could be the object, which
reduces the computation burden of these CNNs. However, the accuracy of these networks
has not been greatly improved. Ren et al. [2] proposed an RPN (Region Proposal Net-
work) that shares the full-image convolutional features with the detection network, which
makes a nearly cost-free region proposal. The architecture of Faster R-CNN consists of
two parts: a deep, fully convolutional network (RPN) and a Fast R-CNN detector that uses
the proposed regions. Implementation details of Faster R-CNN for object detection are
available under link (https://towardsdatascience.com/faster-r-cnn-object-detection-imple
mented-by-keras\-for-custom-data-from-googles-open-images-125f62b9141a (accessed
on 10 July 2021)). Especially recently, Goon et al. [35] used Faster R-CNN for detecting
pedestrians from drone images. The CNNs presented (R-CNN, SPPnet, VGG, Fast R-CNN,
Faster R-CNN) are mainly concerned with the high accuracy, but the computation time for
object detection is high. Therefore, Redmon et al. [4] proposed the YOLO network with
a computation speed of about 67 fps of YOLO version 2 on the VOC 2007 dataset. The
bounding boxes are predicted directly using the fully connected layers on top of the convo-
lutional feature extractor. Currently, the YOLO network has four versions (YOLO version 1
to 4). Implementation details of YOLO versions for object detection are available under the
link (https://pjreddie.com/darknet/yolov1/, https://pjreddie.com/darknet/yolov2/,
https://pjreddie.com/darknet/yolo/ and https://github.com/AlexeyAB/darknet (ac-
cessed on June 2021)), respectively. Lui et al. [3] proposed the Single Shot Detector (SSD)
network for object detection. It uses the following mechanism: the base network is used
for high-quality image classification, fixed-size bounding boxes and scores are generated
from a feed-forward convolutional network, and the final detections are generated by a
non-maximum suppression step (https://github.com/weiliu89/caffe/tree/ssd (accessed
on 12 June 2021)). Jonathan et al. [36] have performed a comparative study for objects
detection, which focuses on comparing object detection results-based on typical CNNs:
Faster R-CNN [2], R-FCN [37], and SSD [3]. The CNNs used the feature extractors as VGG
or ResNet, calling them “meta-architectures”. The authors evaluated many configurations
of each CNN and analyzed the effect of configurations, image size on the detection results.

b. Human segmentation
The next step in the model shown in Figure 3 is human segmentation, which is the

process of labeling each pixel as either human or non-human data. It uses the result
of object detection in the form of bounding boxes or identifies the human region, and
then classifies the pixels in the bounding box or the area as human or non-human giving
the most accurate results [10]. Previously there were studies by Meghna et al. [38,39]
that suggested human pose-based segmentation. Lately, much research was proposed
based on deep learning, for example, He et al. [40]. In [40], the authors proposed Mask
R-CNN using Faster R-CNN for object detection and predicting an object mask on each
Region of Interest (RoI) conducted in parallel, in which predicting a segmentation mask
in a pixel-to-pixel basis. Implementation details of Mask R-CNN are available under link
(https://github.com/matterport/Mask_RCNN (accessed on 14 June 2021)), and as Detec-
tron2 (https://github.com/facebookresearch/detectron2 (accessed on 14 June 2021)) [41].
In the Detectron2 toolkit from Facebook AI Research [41], the authors also developed
source code to train and test the segmentation of the image on some CNNs models:
DeepLabv3 [42,43], details are shown in link (https://github.com/facebookresearch/detect
ron2/tree/master/projects/DeepLab (accessed on 12 June 2021)). DeepLabv3 is the human
semantic segmentation group, this CNN is an improvement of the DeepLab2 [44] method.
This method has been applied in parallel to the Atrous Spatial Pyramid Pooling (ASPP)
method for multi-scale context. In [42], the authors improved the DeepLabv3 network with
a combination of the spatial pyramid pooling module and the encoder-decoder structure.
Therein, the rich semantic features are obtained from the encoder module; the detected
objects by the bounding boxes are recovered by the decoder module. This network architec-
ture of DeepLabv3+ made a trade-off between precision and processing time based on the
extracted encoder features by atrous convolution. DensePose [45,46], details are shown in

https://towardsdatascience.com/faster-r-cnn-object-detection-implemented-by-keras\-for-custom-data-from-googles-open-images-125f62b9141a
https://towardsdatascience.com/faster-r-cnn-object-detection-implemented-by-keras\-for-custom-data-from-googles-open-images-125f62b9141a
 https://pjreddie.com/darknet/yolov1/
https://pjreddie.com/darknet/yolov2/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://github.com/AlexeyAB/darknet
https://github.com/weiliu89/caffe/tree/ssd
https://github.com/matterport/Mask_RCNN
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2/tree/master/projects/DeepLab
https://github.com/facebookresearch/detectron2/tree/master/projects/DeepLab
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link (https://github.com/facebookresearch/detectron2/tree/master/projects/DensePose
(accessed on 12 June 2021)). Riza et al. [46] proposed DensePose-RCNN for estimat-
ing human pose. DensePose-RCNN is a combination of the DenseReg and the Mask-
RCNN to improve the accuracy, with the cascaded extensions. Cheng et al. [47,48] pro-
posed the Panoptic-DeepLab (details are shown in the link (https://github.com/faceb
ookresearch/detectron2/tree/master/projects/Panoptic-DeepLab (accessed on 14 June
2021)), which predicts the semantic segmentation and instance segmentation based on
the dual-context and dual-decoder modules. The ASPP is employed in the decoder
module. Kirillov et al. [49] proposed the PointRend method, details are shown in link
(https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend (ac-
cessed on 14 June 2021)). The PointRend network is applied in both semantic segmentation
and instance segmentation. It was applied to each region in the coarse-to-fine method
(from large to small size). Chen et al. [50] proposed a TensorMask network applied
to the instance segmentation. Before the sliding window method used for object detec-
tion, the results are displayed on bounding boxes. After that, they use Mask R-CNN
for object segmentation on the data inside in bounding box. Details are shown in link
(https://github.com/facebookresearch/detectron2/tree/master/projects/TensorMask (ac-
cessed on 20 June 2021)); Li et al. [51] proposed a parallel multi-branch architecture called
the TridentNet with ResNet-101 backbone retrained, details are shown in link (https:
//github.com/facebookresearch/detectron2/tree/master/projects/TridentNet (accessed
on 15 June 2021)). This CNN used the image with multi-scales as the input. After that the
image pyramid methods are used for feature extraction and object detection for each scale.
Especially recently, the Centermask network is proposed and published by Lee et al. [52],
this CNN implemented the human instance segmentation, details are shown in link
(https://github.com/youngwanLEE/CenterMask (accessed on 16 June 2021)). This net-
work used the anchor-free object detector (FCOS) [53,54] to predict the per-pixel object
detection. After that, the SAG-Mask branch was added to predict a segmentation mask on
each detected box. The feature extractions and feature map used the pyramid method of
VoVNetV2 [55] backbone network.

George et al. [56] proposed the PersonLab model to estimate human pose and seg-
ment human instance from the images. This model used CNNs to predict all key points
of each person in the image, after that the author predicted instance-agnostic semantic
person segmentation maps by a greedy decoding process to group them into instances.
This means that the determination of an ith human pixel is based on the probable dis-
tance from that pixel to the nearest detected keypoint. Implementation details are shown
in link (https://github.com/scnuhealthy/Tensorflow_PersonLab (accessed on 16 June
2021)). Zhang et al. [57] have proposed a model based on the human instance segmentation
method where the object detection step is based on the results of human pose estimation.
The human pose is estimated based on the combination of scale, translation, rotation, and
left-right flip, and it is called Affine-Align. The Affine-Align operation uses human pose
templates to align the people which does not use a bounding box as in Faster R-CNN or
Mask R-CNN, in which the human pose templates are divided into clusters and center of
clusters used to compute the error function with detected poses by the affine transforma-
tion. The human segmentation module is concatenated from the Skeleton features to the
instance feature map after Affine-Align. Implementation details are available under link
(https://github.com/liruilong940607/Pose2Seg (accessed on 18 June 2021)).

3.1.2. Datasets, Metrics and Results

a. Human detection
Object detection in images and videos is the first operation applied in computer vision

pipelines such as object segmentation, object identification, or object localization. Object
detection methods have been evaluated on many benchmark datasets. In this section, we
present some typical benchmark datasets.

https://github.com/facebookresearch/detectron2/tree/master/projects/DensePose
https://github.com/facebookresearch/detectron2/tree/master/projects/Panoptic-DeepLab
https://github.com/facebookresearch/detectron2/tree/master/projects/Panoptic-DeepLab
https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend
https://github.com/facebookresearch/detectron2/tree/master/projects/TensorMask
https://github.com/facebookresearch/detectron2/tree/master/projects/TridentNet
https://github.com/facebookresearch/detectron2/tree/master/projects/TridentNet
https://github.com/youngwanLEE/CenterMask
https://github.com/scnuhealthy/Tensorflow_PersonLab
https://github.com /liruilong940607/Pose2Seg
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Everingham et al. [58] introduced the Pascal VOC (PV) 2007 with 20 object classes
with 9963 images which are collected from both indoor and outdoor environments. The
interesting objects are divided into the following groups: person; animal (bird, cat, cow,
dog, horse, sheep); vehicle (airplane, bicycle, boat, bus, car, motorbike, train); indoor
(bottle, chair, dining table, potted plant, sofa, tv/monitor). This data set is divided into
50% for training/validation and 50% for testing. The dataset can be downloaded from link
(http://host.robots.ox.ac.uk/pascal/VOC/voc2007/ (accessed on 19 June 2021)). In [59],
the authors updated the Pascal VOC dataset (PV 2010) with 10,103 images containing 23,374
annotated objects and 4203 segmentations. In this dataset, the authors changed the way of
computing the average precision and used all data points rather than TREC style sampling.
In 2012, the authors updated the PV 2012 dataset [60] with the training/validation data
of 11,530 images containing 27,450 ROI annotated objects and 6929 segmentations. These
versions of the PV dataset are presented, compared in link (http://host.robots.ox.ac.uk/p
ascal/VOC/voc2012/ (accessed on 18 June 2021)).

In [61], Lin et al. published the benchmark MS COCO (Microsoft Common Objects
in COntext) dataset. It includes 328,000 images with 80 common object categories and
2,500,000 labeled instances. The objects in the images are person, car, elephant and the
background is grass, wall, or sky. After six years, this dataset is now available with more
than 200,000 images and 80 object categories, and over 500,000 object instances segmented.

The ImageNet Large Scale Visual Recognition Challenge 2014 detection [62] task in-
volves 200 categories. There are 450 k/20 k/40 k images in the training/validation/testing
sets. The authors focus on the task of the provided data-only track (the 1000-category CLS
training data is not allowed to use).

Most of the research on object detection presented above use the mean Average
Precision (mAP) measurement for evaluation. It is calculated according to Equation (2).

mAP =
∑

q=1
Q AverageP(q)

Q
(2)

where Q is the number of frames and AverageP(q) is the Average Precision (AP) of object
detection for each frame. Precision is calculated as in [17]. Some results of human detection
are shown in Tables 1 and 2.

Table 1. Human detection results (mAP) on the several benchmark datasets.

Measurement/
Dataset/Methods

mAP (Mean Average Precision) (%)

PV
2007

PV
2010

PV
2012

COCO
(Year)

IC
2013

IC
2014

IC
2015

R-CNN [31] 58.7 58.1 - - 31.4 - -
SPPnet [32] 58.9 - - - - 35.11 -

VGG vs. Fast R-CNN [15] 66.1 - - - - - -
VGG vs. ResNet [34] - - 93.7 - - - -

VGG 16 [15] 89.3 - 89 - - - -
Fast R-CNN [11] 69.9 72.7 72.0 35.9 (2015) - - 42.9
Faster R-CNN [2] 78.8 - 75.9 42.7 (2015) - - 32.6

YOLO v1 [63] 63.4 - 63.5 - - - -
YOLO v2 [4] 78.6 - 81.3 21.6 (2015)
YOLO v3 [5] - - - 60.6 (2015) - - -
YOLO v4 [6] - - - 65.7 (2017) - - -
SSD300 [3] 74.3 - 79.4 23.2 (2015) - - -
SSD500 [3] 76.8 83.3 26.8 (2015) - - -

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
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Table 2. The frame rate of human detection (fps—frames per second) on the PV 2007 benchmark
dataset.

Measurement/
Dataset/Methods

Procesing Time (fps)

PV 2007

R-CNN [31] 0.076
SPPnet [32] 0.142

VGG vs. Fast R-CNN [15] 7
VGG vs. ResNet [34] 5

Fast R-CNN [11] 0.5
Faster R-CNN [2] 7

YOLO v1 [63] 45
YOLO v2 [4] 40
YOLO v3 [5] 45
YOLO v4 [6] 54
SSD300 [3] 46
SSD500 [3] 19

b. Human segmentation
Human data segmentation is the process of classifying whether each pixel belongs to a

human object or not. To evaluate the human segmentation, the studies of Kaiming et al. [40]
and Zhang et al. [57] were evaluated on the COCO [61] dataset and introduced the above. The
metric used to evaluate is AP (Average Precision), precision is calculated as shown in [17].

The results of the human segmentation on the PV 2007 benchmark are shown in Table 3.
The processing time of Mask R-CNN, Pose2Seg for human segmentation is 5 fps, 20 fps,
respectively. We also listed the results of object segmentation on the PV 2017 benchmark
dataset with the validation/testing sets from [61], and they are presented in Table 4.

Table 3. The frame rate of human detection (fps—frames per second) on the PV 2007 benchmark
dataset. APM, APL are the Median, Large AP categories, respectively.

Measurement/
Method/ Backbone APM APL

Mask R-CNN [40] Resnet50-fpn 43.3 64.8
PersonLab [56] Resnet101 47.6 59.2
PersonLab [56] Resnet101(ms scale) 49.2 62.1
PersonLab [56] Resnet152 48.3 59.5
PersonLab [56] Resnet152(ms scale) 49.7 62.1
Pose2Seg [57] Resnet50-fpn 49.8 67.0

Pose2Seg(GTKpt) [57] Resnet50-fpn 53.9 67.9

Table 4. The object segmentation results (m—mask, b—box) on the COCO 2017 Val/Test dataset [61] (%—percent).

Measurement/
CNNs

Backbone
Network APm APb APb

S APb
M APb

L IS SS

CenterMask VoVNetV2-99 38.3 43.5 25.8 47.8 57.3
√

-
TridentNet ResNet-101 - 42.0 24.9 47.0 56.9 -

√

TensorMask ResNet-101-FPN - 37.1 17.4 39.1 51.6
√

-
PointRend (IS) X101-FPN 40.9 - - - -

√ √

Panoptic-DeepLab Xception-71 39.0 - - - -
√ √

3.1.3. Discussions

Table 1 shows the human detection accuracy based on some benchmark datasets such
as PV 2007, PV 2010, PV 2012, COCO, or IC datasets. Table 2 shows the processing time
of human detection on the PV 2007 dataset. The results of human detection can show us
that accuracy increases the following time and that the processing time of human detection
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has reached real-time. We only surveyed on the PV 2007 dataset to agree on the dataset.
Each different version of the PV dataset has a different number of images and complexity.
So the processing time will be different. When compared to the same dataset, we can
see the processing speed of CNNs (e.g, R-CNN, Fast R-CNN, YOLO, etc) for detecting
humans. Our survey is based on an evaluation of CNNs for human detection using the
TensorFlow framework on the PV 2007 dataset. A part of which we refer to in the survey
of Sanchez et al. [64].

As presented above, the human detection results significantly affect the process of
human segmentation. As shown in first table and second table of [56], the keypoint
detection results of human pose on the COCO dataset are between 61% and 75% on
the APM, APL measurements, in the human segmentation step is between 47% and 62%.
Therefore, the error from detecting humans is from 25% to 39%, and the human segment
error is about 14%. These results also show that the segmentation of the human data on the
COCO dataset still poses many challenges.

3.2. CNN-Based Human Tracking
3.2.1. Methods

Human tracking is the process of estimating the movement trajectory of people in
the scene based on the video captured by the scene. A tracker is a set of object labels and
classifications between that object and other objects and the background [65]. Human
tracking is the process of reusing the results of human detection or human segmentation
on each frame of the video. From there, the person’s trajectory is drawn on the video.
Watada et al. [65] performed a human tracking survey, which uses the results of human
detection (which is the process of detecting points of interest in the human body). This
detector is called a “point detector” and the second method is to use the results of the
human segment in the image. In this paper, we are interested in studies using CNNs
to track people in the video. Dina et al. [66] experimented with a method for tracking
multiple persons in images using Faster R-CNN to detect people. The results of people
detection in the image are shown as bounding boxes. The author used VGG16 with thirteen
convolutional layers of various sizes (64, 128, 256, 512), two fully connected layers, and a
softmax layer to build the Faster R-CNN. Javier [67] has generalized the object tracking
problem in video, in which the author presented Siamese Network Algorithm (SNA) for
object tracking. SNA assumes that the object to track always be unknown, and there is
no need to learn it. SNA uses the CNNs to parallel object detection in the images, and
then it computes the differences of the pairs of images. Implementation details are shown
in link (https://github.com/JaviLaplaza/Pytorch-Siamese (accessed on 20 June 2021)).
Gulraiz et al. [68] proposed a model of human detection and tracking that used Faster
R-CNN to detect the human with five implementation steps. Then, they use more Deep
Appearance Features (DAF) to track humans. Especially, the method provided the motion
information and appearance information. The authors also presented the challenges of
object tracking systems. The first one concerns real-time human tracking. There has been
much research trying to achieve the goal of real-time tracking of people. The second is
the identity switch in all frames or specific time duration. The third is the fragmentation
problem when the person is not detected at some frames, which causes the person’s
moving trajectory to be interrupted. Particularly, we proposed solutions to improve the
detection results in some frames by using CNNs for human detection or just detecting
parts of the person, such as the head or shoulder. To address identity switches, the authors
suggested using the appearance, localization features, and the size of a human in frames
or perhaps using facial recognition. The proposed system is better than both SORT and
Deep SORT [69,70] in real-time scenarios for pedestrian tracking. Ejaz et al. [71] proposed
a method for improving human detection and tracking accuracy in noisy and occluded
environments. To improve the accuracy of human detection and classification, a softmax
layer is used in the CNN model. Special tactics of enhancing learning complex data (data
augmentation) are applied.

https://github.com/JaviLaplaza/Pytorch-Siamese
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3.2.2. Datasets, Metrics and Results

To evaluate the results of human tracking, Laura et al. [72] proposed a huge MOTChel-
lange dataset, which combined of 22 different subsets. Some results of human detection in
images of MOTChellange dataset before human tracking based on the CNNs are shown in
Table 5.

Table 5. The results (accuaracy, precision (%)) of human segmentation on the MOTChallenge dataset.
SNN is a human tracking evaluation based on the Siamese Neural Network. Ecdist is a human
tracking evaluation based on the simple minimum Euclidean distance.

Measurement/Model MOTA
(MOT Accuracy) [%]

MOTP
(MOT Precision) [%]

SORT [73] 59.8 79.6
Deep SORT [69] 61.4 79.1

Faster RCNN + DAF [68] 75.2 81.3
Faster RCNN [66] (Ecdist) 61.26 -
Faster RCNN [66] (SNN) 47.38 -

However, Gulraiz et al. [68] were only interested in 10-minute videos of individuals
with 61,440 rectangles of human detection. It is composed of 14 different sequences with
proper annotations by expert annotators. This dataset collection camera is set up in multiple
states (dynamic or static). The camera position can be positioned horizontally with people
or lower. The lighting conditions are also quite varied: lighting, shadows, and blurring
of the pedestrians are inconsistent. The processing times of human detection for various
ResNets are shown in Table 6.

Table 6. The processing time (ms—millisecond) of Human detection for various ResNets. The
calculation process is performed on a computer with the following configuration: GeForce GTX
1080 Ti GPU with Ubuntu OS installed in the system. The experiments are performed using the
TensorFlow framework [68].

Measurement/Model Processing Time [ms]

ResNet-34 52.09
ResNet-50 104.13

ResNet-101 158.35
ResNet-152 219.06
ResNet-30 48.93

In [34], the authors evaluated the INRIA human dataset and Pedestrian parsing on
surveillance scenes (PPSS) dataset. The authors used the INRIA dataset that includes
2416 images for training and 1126 images for testing. The persons in the INRIA dataset
were captured from many different positions: pose and occluded background, crowd
scenes. The PPSS dataset included a total of 3673 images captured from 171 videos of
different scenes and 2064 images in this dataset that the people are occluded. Haque
et al. [34] used 100 videos for training and 71 videos for testing. The results of human
tracking on the INRIA dataset and PPSS dataset are shown in Table 7.

Table 7. The results of Human segmentation on the INRIA dataset and PPSS dataset [34].

Dataset Model Accuracy [%]

INRIA dataset VGG-16 96.4
CNNs + DA [34] 98.8

PPSS dataset VGG-16 94.3
CNNs + DA [34] 98.3
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4. Human Mask of MADS Dataset

The MADS dataset includes martial arts (tai-chi and karate), dancing (hip-hop and
jazz), and sports (basketball, volleyball, football, rugby, tennis, and badminton) actions. The
activities in this dataset are fast and dynamic, and many body parts are active, especially
arms and legs. The MADS dataset consists of two sets of data: The RGB image data
collected from multi-view settings; RGB image data and depth image data collected from a
single viewpoint (captured from the depth sensor). Figure 4 shows the mask image of the
human (left) when segmented to the pixel level, and the point cloud data of a human (right)
generated from the person data segmented on the depth image with the camera’s intrinsic
parameter based on Equation (1). We also illustrate a result of 3D human pose estimation
based on point cloud data (right). Therefore in this paper, we are only interested in the
dataset collected from the depth sensor (the data is collected from a single viewpoint). We
will use human point cloud data in further studies. An example of the RGB and depth data
from the dataset is illustrated in Figure 5. To evaluate the results of human segmentation
and tracking humans in videos, we implemented pixel marking of the human area in the
RGB images that were captured from a single viewpoint (depth sensor).

Mask image Point cloud, 3D human pose

Figure 4. Illustrating of 3D human annotation data correction results according to point cloud data
based on the human mask from the image. The red human skeleton is a result of 3D human pose
estimation in the point cloud data.

Figure 5. Illustration of image data of an unmarked human and masked image. Human depth data
is delimited by a yellow border. The depth value of the human pixels is greater than 0 (which is
the distance from the camera to the surface of the body) and is a gray color, the other pixels are the
background and is black color. The depth image is the result of mapping from the human mask to
the depth image obtained from the environment.

To mask people in the image, we have manually prepared the mask data of the human
using the Interactive Segmentation tool (http://web.archive.org/web/20110827170646/http:
//kspace.cdvp.dcu.ie/public/interactive-segmentation/index.html (accessed on 18 April
2021)). We have prepared about 28,000 frames and make available at the link (https://drive.go

http://web.archive.org/web/20110827170646/http://kspace.cdvp.dcu.ie/public/interactive-segmentation/index.html
http://web.archive.org/web/20110827170646/http://kspace.cdvp.dcu.ie/public/interactive-segmentation/index.html
https://drive.google.com/file/d/1Ssob496MJMUy3vAiXkC_ChKbp4gx7OGL/view?usp=sharing
https://drive.google.com/file/d/1Ssob496MJMUy3vAiXkC_ChKbp4gx7OGL/view?usp=sharing
https://drive.google.com/file/d/1Ssob496MJMUy3vAiXkC_ChKbp4gx7OGL/view?usp=sharing
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ogle.com/file/d/1Ssob496MJMUy3vAiXkC_ChKbp4gx7OGL/view?usp=sharing (accessed
on 18 July 2021)).

5. Human Segmentation and Tracking of MADS Dataset
5.1. Methods

In this paper, we evaluate in detail the human instance segmentation on the MASK
MADS dataset with the Mask R-CNN benchmark [40] method and some of its improve-
ments in the Detectron2 toolkit [41].

• Mask R-CNN [40] is an improvement of Faster R-CNN [2] for image segmentation at
the pixel level. The operation of Mask R-CNN for human instance segmentation does
the following several steps.
Backbone Model: Using ConvNet like Resnet to extract human features from the
input image.
Region Proposal Network (RPN): The model uses the extracted feature applied to
the RPN network to predict whether the object is in that area or not. After this
step, bounding boxes at the possible areas of objects from the prediction model will
be obtained.
Region of Interest (RoI): The bounding boxes from the human detection areas will
have different sizes, so through this step, all those bounding boxes will be merged to a
certain size at 1 person. These regions are then passed through a fully connected layer
to predict the layer labels and bounding boxes. The gradual elimination of bounding
boxes through the calculation of the IOU. If the IOU is greater than or equal to 0.5
then be taken into account else be discarded.
Segmentation Mask: Mask R-CNN adds the third branch to predict the person’s mask
parallel to the current branches. Mask detection is a Fully-Connected Network (FCN)
applied to each RoI. The architecture of the Mask-RCNN is illustrated in Figure 6.
In this paper, we use Mask-RCNN’s code developed in [41]. The backbone model
used is ResNet-50 and the pre-trained weights is
“COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml”.
It is trained with ResNet-50-FPN on COCO trainval35k takes 32 h in our synchronized
8-GPU implementation (0.72 s per 16-image mini-batch) [40]. The code that we used
for training, validation, testing is shared under the link (https://github.com/duonglo
ng289/detectron2 (accessed on 10 June 2021)).

• PointRend [49]: PointRend is an enhancement of the Mask R-CNN for human instance
and human semantic segmentation. This network only differs from Mask R-CNN
in the prediction step on bounding-boxes (FCN), Mask R-CNN [40] performs the
coarse prediction on a low-resolution (28× 28) grid for instance segmentation, the
grid is not irrespective of object size. However, it is not suitable for large objects, it
generates undesirable “blobby” output that over smooths the fine-level details of large
objects. PointRend predicts on the high-resolution output grid (224× 224), to avoid
computations over the entire high-resolution grid. PointRend suggests 3 strategies:
choose a small number of real-value points to make predictions, extract features of
selected points, a small neural network trained to predict a label from this point-wise
feature representation of a point head. In this paper, the pre-trained weights that we
use is “InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml”.
That means the backbone we use is the ResNet-50. It is trained on the COCO [61]
dataset with train2017 (∼118 k images). The code that we used for training, validation,
testing is shared in the link (https://github.com/duonglong289/detectron2/tree/ma
ster/projects/PointRend (accessed on 15 June 2021)).

• TridentNet [51]: TridentNet is proposed for human detection by bounding-box on
images that are based on the start-of-the-art Faster R-CNN. TridentNet can improve
the limitations of two groups of networks for object detection (one-stage methods:
YOLO, SSD, and two-stage methods: Faster R-CNN, R-FCN). TridentNet generates
scale-specific feature maps with a uniform representational power for training with

https://drive.google.com/file/d/1Ssob496MJMUy3vAiXkC_ChKbp4gx7OGL/view?usp=sharing
https://drive.google.com/file/d/1Ssob496MJMUy3vAiXkC_ChKbp4gx7OGL/view?usp=sharing
https://github.com/duonglong289/detectron2
https://github.com/duonglong289/detectron2
https://github.com/duonglong289/detectron2/tree/master/projects/PointRend
https://github.com/duonglong289/detectron2/tree/master/projects/PointRend
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multiple branches; trident blocks share the same parameters with different dilation
rates. TridentNet training with ResNet-50 backbone on 8 GPUs, the pre-trained
weights initialized in file “tridentnet_fast_R_50_C4_1x.yaml”. The code that we used
for training, validation, testing is shared at the link (https://github.com/duonglong
289/detectron2/tree/master/projects/TridentNet (accessed on 16 June 2021)).

• TensorMask [50]: TensorMask is an improvement of Mask R-CNN to use structured
4D tensors ((V, U) represent relative mask position; (H, W) represent the object posi-
tion) to represent mask image content in a set of densely sliding windows. The dense
mask predictor of TensorMask extends the original dense bounding box predictor
of Mask R-CNN. TensorMask performs multiclass classification in parallel to mask
prediction. The code we use has the pre-trained weights initialized in the file “ten-
sormask_R_50_FPN_1x.yaml” and the ResNet-50 backbone on 8 GPUs are used. The
code that we used for training, validation, testing is shared in the link (https://github
.com/duonglong289/detectron2/tree/master/projects/TensorMask (accessed on 16
June 2021)).

• CenterMask [52]: CenterMask is an improvement of Mask R-CNN. During the im-
plementation of Mask R-CNN, Centermask added a novel spatial attention-guided
mask (SAG-Mask) branch to anchor-free one stage object detector (FCOS), the SAG-
Mask branch predicts a segmentation mask on each box with the spatial atten-
tion the map that helps to focus on informative pixels and suppress noise. Al-
though, in the present paper [52] used the backbone network VoVNetV2 based on
VoVNet [55] to ease optimization and boosts the performance, that shows better per-
formance and faster speed than ResNet [74] and DenseNet [75]. In this paper, we
still use the pre-trained weights initialized in file “centermask_R_50_FPN_1x.yaml”
The code that we used for training, validation, testing is shared in the link (https:
//github.com/duonglong289/centermask2 (accessed on 16 June 2021)).

Start-of-the-art Backbone: As discussed above, the backbone used to train the pre-train
weights is ResNet-50.

ResNet is a very efficient deep learning network designed to work with hundreds
or thousands of convolutional layers. When building a CNN with many convolutional
layers, Vanishing Gradient will occur, leading to a suboptimal learning process. To solve
the problem, ResNet proposes the idea of going from the output layer to the input layer
and computing the gradient of the corresponding cost function for each parameter (weight)
of the network. Gradient descent is then used to update those parameters. It is proposed to
use a uniform “identity shortcut connection” connection to traverse one or more layers,
illustrated in Figure 7. Such a block is called a Residual Block. The input of this layer is not
only the output of the layer above but also the input of the layers that shorten to it.

In residual bock, the input x is added directly and the output of the network is F(x)+ x,
and this path is called an identity shortcut connection. The output of Residual Block is
called H(x) = F(x) + x. So, when F(x) = 0, then H(x) = x is said to be a homogeneous
mapping when the input of the network equals its output. To add F(x) + x, the shape of
both must be the same. If the shapes are not the same then we multiply a matrix Ws by the
input x. H(x) = F(x) + Ws ∗ (x), where Ws can be trained. When the input of the network
and the output of the network are the same, ResNet uses an identity block, otherwise uses
a convolutional block, as presented in Figure 8.

Using residual blocks, in the worst case, the deeper layers learn nothing, and perfor-
mance is not affected, thanks to skipping connections. But in most cases, these classes will
also learn something that can help improve performance.

Recently, Resnet version 1 (v1) has been improved to ameliorate classification perfor-
mance, and was called ResNet version 2 (v2) [76], where Resnet v2 has two changes in the
residual block [77]: The use of a stack of (1 × 1) − (3 × 3) − (1 × 1) at the steps BN, ReLU,
Conv2D, respectively; the Batch normalization, and ReLU activation that comes before 2D
convolution. The difference between ResNet v1 and ResNet v2 is shown in Figure 9.

 https://github.com/duonglong289/detectron2/tree/master/projects/TridentNet
 https://github.com/duonglong289/detectron2/tree/master/projects/TridentNet
https://github.com/duonglong289/detectron2/tree/master/projects/TensorMask
https://github.com/duonglong289/detectron2/tree/master/projects/TensorMask
https://github.com/duonglong289/centermask2
https://github.com/duonglong289/centermask2
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Figure 6. Mask R-CNN architecture human instance segmentation in images.

Figure 7. A Residual Block across two layers of ResNet.

Figure 8. Illustrating convolutional block of ResNet.

Figure 9. A comparison of residual blocks between ResNet v1 and ResNet v2 [77].
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5.2. Experiments

To evaluate the results of human detection and human segmentation on the MADS
dataset, we divide the MADS database into training and testing sets according to the
following ratios: 50% for training and 50% for testing (rate_50_50), 60% for training, and
40% for testing (rate_60_40), 70% for training and 30% for testing (rate_70_30), 80% for
training and 20% for testing (rate_80_20). The images are randomly assigned. The number
of frames in the ratios is shown in Table 8.

Table 8. The number of frames in the ratios (%—percent) for training and testing of MASK
MADS dataset.

Ratios (%) The Number of
Frames for Training

The Number of
Frames for Testing

rate_50_50 14,414 14,414
rate_60_40 17,047 11,492
rate_70_30 19,141 8616
rate_80_20 21,473 5742

In this paper, we used Colab Notebook with GPU Tesla P100, 16 GB for fine-tuning,
training, testing the CNNs on the MASK MADS dataset. The processing steps, code fine-
tuning, training, testing, and development process were performed in Python language
(≥3.6 version) with the support of the OpenCV, Pytorch (≥3.6 version), CUDA/cuDNN
libraries, gcc/& g++ (≥5.4 version), In addition, there are a number of other libraries such
as Numpy, scipy, Pillow, cython, matplotlib, scikit-image, tensorflow ≥ 1.3.0, keras ≥ 2.0.8,
opencv-python, h5py, imgaug, IPython. The parameters that we use are as follows: the
batch size is 2, trained on 90 thousand iterations, the learning rate of 0.02; the weight decay
is 0.0001, the momentum is 0.9, and other parameters are the same as when the default
training of Mask R-CNN [40] and Detectron2 [41].

In this paper, we also use metrics of the standard COCO metrics including AP (Av-
erage Precision) of over IoU thresholds, AP50, AP75, and APS, APM, APL (AP at different
scales) [40].

5.3. Results

We compare the results of human segments based on Mask R-CNN, PointRend,
TridentNet, TensorMask, CenterMask on the MADS dataset, which have been divided
by the ratios. The results based on box (b) are shown in Table 9. In Tables 9 and 10, the
human segmentation results on the box (b) and mask (m) of the CenterMask are the highest
(APb = 69.47%, APm = 61.28%). Human segmentation results on the MADS dataset are
also shown in Figure 10, and the wrong human segmentation results are also shown in
Figure 11.

Table 9. The results (%—percent) of human segmentation (box-m) on the MADS dataset is evaluated on the CNNs.

CNN Model Training/Testing
Ratios (%)

APb

(%)
APb

50
(%)

APb
75

(%)
APb

S
(%)

APb
M

(%)
APb

L
(%)

Mask R-CNN [40]

rate_50_50 59.25 71.45 65.82 7.22 86.85 86.80
rate_60_40 59.12 72.02 65.29 7.18 86.45 86.22
rate_70_30 59.44 71.85 65.84 6.72 87.50 86.55
rate_80_20 59.96 71.98 66.35 7.16 88.04 86.58

PointRend [49]

rate_50_50 63.25 78.98 72.19 8.03 67.89 84.71
rate_60_40 64.58 79.81 72.87 9.64 68.84 85.78
rate_70_30 67.90 81.40 74.30 13.82 72.11 88.69
rate_80_20 66.67 80.91 73.53 11.29 71.74 87.52
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Table 9. Cont.

CNN Model Training/Testing
Ratios (%)

APb

(%)
APb

50
(%)

APb
75

(%)
APb

S
(%)

APb
M

(%)
APb

L
(%)

TridentNet [51]

rate_50_50 61.17 70.84 65.89 6.42 91.39 88.77
rate_60_40 55.50 71.80 66.25 0.75 50.81 79.66
rate_70_30 61.28 70.87 65.85 5.71 91.53 88.86
rate_80_20 61.50 70.96 66.67 6.18 92.01 88.23

TensorMask [50]

rate_50_50 67.11 80.95 74.15 11.78 69.58 88.49
rate_60_40 67.41 81.71 74.01 12.36 73.79 87.67
rate_70_30 64.37 79.81 72.38 7.93 67.09 85.74
rate_80_20 64.78 80.20 73.13 8.95 69.69 85.63

CenterMask [52]

rate_50_50 65.94 79.78 73.09 8.39 71.59 87.75
rate_60_40 64.75 79.89 72.08 9.21 68.03 86.24
rate_70_30 65.40 79.36 71.57 6.77 68.72 87.95
rate_80_20 69.47 81.63 75.04 12.95 74.44 91.10

The results based on the mask (m) are shown in Table 10.

Table 10. The results (%—percent) of human segmentation (mask-m) on the MADS dataset evaluated on the CNNs.

CNN Model Training/Testing
Ratios (%)

APm

(%)
APm

50
(%)

APm
75

(%)
APm

S
(%)

APm
M

(%)
APm

L
(%)

PointRend [49]

rate_50_50 58.73 78.86 69.17 9.35 59.70 80.63
rate_60_40 59.39 79.26 68.48 10.81 55.64 81.07
rate_70_30 62.66 81.23 70.70 14.11 60.39 83.55
rate_80_20 61.93 80.58 70.48 11.48 63.29 83.17

TensorMask [50]

rate_50_50 54.10 79.38 65.71 8.48 52.30 74.35
rate_60_40 57.08 80.01 67.97 10.23 55.36 77.26
rate_70_30 47.71 77.97 55.07 5.88 38.55 69.53
rate_80_20 50.87 78.39 60.42 6.70 44.74 72.12

CenterMask [52]

rate_50_50 53.43 79.18 65.85 8.47 56.48 71.71
rate_60_40 52.24 78.69 64.28 8.80 53.35 70.93
rate_70_30 52.67 78.96 64.60 7.19 54.36 71.27
rate_80_20 61.28 81.19 72.10 13.61 66.89 79.72

Figure 11 shows that there are a lot of wrongly segmented pixels (segmented back-
ground pixels of human data), and there are also some segmented areas of human data. The
problem is the result of the wrong person detection step in the image. In this paper, we also
have shared the complete revised source code of CNNs on links (https://github.com/d
uonglong289/detectron2.git), (https://github.com/duonglong289/centermask2.git), and
the retrained model of CNNs on link (https://drive.google.com/drive/folders/16YHR
8MxOn4l8fMdNCJZv56AcLKfP_K4-?usp=sharing (accessed on 16 June 2021)). Although
there is only one person in the image of the MADS dataset (the data captured by the stereo
sensor), it still poses many challenges. Due to the low quality of the images obtained from
the stereo sensor, the images are blurred, the lighting is not perfect, and the activities of the
people in the image are fast (martial arts, dancing, and sports), so the gestures of the legs
and arms are blurred.

https://github.com/duonglong289/detectron2.git
https://github.com/duonglong289/detectron2.git
https://github.com/duonglong289/centermask2.git
https://drive.google.com/drive/folders/16YHR8MxOn4l8fMdNCJZv56AcLKfP_K4-?usp=sharing
https://drive.google.com/drive/folders/16YHR8MxOn4l8fMdNCJZv56AcLKfP_K4-?usp=sharing
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person

Mask R-CNN

PointRend

TensorMask

CenterMask

Figure 10. Examples of human segmentation results on the MADS dataset by CNNs.

Figure 11. Examples of false human segmentation results on the MADS dataset.
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6. Conclusions

In this paper, we performed manual annotation of human masks in videos of data
captured from a single view of the MADS dataset on 28 thousand images. This is called the
Mask MADS dataset; it is shared for the community to use. We have conducted complete
and detailed surveys on using CNNs to detect, segment, and track the people in the video.
This survey goes from the mode of methods (CNNs), datasets, metrics, results, analysis,
and some discussion. In particular, links to the source code of the CNNs are provided
in this survey. Finally, we fine-tuned a set of parameters from the masked human data.
We have represented the architecture of start-of-the-art methods and backbone model to
fine-tune the human detection, segmentation model. We performed detailed evaluations
with many recently published CNNs and published the results on the mask MADS dataset
(Tables 8–10).
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