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Abstract: The demand for Internet of Things services is increasing exponentially, and consequently
a large number of devices are being deployed. To efficiently authenticate these objects, the use of
physical unclonable functions (PUFs) has been introduced as a promising solution for the resource-
constrained nature of these devices. The use of machine learning PUF models has been recently
proposed to authenticate the IoT objects while reducing the storage space requirement for each device.
Nonetheless, the use of a mathematically clonable PUFs requires careful design of the enrollment
process. Furthermore, the secrecy of the machine learning models used for PUFs and the scenario
of leakage of sensitive information to an adversary due to an insider threat within the organization
have not been discussed. In this paper, we review the state-of-the-art model-based PUF enrollment
protocols. We identity two architectures of enrollment protocols based on the participating entities
and the building blocks that are relevant to the security of the authentication procedure. In addition,
we discuss their respective weaknesses with respect to insider and outsider threats. Our work serves
as a comprehensive overview of the ML PUF-based methods and provides design guidelines for
future enrollment protocol designers.

Keywords: Internet of Things; authentication; physical unclonable function; machine learning

1. Introduction

The deployment of smart sensors is exponentially increasing to cover consumer
oriented services and the requirements of industrial scenarios [1]. The high popularity of
Internet of Things (IoT) products is pressuring manufacturers to opt for rush to market
behavior in order to comply with their clients’ needs. Thus, they tend to overlook the
importance of ensuring the security of these resource-constrained devices, which might
create a potential attack vector once they are deployed. Moreover, the National Institute
of Standards and Technology (NIST) has recently introduced new regulations, NISTIR
8259A [2], for the United States IoT market regarding the security of new devices and the
data collection. On the other hand, the European Telecommunications Standards Institute
(ETSI) has released similar cybersecurity guidelines, in the ETSI EN 303,645 report [3],
for the IoT consumer market in Europe and in the United Kingdom. Manufacturers need
more comprehensive and easy-to-adopt security solutions in order to keep pace with the
regulations. Therefore, the application of an entity authentication procedure that is suitable
for the IoT context is crucial. By doing so, we eliminate the risk related to allowing a
malicious object into the network of a user. This secure enrollment process ensures that the
communicating IoT nodes are trustworthy.

Numerous entity authentication solutions have been proposed to verify the identity
and the origin of the IoT object in question. The identity-based [4] and certificate-based
techniques [5] represent promising candidates when combined with a lightweight cryp-
tographic algorithm that is supported by a resource-constrained device. However, we

Sensors 2021, 21, 8415. https://doi.org/10.3390/s21248415 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9259-7785
https://doi.org/10.3390/s21248415
https://doi.org/10.3390/s21248415
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248415
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248415?type=check_update&version=2


Sensors 2021, 21, 8415 2 of 28

encourage the avoidance of exploiting any pre-established security knowledge between
the verifier and the prover to facilitate the integration of our solution with a secure device
pairing scheme [6,7]. The no prior secrets condition is motivated by the unfeasibility of
managing the scalability issues of public key infrastructure due to the growing numbers of
heterogeneous IoT devices. A third possible alternative is to exploit a One-Time Password
(OTP) system [8] that authenticates the object using a trusted third party. Nevertheless,
this technique requires the IoT device to communicate independently with a remote OTP
server. As a consequence, we would prefer to perform the authentication process prior
to associating the IoT object with the network of the user. Therefore, the OTP solution
would not be compliant with our requirements. A final alternative is to use of a hardware-
based enrollment protocol that relies on a secure element such as a PUF [9] onboard the
object. This method provides a lightweight and a cost-effective authentication system
that is adequate with the IoT context. Several integrated circuit vendors have opted for a
hardware-level technology approach for securing the use of the IoT object through physical
unclonable functions. These secure hardware elements serve multiple objectives, such as
device identification, secure key management and secure boot functionality. This tech-
nology has been applied to IoT products, but it can also play a major role in the security
systems used in other industrial areas, such as the vehicular context, as discussed in [9].
This role can cover, for example, the vehicle component identification [10] or cryptographic
key management for securing a vehicular ad hoc network [9].

Unfortunately, a growing number of the recently proposed PUFs, such as the Interpose-
PUF [11] and the Double Arbiter PUF (DAPUF) [12], have been proven vulnerable against a
variety of machine learning (ML) attacks that aim at modeling their behavior by collecting a
sufficient number of challenge–response pairs (CRP) [13,14]. Therefore, several enrollment
protocols have intentionally exploited some vulnerable PUF architectures to create ML
models that simulate their behavior [15,16]. The work of Pour et al. [17] briefly discusses the
benefits of exploiting these modeling methods in an industrial scenario. These advantages
include reducing the time that is required to enroll a large number of devices and the
storage space that should be used to store the challenge–response pairs. As a consequence,
a server can efficiently many IoT devices. The existing reviews of PUF-based enrollment
procedures tend to focus on the traditional use of these hardware circuits through the
storage of the CRPs [18,19]. Other reviews concentrate on reviewing the vulnerabilities of
these PUF architectures to ML modeling attacks [20–22]. However, we have noticed that
they overlook the exploitation of these ML modeling techniques in order to reduce the
required storage space while maintaining the same level of security.

In this paper, we provide an in depth overview of the state-of-the-art model-based
PUF enrollment protocols. We classify the existing proposals based on two architectures.
In addition, we describe the different components of the protocols and we discuss their re-
spective weaknesses. Additionally, we evaluate the robustness of the identified enrollment
protocols against an insider threat scenario that targets the secrecy of the given PUF ML
model. Our paper serves as a comprehensive overview of the scalable PUF-based methods
that have been used so far to perform the enrollment procedures of IoT objects.

The rest of the paper is organized as follows. Section 2 introduces the basics of the
PUF technology and the different machine learning techniques that are applied to model
these circuits. Section 3 presents the two enrollment architectures and details their building
blocks. Section 4 provides an extensive study of the existing model-based PUF enrollment
protocols in light of the proposed architectures. Section 5 discusses the advantages and the
limitations of these architectures, alongside of the weaknesses identified in the described
schemes. Furthermore, it outlines the impacts of the insider attack scenario on the security
of the authentication process and provides future research directions to mitigate the threats.
Lastly, Section 6 concludes the work.
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2. Preliminaries

In this section, we provide background on the physical unclonable functions, and
we describe their most commonly used constructions for authenticating physical systems.
Furthermore, we introduce a selection of the most effective machine learning techniques
for modeling the behavior of PUF circuits.

2.1. Physical Unclonable Function

A physical unclonable function is a secure element that identifies, in a unique manner,
a specific device through a challenge–response process. This paired information represents
the pattern of responses when we have a set of specific challenges as inputs. This function
has to be unclonable and unique for each device, since it relies on physical randomness that
can be either explicitly introduced or intrinsically present in the physical system [23]. The
micro-variations in the hardware system allow the same construction of a PUF to provide
unique responses when deployed on different circuits. Thus, these variations play the role
of the seed in a random response generator.

There are two major categories of PUFs based on the source of the randomness. The
first category of PUFs, referred to as electronic PUFs, rely on a number of micro-physical
parameters that are hidden from the physical observation inside the electronic circuit. These
parameters can be detected only when they are needed to produce the unique responses.
These variables include the time, the frequency, the current or the voltage, the bistable
states and the capacitance [24]. The second category of PUFs, referred to as non-electronic
PUFs, includes the PUF elements that rely on unique characteristics of the physical system
in a non-electronic manner, such as the use of light in optical PUFs [25] and the radio
variations in the RF-PUF [26]. Readers that are eager to learn more about the different PUF
architectures can consult the review in [27].

The electronic PUF elements can be further classified into two categories: strong PUFs
and weak PUFs. Strong PUFs provide many challenge–response pairs, which makes them
suitable for the authentication operations. This is explained by the possibility of conducting
numerous authentication attempts using different CRPs in each session without the need
to reuse the same credentials. Thus, they represent interesting candidate solutions in the
context of multi-user IoT objects. Weak PUFs provide fewer CRPs. However, these PUFs
have been increasingly popular as internal key generators [28,29]. In this work, we focus
on the authentication protocols that are based on strong PUFs.

2.1.1. Arbiter PUF

The Arbiter PUF [30] is one of the most popular electronic PUFs that are exploited for
authentication operations. This PUF’s architecture is based on a comparison of the travel
times of two electrical signals propagating down two symmetrical paths. The uniqueness
of the responses is based on the manufacturing variations in the creation of these two paths.
This PUF is constructed using a pre-determined number of 22 cells that connect these paths.
The choice of connection routes depends entirely on the l challenge bits C[x], x ∈ [1, l].
Finally, the arbiter component decides which signals has arrived first, and accordingly
outputs the associated binary response, as illustrated in Figure 1.

Arbiter
𝐸𝑁

𝐶[1] 𝐶[2] 𝐶[𝑙 − 1] 𝐶[𝑙]

𝑅

Deactivated path

Activated path

Figure 1. Arbiter PUF architecture.
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2.1.2. XOR Arbiter PUF

This PUF architecture is a variant of the previously described Arbiter PUF. It has been
developed as way to enhance the complexity of the mapping function between the input
challenges and the output responses. As highlighted in Figure 2, this construction uses n
independent Arbiter PUFs, and it applies an XOR operation on their individual responses
to obtain the output response R. However, the stability of the responses is highly affected
by the number n of applied Arbiter PUFs.

Arbiter

⊕
𝐶[1] 𝐶[2] 𝐶[𝑙 − 1] 𝐶[𝑙]

Arbiter

Arbiter

𝑅

𝐸𝑁
𝐶[1] 𝐶[2] 𝐶[𝑙 − 1] 𝐶[𝑙]

𝐶[1] 𝐶[2] 𝐶[𝑙 − 1] 𝐶[𝑙]

Deactivated path

Activated path

Figure 2. n-XOR Arbiter PUF architecture.

Yu et al. [31] has presented another variant of the XOR Arbiter PUF by applying a
different challenge at each stage. n challenges can be constructed by applying a linear-
feedback shift register (LFSR) to the received root challenge C, as shown in Figure 3.

Arbiter

⊕
𝐶[1] 𝐶[2] 𝐶[𝑙 − 1] 𝐶[𝑙]

Arbiter

Arbiter

𝑅

𝐸𝑁
𝐶[2] 𝐶[3] 𝐶[𝑙] 𝐶[1]

𝐶[𝑛] 𝐶[𝑛 + 1] 𝐶[𝑛 − 2] 𝐶[𝑛 − 1]

Deactivated path

Activated path

Figure 3. n-XOR Arbiter PUF variant with a derivative challenge for each stage.

2.1.3. Logically Reconfigurable PUF

The Logically Reconfigurable PUF (LR-PUF) [32] represents a secure hardware element
that has the ability to change its challenge–response behavior. The reconfigurability aspects
can be achieved in the context of integrated circuits through the use of a field-programmable
gate array (FPGA). These PUF circuits should guarantee two properties: forward and
backward-unpredictability. The former property assures that the challenge–response pairs
collected before the reconfiguration is invalid. Thus, the adversary cannot model the
current PUF behavior through the use of previously collected CRPs. The latter property
guarantees that an adversary with access to the current reconfigured PUF cannot estimates
the responses before the reconfiguration. The work of Liu et al. [33] has identified two type
of LR-PUFs: circuit-based reconfigurable PUFs (C-RPUFs) and algorithm-based reconfigurable
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PUFs (A-RPUFs). The former category uses reconfigurable components onboard the circuit
to change the original construction. Thus, this hardware level modification changes the
behavior of the PUF. The latter category keeps the original hardware components, and
instead, it applies a configurable algorithm to change the mapping between the challenges
and the responses.

2.2. Modeling of PUF Designs
2.2.1. Logistic Regression

Logistic regression (LR) is a well-known supervised learning technique. This method
models the probability of a discrete outcome that is associated with a specific input variable.
The LR learning algorithm is based on the sigmoid function and a set of weights that
are learned by using the training dataset. The logistic regression technique is commonly
used for the binary classification problems. Therefore, this methodology has been applied,
in [14,21,22], to model the behavior of a binary output PUF such as the Arbiter PUF variants,
described in Sections 2.1.1 and 2.1.2.

The resilient propagation (RProp) [34] has been an increasingly popular algorithm
to optimize the weight coefficients of the logistic regression technique. This is due to its
ability to dynamically adapt the step size, independently, for each weight. This technique
has been applied in the work of Rührmair et al. [13,35] to model the x-XOR Arbiter PUF
with x ≤ 5 and with an accuracy of up to 98%. Furthermore, the work of Khalafalla and
Gebotys [22] has exploited a LR learning technique with a linear decision boundary against
a more complex Arbiter PUF variant (DAPUF [12]). This method has yielded an enhanced
modeling accuracy of up to 99% with less challenge–response pairs and with cheaper
computing resources.

2.2.2. Support Vector Machine

The support vector machine (SVM) algorithm [36] has been widely used in classi-
fication tasks. The objective of this technique is to find an optimal hyperplane in a N-
dimentional space that separates the data points. This hyperplane should classify the data
points in a way that maximizes the distance between the identified classes. The Figure 4
illustrates a binary classification problem where the optimal hyperplane is represented as
a continuous line. However, the dashed lines represent the other candidate hyperplanes
that do not provide the maximum margin between the two classes. Due to the popularity
of the SVM algorithm in the binary classification tasks, it has been used in numerous
studies [13,22,35,37,38] to model some variants of the Arbiter PUF with limited complexity.

0 1 2 3

0

1

2

3

4

5

Figure 4. Binary classification problem using the support vector machine algorithm.
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2.2.3. Artificial Neural Networks

The artificial neural network (ANN) [39] is a system that imitates the function of
the human brain through the use of multiple artificial neurons. This system consists of
a number of neuron layers that are referred to as an input layer, one or multiple hidden
layers and the classifier layer, as illustrated in Figure 5. Each neuron in the network is
connected to another and has an associated weight and a threshold. These parameters are
updated over time based on the training data to improve the prediction accuracy of the
neural network model.

The ANNs that consist of single hidden layers are referred to as single layer percep-
trons (SLPs) and they are only applicable in the case of linearly separable data. Therefore,
multiple layer perceptrons (MLPs) are used in the case of non-linear problems. In the
context of PUF modeling, a great body of work exploits the power of these model to either
attack the state-of-the-art PUF constructions or to demonstrate their resiliency against ML
modeling attempts. Unfortunately, a growing number of the proposed ML-resistant PUFs,
such as the Interpose-PUF [11] and the 9-Xor Arbiter PUF [40], have been proven vulnera-
ble against a variety of ANN attacks that aim at modeling their behavior by accessing a
sufficient number of challenge–response pairs [14,41–43].

Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ⁸ Output Layer ∈ ℝ¹

Figure 5. Artificial neural network architecture.

2.2.4. Evolutionary Strategies

The evolutionary strategies (ES) are stochastic techniques for the numerical optimiza-
tion of non-linear and non-convex learning problems. This class of ML methodologies is
inspired by the biological evolution of individuals due to specific environmental conditions,
also referred to as the survival of the fittest. In the context of the PUF technology, this
individual is represented by a vector of runtime delays in the circuit components. The
algorithm generates random PUF instances that are referred to as parents. They are tested
to check the resemblance with the target PUF responses using the fitness function that
should be specified by the user. Afterwards, the child instances inherent the parents’ char-
acteristics (delay vectors in the case of Arbiter PUFs) with minor random modifications,
and the resemblance process is conducted for many generations.

The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [44] is one of
the most known ES that performs well on complex optimization problems. This variant
uses the covariance matrix to adjust the dependencies between the variables in the normal
distribution. Figure 6 illustrates the steps of the CMA-ES technique. The algorithm starts
by generating random parent individuals according to the normal distribution. Afterwards,
the fittest candidates are selected based on a specific fitness function and the algorithm
updates its internal parameters. Finally, a new population is generated based on the
previous updates, and the process is repeated until convergence.
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(a) Iteration 1 (b) Iteration 3 (c) Iteration 5

Fig. 2 An illustration of CMA-ES optimization on a two-dimensional linear function f(x) = x21 + x22. The dashed lines are
the contour lines of the function. The optimal solution is in the upper right corner. The orange and gray dots denote the
population distribution for the current and the last iteration, respectively. The black cross (’+’) and the black ellipsoid denote
the symmetry center and the isodensity line of the distribution for the current iteration, while the gray cross and the gray
ellipsoid are for the last iteration.

splitting multiscale algorithm generally loops over the

following steps:

1) INITIALIZATION One control step for each well

(initial steps n0 = 1); The number of unknowns

is equal to the number of wells; Initial guesses of

control are assigned to each well.

2) OPTIMIZATION Solving the well control optimiza-

tion problem using an optimization algorithm.

3) SPLITTING Split each control step into two steps

of equal length (split factor ns = 2); This doubles

the number of control variables; Use the solution

from step 2) as the initial well control; Go to step

2).

Our experience indicates the efficacy of a multiscale

approach depends on two key parameters: the num-

ber of control steps for each well at the beginning of

the optimization (i.e. the number of initial steps n0)

and the multiplicative increase in the number of con-

trol steps at every iteration (i.e. the split factor ns).

As mentioned, the successive-splitting multiscale ap-

proach used in [38] starts the optimization procedure by

finding the optimal control strategy assuming one con-

trol step (n0 = 1). Subsequent optimizations split the

number of control steps by a fixed split factor ns = 2.

We show that this configuration of the two parameters

is not always the most efficient configuration. On one

hand, the optimal well control strategies with a very

coarse parametrization may be dramatically different

than with a fine parametrization (or large number of

control adjustments). Hence the solution found by a

very coarse parametrization is not useful as an initial

guess to find the optimal fine parametrization or will re-

quire many successive splittings. This observation has

to be balanced with the realization and motivation that

the problem with a large number of control adjustments

is too difficult solve immediately. The split factor is the

key to balance the difficulty of optimization problem

at each scale and the total number of scales. With a

higher split factor, less scales are needed to reach the

maximum number of control steps. We will show this is

more efficient in some cases.

Based on the above, in addition to coupling the mul-

tiscale approach with commonly used derivative free al-

gorithms, we consider the effect of the choice of the ini-

tial number of control number steps n0 and the choice

of ns in the overall efficiency of the multiscale opti-

mization process. We show this added flexibility in our

algorithm is useful in some situations. In our modified

multiscale approach, we left the choice of the initial

number of steps and the choice of the split factor to the

user. We start the multiscale algorithm with a reason-

ably small value of n0 – the initial number of control

steps, and then find the associated optimal controls.

After maximizing objective function on the basis of the

initial control steps, we split each control step into sev-

eral steps depending on the split factor ns as

xi+1(n) = xi∗(dn/nse), n = 1, 2, · · · , Nw × ns, (17)

where xi+1(n) is the nth variable in the initial guess

for the (i+1)th scale; xi∗(dn/nse) is the dn/nseth vari-

able in the optimum solution for the ith scale, d e is the

ceiling function; Nw is the total number of variables for

the ith scale. With this formula, the total number of

variables for the (i+ 1)th scale becomes Nw × ns, and

every ns variables for the (i + 1)th scale use the opti-

mum solution of the ith scale. This process of splitting

the control steps and performing a new optimization is

continued until the maximum number of control steps

is reached.

Fig. 3 gives an illustration of how the successive-

splitting multiscale approach splits the control steps to

give the next finer scale. In this figure, we show the

resulting number of control steps for two choices of ns

Figure 6. The optimizationproblem of a two-dimensional linear function using the CMA-ES algo-
rithm. The orange and gray dots represent the distributions of the child and the parent populations.

The CMA-ES technique has been widely used to model complex PUF architectures
such as Interpose-PUF [11]. This algorithm was also applied in the work of Becker [45] to
attack the two versions of the Slender-PUF [15,46]. The adversary targeted the response
obfuscation mechanism in order to use the obfuscated CRPs to efficiently model PUF circuit.

2.2.5. Other Machine Learning Techniques

Other ML techniques such as decision tree, random forest and naïve Bayes classifica-
tion have been applied to model the behavior of the PUF circuits [21,47]. These techniques
have been adopted to address the signal classification and networking problems [48,49].
However, in the work of Kroger et al. [47], they were demonstrated to be less effective in
comparison to the previously described algorithms when using a relatively large dataset
of challenge–response pairs (more than 400 CRPs). On the other hand, these techniques
achieved a better accuracy wh training on a small dataset (less than 400 CRPs).

3. Model-Based PUF Authentication Procedure

In this section, we describe the authentication process of an IoT object based on the
use of a mathematically clonable PUF based on a number of ML techniques. The procedure
consists of multiple entities that participate in verifying the identity of this particular
device. These entities constitute two generic architectures that represent the steps of an
enrollment protocol. Each of these components are defined and characterized based on
the roles and the modules that are specified by the protocol designer. The building block
diagrams in these two architectures can help to design and assess independently the system
components of these schemes with respect to the adopted threat model. Furthermore, we
provide global insights into the enrollment process and the components. This section
introduces the insider threat model in the enrollment process, which is usually overlooked
by designers. This model aims at assessing the robustness of the protocols against the
scenario of leakage of a secret PUF model to an adversary.

3.1. Enrollment Architectures

The existing model-based PUF authentication protocols can be classified based on two
generic architectures that we refer to them as three-component (3CE) and four-component
(4CE) enrollment procedures. As the name states, the former approach requires the exis-
tence of three main high-level roles:

• Prover: The IoT object that needs to be enrolled in the network of the user based on
the PUF hardware onboard it.

• Communication channel (CC): The communication channel for the components.
• Authentication server (AS): The entity that manages the storage and the accessibility

to the PUF model. Furthermore, it performs the enrollment procedure with the
prover as the root of trust (RoT) [50] in the authentication process through the chosen
communication channel.

This approach typically requires the unauthenticated IoT object to connect to the
network of the user to remotely communicate with the authentication server, as illustrated
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in Figure 7. On the other hand, the latter architecture is slightly different, since it exploits a
delegated root of trust (RoT) [50] role, referred to as the verifier. The four components of
this approach are described as follows:

• Prover: The IoT object that needs to be enrolled in the network of the user based on
the PUF hardware onboard it.

• Communication channel (CC): The communication channel for the components.
• Verifier: The designated entity that performs the enrollment procedure with the prover

on behalf of the RoT in the authentication process through the chosen communication
channel. This role and the the authentication server constitute the chain of trust in the
enrollment procedure.

• Authentication server (AS): The entity that manages the storage and the accessibility
to the PUF model. Moreover, it adds the enrolled prover to the list of authorized
devices to join the network based on the validation of the verifier.

ManufacturerAuthentication 
server

Prover
1

User space Service provider Production

PUF hardware

Communication channel

PUF model

Remote communication

2

Figure 7. Three-component enrollment procedure.

The delegated root of trust acts as the local challenger of the IoT device, as shown in
Figure 8. Therefore, it prevents the risks related to connecting an unauthenticated object
to a poorly isolated network. Furthermore, it helps to decrease the communication and
computational costs on the server side. Thus, the verifier role enhances the scalability of
the enrollment procedure.

ManufacturerAuthentication 
server

VerifierProver
1

2

User space Service provider Production

PUF hardware

Communication channel

PUF model

Remote communication

3

Figure 8. Four-component enrollment procedure.

3.2. Overview of Components

In this subsection, we describe the roles and the modules that constitute each com-
ponent. These generic elementary units serve as building blocks to the previously intro-
duced architectures.

3.2.1. Prover

The prover role represents the IoT object that holds the PUF hardware. This secure
element represents a means to perform the entity authentication procedure. Depending on
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the adopted enrollment architecture, the IoT device can be given access to the network of
the user prior to the authentication process to communicate with the AS, as illustrated in
Figure 7. However, in the case of the 4CE approach, the prover is limited to using local
communications with the verifier until the successful execution of the enrollment protocol.

The application of a PUF ML model in the protocol design is an admission that
this secure element can be mathematically cloned when the adversary has a sufficient
number of challenge–response pairs. Therefore, additional protection techniques should
be implemented to prevent the attacker from constructing their own precise PUF model.
Following the specifications in the work of Maes [51], the added security measures classify
this PUF construction as a Controlled PUF. The prover role is established based on three main
elementary units, as highlighted in Figure 9, that manage the input–output transformation.
The three sub-components are as follows:

• Challenge preparation (CP): The CP unit is responsible for receiving and preparing the
received challenge from the verifier. This part can be split into three main categories:

– Direct reception: The received challenges can be fed directly to the PUF hardware.
– Mutual construction: The prover and the verifier collaborate to compute a common

seed to generate the set of challenges. One simple example of this operation is to
exchange nonces that are concatenated to find the shared seed value.

– Challenge derivation: The prover receives a single l-bit challenge that is manipu-
lated to extract in total a set of l challenges. As an example of this operation, the
receiver can apply a linear-feedback shift register to the received root challenge.

• Challenge verification (CV): The CV unit is responsible for verifying the validity of
the challenges that are fed to the PUF hardware. For example, the verification process
may aim at ensuring that the received challenges have not been executed before. This
technique is considered a means of mitigation against the reliability attack that was
proposed in the work of Becker [45].

• Controlled PUF (CPUF): The CPUF unit constitutes the most important component
on the prover side. This part is responsible for generating and obfuscating the PUF
responses. The CPUF has three main aspects:

i. PUF architecture: The chosen PUF construction to be implemented in the prover.
ii. Reconfigurability: This aspect is only discussed in the case of FPGA. The integrated

circuit onboard the prover can be reconfigured by the verifier to impose a specific
behavior of the PUF.

iii. Obfuscation technique: The specification of the chosen approach to hide the re-
sponses from the adversary to prevent any modeling attacks based on the col-
lected CRPs.

Prover

Challenge Preparation
(CP)

Direct 

Reception

Mutual 
Construction

Challenge 
Derivation

Challenge Verification (CV) Controlled PUF (CPUF)

PUF Architecture

Reconfigurability

Obfuscation 
Technique

Figure 9. Key elements of the prover role.
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3.2.2. Verifier

The verifier role is considered as the local root of trust that initiates the challenge–
response process with the prover, as illustrated in Figure 8. This component plays a crucial
role in generating the enrollment challenges and in verifying the validity of the received
obfuscated responses. In this context, the verifier takes advantage of the received PUF
model from the authentication server to perform the enrollment process, as illustrated in
Figure 10. The verification responsibility can be divided into two main parts:

• Response re-computation: The verifier applies the chosen challenges to the PUF
model to extract a set of probably approximately correct responses.

• Response verification: This process uses the received responses from the prover and
the re-computed values from the PUF model to validate the identity of the sender.

Verifier

Response Re-
computation

Response 

Verification

Figure 10. Key elements of the verifier role.

3.2.3. Authentication Server

The authentication server is considered as the primary root of trust in both architec-
tures. This component guarantees the integrity, and in most cases, the confidentiality of
the PUF model depending on the security properties required of the enrollment protocol.
Consequently, the AS can be classified into three categories based on these security guar-
antees, as shown in Figure 11. The classification of the AS operational mode is described
as follows:

• Public database: The authentication server has to guarantee the integrity of the PUF
model that can be accessed publicly by any participant.

• Private database: The authentication server has to guarantee the integrity and the
confidentiality of the PUF model that can only be accessed by the authorized users.

• Root authenticator: The authentication server stores the PUF model under one of
the previous database modes. Furthermore, it fully plays the role of the verifier as
introduced in the 3CE architecture.

Authentication 
Server

Public Database 
mode

Private Database

mode
Root 

Authenticator

Figure 11. Key elements of the authentication server’s role.

3.2.4. Manufacturer

The manufacturer plays the initial role of constructing the prover hardware. He
extracts enough challenge–response pairs to construct the PUF model and he sends it
securely to the authentication server. These actions mark the end of participation of the
manufacturer in the enrollment process.
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3.3. Threat Models

The adopted threat models in the existing ML model-based PUF authentication pro-
tocols can be categorized depending on the accessibility properties of the ML model in
question. As described in Section 3.2.3, the private database and root authenticator modes
require the authentication server to keep the PUF model a secret and to only provide access
to the trusted users. Thus, the adversary cannot get hold of the PUF model, and he can
only attack the system through external actions such as eavesdropping or replaying the
messages exchanged between the enrollment entities. This attacker falls into the outsider
threat category. However, The public database mode assumes that any user can obtain
the model without any restrictions. The security of this mode is assured by relying on
additional assumptions about the attacker’s capabilities. Regarding the adversary’s powers
over the communication channel, he is able to eavesdrop on the exchanges between the
prover and the verifier or the authentication server depending on the adopted enrollment
architecture. Furthermore, he can actively query the PUF holder by its own challenges.
This action aims at collecting enough CRPs for the attempted model reconstruction attack
in the case of the private operational modes. However, the adversary is assumed unable to
conduct invasive attacks on the prover software, which guarantees the correctness of the en-
rollment protocol execution. This assumption can be assured through the use of lightweight
integrity verification of IoT systems such as the remote attestation schemes [52,53]. As a
consequence, the adopted threat models are classified as follows:

• Public model adversary (Pub-Adv): The goal of the adversary shifts from modeling
the PUF hardware to attacking the additional security mechanisms in order to bypass
the authentication process. For example, he can focus on reducing the response
generation time using the public PUF model to bypass the time-bound assumption.

• Private model adversary (Priv-Adv): The adversary aims at creating a precise PUF
model based on the obfuscated challenge–response exchanges. This ML model serves
as a tool to predict the correct responses to the challenges of the verifier as a way to
enroll malicious devices.

The two previously detailed attacker categories can be further extended to assess the
robustness of the enrollment protocol against an adversary that can get hold of the PUF
model that is used in the authentication process. This scenario is considered as an insider
threat within the information system of a particular organization. The attack is based on
an individual with sufficient access privileges who violates the non-disclosure policies by
leaking sensitive information, such as the PUF models. These leaks should be impossible
to be traced back to this particular individual. This scenario is only applicable in the
context of the 4CE architecture where the verifier might be the source of the leakage, since
it represents the role with the least level of trust in comparison with the authentication
server. On the other hand, the verifier is assumed to be able to properly perform the
authentication process without the risk of fraudulently enrolling malicious devices. This
is due to the fact that the enrollment process of a particular device can lead back to the
individual responsible once the malicious object is discovered. However, the PUF model, is
shared between all the potential operators, which eliminates any possibility of discovering
the leakage source.

4. Enrollment Protocols Analysis

In this section, we study a selection of model-based PUF enrollment protocols based
on the previously identified architectures. The different modules that are applied in the
components of these schemes are described and detailed. Afterwards, we provide a
security overview of the identified weaknesses in the protocol design and we suggest the
adequate mitigation.

4.1. Time-Bounded Authentication Protocol

This enrollment scheme was proposed in the work of Majzoobi and Koushanfar [54,55]
to target the issue of having a public model architecture of the PUF. The security of the
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protocol is based on the assumption that the time required to generate the responses by PUF
hardware is significantly smaller than the time required to predict them using a machine
learning model. Thus, it is possible to verify the origin of the received responses by the
verifier to avoid any possible ML-based impersonation attacks. The main steps of the
time-bound authentication process are illustrated in Figure 12. This proposal is based on
the 4CE architecture and adopts the public adversary threat model, which are described,
respectively, in Sections 3.1 and 3.3.

Prover Verifier

Public 
Database

PUF model

Figure 12. High-Level representation of the time-bound authentication protocol.

4.1.1. Protocol Components
Prover

In this protocol, the operational characteristics of the prover are systematically de-
scribed based on the following three sub-components:

• Challenge preparation: Direct reception.
• Challenge verification: The received challenges are not verified.
• Controlled PUF:

i. PUF specifications:

– Nature: Electronic.
– Architecture: C-RPUF (Section 2.1.3).

ii. Reconfigurability: This option is fully supported.

iii. Obfuscation technique: This mechanism is not applied. The responses are returned
to the verifier without any modification.

Verifier

The operational characteristics of the verifier are systematically described based on
the following two sub-components:

• Response re-computation: The verifier applies the public model that is stored in the
authentication server, and the desired reconfiguration to predict the responses of
the prover.

• Response verification: The verifier evaluates the execution time of the challenge–
response process. The verification of the PUF output happens only if the responses are
received within a pre-fixed time threshold. When the time-bound assumption is satis-
fied, the response verification process is conducted by a simple bitwise comparison.

Authentication Server

The AS in the protocol plays the role of a public database. Therefore, the PUF model
is also accessible to the adversary. However, the integrity of the stored PUF model is
assumed guaranteed.
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4.1.2. Security Assessment

Authentication Property. The verifier authenticates the prover only if the time the prover takes
to generate the correct response is less than the time-bound threshold.

To handle the public accessibility to the PUF model, the work of Majzoobi and
Koushanfar [55] uses a time-bounded method that prevents the prover from applying
a PUF model, since it takes more time than just feeding the challenge as an input to the
PUF hardware. In addition, the messages containing the configuration bitstream pro-
vide insights about the placements of the specific PUF cells to be used in the case of a
reconfigurable PUF. However, the adversary is assumed to be unable to reverse-engineer
this information, which prevents him from knowing the used PUF configuration. This
assumption suggests that the attacker does not have perfect knowledge of the protocol
structure, which partially supports the Security Through Obscurity (STO) policy. Thus, this
mechanism might be vulnerable to an attack on the distance-bounding protocols [56,57].
Therefore, there is a need for a new method to guarantee that the source of the response is
indeed the PUF hardware and not the model used. Since the manufacturer constructs the
model of the PUF and stores it in a publicly accessed database, the adversary is assumed
to be able to obtain it, just as any legitimate user can. In order to prevent the attacker
from using the PUF model to respond to the challenge, the verifier applies a time-bound
authentication proof to the challenge–response process based on the assumption that the
time required for the response simulation is longer than the time required by the hardware
PUF. This assumption is only valid if the minimum response simulation time, represented
as tsim

min, is larger than the upper bound delay for generating an authentic response by the
hardware that is represented as ∆max.

The time-bound assumption is based on the computational capabilities of the adver-
sary and the variation in the channel latency to guarantee the correctness of the authentica-
tion process. This explains the use of the additional STO assumption about the infeasibility
of the attacker decoding the configuration bit-stream, which prevents him from efficiently
simulating the behavior of the PUF. In addition, this particular protocol is mainly designed
for FPGAs, which makes it unsuitable for the application-specific integrated circuits, such
as the majority of the IoT devices. Thus, the reconfigurability technique cannot be applied
to thwart the risks of bypassing time-bound authentication.

4.2. Slender PUF Protocol

The Slender PUF protocol was proposed in two versions. The conference version
was first introduced in the work of Majzoobi et al. [15] to present a new response hiding
technique that is based on pattern matching. However, the journal version [46] represents
an extension of the response obfuscation through a pseudo-random padding of the selected
sub-string. These two proposals are based on the 3CE architecture, and they adopt the
private model adversary. The details of these two terms are described, respectively, in
Sections 3.1 and 3.3.

4.2.1. Protocol Components
Prover

In this protocol, the operational characteristics of the prover are systematically de-
scribed based on the following three sub-components:

• Challenge preparation: Mutual construction through a nonce exchange.
• Challenge verification: The received challenges are not verified.
• Controlled PUF:

i. PUF specifications:

– Nature: Electronic.
– Architecture: 4-XOR Arbiter PUF (Section 2.1.2).

ii. Reconfigurability: This option is not supported.
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iii. Obfuscation technique:

– Conference version [15]: The prover generates a random index ind ∈ [0, l − 1]
that represents the first bit of the truncation. Afterwards, he extracts the lsub
bits sequence from the l bit PUF response to the sent challenges. Then, he
sends it to the verifier to validate the enrollment procedure.

– Journal version [46]: The prover conducts the same operations to find the
substring response as in the conference version. Then, he generates an
additional random (l − lsub) bit sequence that serves as padding for the
substring. Finally, he inserts the truncated response at a random index
ind2 ∈ [0, l − lsub − 1] of the generated circular padding sequence.

Verifier

The operational characteristics of the verifier are systematically described based on
the following two sub-components:

• Response re-computation: The verifier uses the PUF secret model that is stored in
the authentication server, to precisely compute the expected hardware response.

• Response verification: The verification phase is the same for the both versions of the
protocol. The verifier tries to find a match between the substring and the simulated
PUF response through a maximum sequence alignment. The enrollment is validated
under two conditions: the substring alignment should produce a match and the ham-
ming distance between the two sequences should be less than a pre-defined threshold.
The latter condition is applied to support the noisiness in the PUF responses.

Authentication Server

The AS in the protocol plays the role of a root authenticator. Therefore, the PUF model
is not accessible to the adversary. Consequently, the authentication server has to guarantee
the confidentiality and the integrity of the PUF model.

4.2.2. Security Assessment

Authentication Property. The authentication is successful if the prover response substring
matches at some location in the authentication server’s estimated response string within a predefined
threshold of time.

The two versions of the Slender PUF protocol were put to the test in the work of
Becker [45]. In this experiment, the author applied the CMA-ES [44] machine learning
algorithm, detailed in Section 2.2.4. In the case of the attack on the Slender PUF, Becker
targeted the main security assumption of the protocol that the adversary can only compro-
mise the protocol by guessing the truncation indexes, ind1 and ind2. This assumption aims
to establish that the only possible way to model the PUF hardware is to map the substring
response sequence to the corresponding challenges. The proposed attack counters this
assumption by using a Pearson correlation coefficient corr(.) [58] as a fitness test between
the Hamming weights of the generated responses from the parent PUF instances, HW(Ri),
and the Hamming weights of the collected substrings, HW(Wi). The choice of this fitness
function was motivated by the assumption of the higher the computed correlation, the
more accurate the PUF instance. This technique efficiently modeled the protected hardware
PUF using different levels of noise and two constructions of PUFs (3-XOR and 4-XOR
Arbiter PUF). The added noise was applied to simulate the unreliability percentages of
the collected hardware PUF responses. The accuracy of the modeled 4-XOR Arbiter PUF
reached 97.2% using 600,000 noiseless CRPs. However, the additional 29% noisy responses
reduced the accuracy to 92.5% using 1,200,000 samples.

4.3. Noise Bifurcation Protocol

The noise bifurcation protocol was introduced in the work of Yu et al. [31] to present a
novel response hiding technique. The scheme selects only specific responses to be returned



Sensors 2021, 21, 8415 15 of 28

to the verifier. Thus, the attacker is assumed unable to associate the challenges and their
corresponding responses. The proposal is based on the 3CE architecture, and it adopts
the private model adversary. The details of these two terms are described, respectively, in
Sections 3.1 and 3.3.

4.3.1. Protocol Components
Prover

In this protocol, the operational characteristics of the prover are systematically de-
scribed based on the following three sub-components:

• Challenge preparation: Mutual construction through a challenge exchange. The
master challenges are referred to, respectively, as Cp for the one generated by the
prover and Cv for the one generated by the verifier.

• Challenge verification: The received challenges are not verified.
• Controlled PUF:

i. PUF specifications:

– Nature: Electronic.
– Architecture: 4-XOR Arbiter PUF with multiple derivative challenges

(Section 2.1.2).

ii. Reconfigurability: This option is not supported.

iii. Obfuscation technique: The prover generates a random challenge Cp that represents
the second master challenge. Then, he extracts a set of m challenges from Cp
and Cv. The resulting m responses R ∈ {0, 1}m is divided into m

d groups of d
elements (in [31], d = 2). Afterwards, only one response per group is randomly
chosen and they are returned as a reply to the verifier. The previously described
obfuscation technique is illustrated in Figure 13.

01  11  00  01  10  11 ..

01  11 00 01 10  11 ..

1    1    0    1    0  1 ..

01  11  00  01  10  11 ..

Prover

Authentication 
Server

Figure 13. Noise-Bifurcation obfuscation technique.

Verifier

The operational characteristics of the verifier are systematically described based on
the following two sub-components:

• Response re-computation: The verifier uses the PUF secret model to precisely com-
pute the expected hardware response.

• Response verification: The verifier reconstructs the m
d groups using the recomputed

responses. Then, he selects the matching responses with the same group and performs
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the comparison with received results, as highlighted in green in Figure 13. The
authentication is successful only when the hamming distance between the selected
and the received responses is below a pre-defined tolerance threshold.

Authentication Server

The AS in the protocol plays the role of a root authenticator. Therefore, the PUF model
is not accessible to the adversary. Consequently, the authentication server has to guarantee
the confidentiality and the integrity of the PUF model. Most importantly, the delivery of
the secret model should be only allowed for the authorized users. Additionally, the AS
plays the role of the verifier in the enrollment process.

4.3.2. Security Assessment

Authentication Property. The prover is authentic if the number of mismatched bits, that are
computed by the authentication server, are lower than a pre-defined threshold.

The noise bifurcation protocol have been assessed in the work of Tobisch and Becker [59]
through the re-execution of the evaluation methodologies presented in the original pa-
per [31]. The modeling attack focuses on the full-response replication strategy to construct
the CRP dataset. This technique aims at associating each bit response with the d challenges
of the corresponding group. However, this assessment revealed some contradictions with
the original results published in [31] that is due to the lack of specifications about the ap-
plied PUF construction. The original work exploited a XOR Arbiter PUF where each XOR
stage receives a random unique challenge. This specific architecture is considered as an
additional countermeasure that has not been clearly described. The evaluation of the noise
bifurcation technique on a classical PUF construction, where the same challenge is applied
to all the stages, reveled that the obfuscation scheme does not prevents the adversary from
modeling the PUF. The attack was conducted using the logistic regression model with a
considerable number of CRPs that depends on the number of XOR stages with an accuracy
that varies between 84% and 92%. The details of the applied ML technique are described in
Section 2.2.1.

4.4. OB-PUF Protocol

The OB-PUF protocol was introduced in the work of Gao et al. [60] to present a
challenge obfuscation technique. The main objective behind the scheme is to prevent the
adversary from constructing a sound CRP dataset that is, eventually, used to model the
PUF behavior. On the other hand, the legitimate verifier holds the PUF model that is used
to authenticate the prover based on the received responses. The proposal is based on the
3CE architecture and it adopts the private model adversary. The details of these two terms
are described, respectively, in Sections 3.1 and 3.3.

4.4.1. Protocol Components
Prover

In this protocol, the operational characteristics of the prover are systematically de-
scribed based on the following three sub-components:

• Challenge preparation: Direct reception.
• Challenge verification: The received challenges are not verified.
• Controlled PUF:

i. PUF specifications:

– Nature: Electronic.
– Architecture: Arbiter PUF (Section 2.1.1).

ii. Reconfigurability: This option is not supported.

iii. Obfuscation technique: The prover receives the obfuscated challenge COB ∈
{0, 1}l−k that is sent by the verifier where l is the challenge bit-length (e.g.,
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l = 64) and k is the number of the obfuscated bits. Afterwards, he randomly
chooses the pattern of the additional k bits and executes them using the PUF
hardware to obtain a n-bit response R where n is the number of Arbiter PUF
instances onboard the prover. The pattern is a set of k pre-defined bit values and
indices that are used as a padding to the obfuscated challenge, as highlighted in
Figure 14. The response R is, then, returned to the verifier.

1 1 0 0 .. 0

1 2 3 4 .. KBit position

Inserted valuePattern 1

1 .. 0 0 1 1

64-K .. 61 62 63 64Bit position

Inserted valuePattern 2

Figure 14. Two pattern examples that might be added to the obfuscated challenge.

Verifier

The operational characteristics of the verifier are systematically described based on
the following two sub-components:

• Response re-computation: The verifier uses the PUF secret model to compute all the
possible responses of the obfuscated challenge based on all the pre-defined padding
patterns.

• Response verification: The verifier compares the received response with all the pre-
dicted responses to authenticate the prover.

Authentication Server

The AS in the protocol plays the role of a root authenticator. Therefore, the PUF model
is not accessible to the adversary. Consequently, the authentication server has to guarantee
the confidentiality and the integrity of the PUF model. Most importantly, the delivery of
the secret model should be only allowed for the authorized users. Additionally, the AS
plays the role of the verifier in the enrollment process.

4.4.2. Security Assessment

Authentication Property. The authenticity of the prover is established if the candidate emulated
response for the given obfuscated challenge COB is the same as the received response R.

The security of the OB-PUF protocol was compromised in the work of Delvaux [61].
The attack strategy is based on the direct interaction with the prover that is holding the
PUF. The main objective of the adversary is to search for the obfuscated challenges COB
that generate similar results. This process is conducted through the repetitive execution of
the same obfuscated challenges for a specific number of times and the assessment of the
resulting responses. The collected CRPs serve as a dataset to construct the ML model of the
PUF using logistic regression. The details of the applied ML technique are described in
Section 2.2.1.

The original work [60] claimed that the adversary cannot exceed the accuracy limit of 72%
even after collecting 106 random CRPs which is not sufficient to bypass the authentication.
However, the described strategy provided the attacker with the ability to reach an 85%
accuracy using the same ML technique. Afterwards, the attacker extended their strategy to
use the constructed model to build a new dataset using uniformly distributed challenges.
This procedure increased the accuracy of the adversarial model to reach 95%. This attack
could have been mitigated through the application of a challenge verification procedure on
the prover side that eliminates the repetitive execution of the same obfuscated challenge. This
could be done by the use of an approximate set membership test such as the XOR filter [62].
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4.5. Lightweight PUF-Based Authentication Protocol

The lightweight PUF authentication protocol was introduced in the work of Yilmaz
et al. [63] to present a suitable enrollment protocol for the resource-constrained devices.
The main objective behind the scheme is to reduce the power and memory consumption
with respect to the legacy IoT protocol DTLS handshake authentication. The proposal is
based on the 4CE architecture and it adopts the private model adversary. The details of
these two terms are described, respectively, in Section 3.1 and in Section 3.3.

4.5.1. Protocol Components
Prover

In this protocol, the operational characteristics of the prover are systematically de-
scribed based on the following three sub-components:

• Challenge preparation: Direct reception.
• Challenge verification: The received challenges are not verified.
• Controlled PUF:

i. PUF specifications:

– Nature: Electronic.
– Architecture: Arbiter PUF (Section 2.1.1).

ii. Reconfigurability: This option is not supported.

iii. Obfuscation technique: The prover uses the RC5 encryption scheme [64] to encrypt
the MAC address of the device with the response of the PUF R. The returned
value of the prover is formulated as RC5(MAC, R⊕ T) where the T parameter
is the timestamp which guarantee the freshness of the obfuscation procedure.

Verifier

• Response re-computation: The verifier uses the PUF secret model to precisely com-
pute the expected hardware response.

• Response verification: The verifier predicts the PUF response through the use of the
secret model. Then, he computes the expected output value using the predicted PUF
response and the timestamp. Afterwards, he compares the two ciphertexts to validate
the authentication process.

Authentication Server

The AS in the protocol plays the role of a private database. Therefore, the PUF model is
not accessible to the adversary. Consequently, the authentication server has to guarantee
the confidentiality and the integrity of the PUF model. Most importantly, the delivery of
the secret model should be only allowed for the authorized users.

4.5.2. Security Assessment

Authentication Property. The prover is authenticated if the verifier validates the received RC5
ciphertext using the PUF model response and the timestamp.

The obfuscation technique is based on the RC5 encryption scheme. The security of
the procedure is based on the infeasibility to access the PUF responses by an adversary
that does not have the accurate model. However, this encryption scheme has requirements
regarding the length of the applied key (suggested 128 bits) which is not clearly the case in
the original protocol simulation. One study [63] implemented the authentication scheme
using a PUF architecture that provide response bit-lengths that vary, respectively, between
16 and 32 bits. Thus, the confidentiality of the sent ciphertext might be compromised
through the correlation attack [65] or the timing attack [66]. In addition, the use of an
encryption scheme to obfuscate the PUF response without error-correcting codes affects
drastically the usability of the protocol. This is due to the non-ideal reliability of the PUF
hardware that might produce bit-flips in the responses. Consequently, these incidents



Sensors 2021, 21, 8415 19 of 28

result in errors in the decryption process on the verifier side. Furthermore, the PUF model
predictions might not be always 100% accurate which ruins the de-obfuscation process.

4.6. RF-PUF Protocol

The RF-PUF protocol was introduced in the work of Chatterjee et al. [26] to present
an ANN-based process to authenticate the wireless nodes. The details of the applied ML
technique are described in Section 2.2.3.

Similar to the concept of the hardware PUFs, the proposal uses the effects of inherent
variation on radio-frequency properties of the wireless transmitters Tx (provers). The
detection is based on a machine learning model at the receiver side Rx (verifier). The main
objective behind the scheme is to distinguish between the signals received by the provers
in order to uniquely identify them, as illustrated in Figure 15. The proposal is based on the
4CE architecture and it adopts the private model adversary. The details of these two terms
are described, respectively, in Sections 3.1 and 3.3.

RF-PUF Verifier

Communication Channel

Fading

Noise Distortion

Doppler 
Shift

Private 
Database

Unique RF properties embedded in the signal
of the transmitter

Extract the signal features and 
Identify the transmitter through 

the ML model

RF-PUF ML 
model

Figure 15. High-Level representation of the RF-PUF protocol.

4.6.1. Protocol Components
Prover

In this protocol, the operational characteristics of the prover are systematically de-
scribed based on the following three sub-components:

• Challenge preparation: Direct reception.
• Challenge verification: The received challenges are not verified.
• Controlled PUF:

i. PUF specifications:

– Nature: Non-electronic.
– Architecture: RF-PUF.

ii. Reconfigurability: This option is not supported.

iii. Obfuscation technique: This mechanism is not applied. The responses are returned
to the verifier without any modification.

Verifier

• Response re-computation: This option is not supported.
• Response verification: The verifier identifies the transmitters through their radio

signatures and the ANN model.
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Authentication Server

The AS in the protocol plays the role of a private database. Therefore, the PUF model is
not accessible to the adversary. Consequently, the authentication server has to guarantee
the confidentiality and the integrity of the PUF model. Most importantly, the delivery of
the secret model should be only allowed for the authorized users.

4.6.2. Security Assessment

Authentication Property. The prover is authenticated if the verifier validates the RF signature of
the prover through the ANN model.

The RF-PUF is based on a machine learning model that identifies specific communi-
cation nodes through a set of propagation properties (local oscillator frequency, channel
information, DC offset and I-Q mismatch on the transmitter side). The model is trained
using a dataset of challenge–response pairs that are collected from a group of different
transmitters. The challenge is a pre-defined bit-sequence that is transmitted to the receiver
node. The corresponding response is represented as a set of propagation features that are
extracted from the challenge transmission. The model is trained to distinguish between
a number of transmitters with a high accuracy under varying channel conditions. The
RF-PUF protocol can authenticate up to 10,000 devices with an accuracy of 99%. However,
the decommissioning of the deployed devices poses a serious threat to the security of the
protocol. This is explained by the unfeasability of removing a specific device from the list of
accepted identities. This operation can be conducted by retraining the model from scratch
without using the CRP dataset of that decommissioned device which is computationally
costly, especially when managing a big number of IoT objects.

The authors in [26] have discussed the possibility of facing an attacker that tries to
mimick a specific transmitter through the use of a machine learning model. The adversarial
model in question intends to produce the same transmission signature as the target trans-
mitter through the collection of a sufficient number of CRPs. The paper argues that the
adversary cannot associate the collected CRPs to their corresponding identities when he
eavesdrops on a multi-device environment. Therefore, the attacker requires a larger dataset
to enhance the accuracy of their unsupervised learning model. However, the unidenti-
fied CRPs can be indexed when we take under consideration the insider threat scenario
where an adversary can obtain the ANN identification model. Thus, it transforms back the
problem into a supervised learning procedure that facilitates the mimicking attack.

4.7. Set-Based Obfuscation Protocol

The Set-Based Obfuscation protocol was introduced in the work of Zhang and Shen [67]
to present an obfuscation technique that resists the existing ML modeling attacks. The
introduced methodology relies on the use of a secret set of CRPs that is stored on the
authentication server and on the prover. These obfuscation CRPs serve as a way to modifiy
the inputs and outputs of the PUF to reinforce the complexity of the PUF mapping function.
The proposal is based on the 3CE architecture and it adopts the private model adversary.
The details of these two terms are described, respectively, in Sections 3.1 and 3.3.

4.7.1. Protocol Components
Prover

In this protocol, the operational characteristics of the prover are systematically de-
scribed based on the following three sub-components:

• Challenge preparation: Direct reception.
• Challenge verification: The received challenges are not verified.
• Controlled PUF:

i. PUF specifications:

– Nature: Electronic.
– Architecture: Arbiter PUF Section 2.1.1.
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ii. Reconfigurability: This option is not supported.

iii. Obfuscation technique: Random set-based obfuscation (RSO). The obfuscation chal-
lenges are stored in the Non-Volatile Memory (NVM). The prover selects randomly
two challenges from a set K to be applied to the PUF in order to generate the
obfuscation keys, Keyi and Keyj. Afterwards, the received challenges are XORed
with Keyi to modify the input C′. Furthermore, the output R′ is XORed with Keyj.
The computed response R̂ is split into two n

2 -bit responses (R̂a, R̂b) where n is the
bitlength of R̂. Finally, the R̂b response is transmitted to the verifier.

Verifier

• Response re-computation: The verifier uses the PUF secret model and the set of
obfuscation CRPs to compute all the potential responses.

• Response verification: The verifier compares the received response to the computed
set of potential responses. The enrollment is successful if the verifier finds two
responses where the number of mismatched bits is less than a pre-defined threshold.

Authentication Server

The AS in the protocol plays the role of a root authenticator. Therefore, the PUF model
is not accessible to the adversary. Consequently, the authentication server has to guarantee
the confidentiality and the integrity of the PUF model. Most importantly, the delivery of
the secret model should be only allowed for the authorized users. Additionally, the AS
plays the role of the verifier in the enrollment process.

4.7.2. Security Assessment

Authentication Property. The prover is authenticated if the authentication server finds a candi-
date simulated response that has a bit-rate mismatch with the received prover response which is
lower than a pre-defined threshold.

The RSO obfuscation technique has been proven resilient against the existing ML
modeling attacks, such as LR, SVM, ANN and CMA-ES. The modeling accuracy has
been reduced to a limit closer to 50%, which is equivalent to a random guess. This
technique requires the storage of the obfuscation CRPs on both the AS and the prover. Each
obfuscation challenge consists of a list of n sub-challenges. Therefore, the total number
of used sub-challenges is m × n. Thus, the storage space is estimated to be m × n × n
bits. In order to achieve the maximum level of security that the protocol can offer, the
recommended number of bits according to the original paper [67] is n = 128. Thus, the
required storage space is directly dependent on the number of the obfuscation challenges
m that is controlled by the user. For example, in the case m = 1000, the required NVM
memory space is 16 Megabits, which is not suitable for resource-constrained devices. On
the other hand, the use of less obfuscation challenges may affect the performance of the
RSO scheme against the modeling attacks. This is explained by the application of the set-
updating mechanism [67], which updates the set of obfuscation challenges located in set K.
Therefore, there is a need to study the effect of the repetitive use of obfuscation challenges.

5. Discussion and Future Research Directions

In this section, we discuss the highlighted results in Table 1. The state-of-the-art model-
based PUF protocols have adopted one of the two architectures presented in Section 3.1.
The 3CE architecture, which is used by a number of protocols in Section 4, requires the
IoT object (prover) to communicate directly with the remote authentication server. Thus,
the obligation to connect the device to the network prior to the authentication procedure
presents a potential threat. In addition, this centralized architecture relies on the AS
as the root authenticator. Therefore, it increases the workload for the server and limits
the scalability in comparison with the decentralized version that is the 4CE architecture.
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However, the delivery of the PUF model to the verifier nodes to perform the authentication
can result in the leakage of this secret.

This insider threat is justified by the risk of delegating the sensitive enrollment infor-
mation to a trusted device with a lower level of security compared to the AS. The existing
4CE enrollment protocols described in Section 4 have not taken in consideration this insider
threat model. However, the time-bound authentication protocol, as described in Section 4.1,
has demonstrated constrained resistance based on the reconfigurability parameter, the
attacker computational power and the characteristics of the used communication channel.
In addition, we have studied the discovered vulnerabilities in the existing model-based
PUF enrollment protocols that affect the ousider threat resistance. As detailed in Section 4,
a number of these attacks are the results of weakness in constructing the response obfus-
cation technique or the use of a vulnerable cryptographic scheme. However, some other
vulnerabilities are the consequences of the lack of a challenge verification mechanism that
would verify the validity of the received challenges by the prover, as in the case of the
OB-PUF protocol.

The design process of the model-based PUF enrollment protocol can be enhanced
through the use of our proposed architectures and the attacker models. The building block
diagrams in the 3CE and 4CE structure can help future researchers to design and assess
the components of the protocols independently. Furthermore, they facilitate creating a
mitigation procedure related to an attack on a specific component of the authentication
process. We have shown an example of an attack on the obfuscation technique of the OB-
PUF protocol that could have been mitigated through the implementation of a challenge
verification component. Unfortunately, in our study we noticed that this component is
generally overlooked by protocol designers, as shown in Table 1. Moreover, the insider
threat resistance is still an open research question, since it cannot be fully guaranteed by
the existing model-based PUF enrollment protocols, as illustrated in Table 1.

In the insider threat scenario, the leaked PUF ML model can be used to successfully
bypass the authentication procedure. Therefore, there is a need for an identification
mechanism to recognize the use of that specific model during an enrollment session. The
use of ML watermarking techniques [69,70] represents a promising solution to performing
this particular task. However, all of these existing watermarking methods target mainly
the digital media classification models (images, videos or sounds), and they cannot be used
for PUF models. This is explained by the nature of the PUF circuit, which takes as an input
a random bit sequence challenge. For instance, the application of an out-of-distribution
input challenge as a trigger (the trigger is an input sample that is intentionally assigned
a wrong label by the watermarked model) cannot be adopted in our case because every
combination of bits belongs to the challenge set {0, 1}l . Moreover, any kind of modification
to the challenge bit sequence directly modifies the labeled response, and consequently
affects the prediction accuracy of the PUF model. This is explained by the difficulty of
changing the high likelihood response prediction of a random challenge without reducing
the overall performance of the watermarked model. Thus, it is no longer possible to learn
the correct behavior of the PUF circuit. Consequently, there a need for a specifically crafted
watermarking technique for the case of the binary output PUF models.
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Table 1. Summary of the studied enrollment protocols.

Protocol Architecture

Prover Verifier

Authentication

Security Assessment

Challenge Challenge CPUF Response Response
Server

Outsider Threat Insider Threat

Preparation Verification PUF Reconfigurability Obfuscation Re-Computation Verification Resistance ResistanceConstruction Technique

Time-bounded Authentication Protocol [54,68] 4CE Direct Reception n/a C-RPUF Yes n/a Yes Time-bound Verification Public Database Partially Yes Partially YesBitwise Comparison

Slender PUF Protocol [15,46] 3CE Mutual Construction n/a 4-XOR Arbiter PUF No Substring Matching Yes Response Correlation Root Authenticator No -

Noise Bifurcation Protocol [31] 3CE Mutual Construction n/a 4-XOR Arbiter PUF No Noise Bifurcation Yes Bitwise Comparison Root Authenticator No -

OB-PUF Protocol [60] 3CE Direct Reception n/a Arbiter PUF No Obfuscated Challenge Insertion Yes Bitwise Comparison Root Authenticator No -

Lightweight PUF-Based
Authentication Protocol [63] 4CE Direct Reception n/a Arbiter PUF No Encryption Yes Ciphertext Comparison Private Database Partially Yes No

RF-PUF Protocol [26] 4CE Direct Reception n/a RF-PUF No n/a No ANN Model Private Database Yes No

Set-Based Obfuscation Protocol [67] 3CE Direct Reception n/a Arbiter PUF No Random Set-based Obfuscation Yes Bitwise Comparison Root Authenticator Yes -
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6. Conclusions

In this survey, we have focused on the usage of ML models of PUF circuits for perform-
ing the enrollment process due to their scalability advantages. The use of a mathematically
clonable PUF requires the adoption of additional security measures to prevent the mod-
eling attacks through the collection of CRPs. This operation is considered quite complex
to address without having a clear idea of the different entities of the protocol and their
respective components. Therefore, we have introduced two enrollment architectures that
map the different nodes participating in the authentication process of the IoT devices. We
have studied a selection of model-based PUF enrollment protocols and we have outlined
their security limitations with respect to the identified design flaws.

The proposed architectures facilitate the mitigation of some of the highlighted weak-
ness by modifying vulnerable components in the protocol design. The building block
diagrams in the 3CE and 4CE structures can help future researchers to design and inde-
pendently assess the system components of the protocols. The resiliency of the selected
enrollment schemes has been assessed against an insider threat within the organization.

This study yielded that these protocols cannot fully guarantee the security of the
enrollment procedure when the PUF model is leaked to the adversary. Thus, there is
a need for an identification mechanism to recognize the use of that specific ML model
during an enrollment session instead of the legitimate hardware. The use of a distance-
bounding protocol with a fixed time-bound has been previously proposed to distinguish
between the use of a PUF hardware and an ML model. However, this technique requires
the accurate estimation of a dynamic time-bound that is based on the characteristic of the
communication channel and the complexity of the used PUF circuit. In addition, the use of
a watermarking technique in the PUF model can be a potential solution to the information
leakage problem. This attack scenario is generally overlooked by protocol designers, and
mitigation of insider threats is still an open discussion.
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CC Communication Channel
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CP Challenge Preparation
CPUF Controlled PUF
CRP Challenge–Response Pair
CV Challenge Verification
DAPUF Double Arbiter PUF
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ES Evolutionary Strategies
ETSI European Telecommunications Standards Institute
FPGA Field-Programmable Gate Array
IoT Internet of Things
LR Logistic Regression
LR-PUF Logically Reconfigurable PUF
ML Machine Learning
MLP Multi-Layer Perceptron
NIST National Institute of Standards and Technology
NVM Non-Volatile Memory
OTP One-Time Password
Priv-Adv Private Model Adversary
PUF Physical Unclonable Function
Pub-Adv Public Model Adversary
RoT Root of Trust
RSO Random Set-based Obfuscation
SLP Single Layer Perceptron
STO Security Through Obscurity
SVM Support Vector Machine
3CE Three-Component Enrollment
4CE Four-Component Enrollment
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