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Abstract: Path planning technology is significant for planetary rovers that perform exploration
missions in unfamiliar environments. In this work, we propose a novel global path planning
algorithm, based on the value iteration network (VIN), which is embedded within a differentiable
planning module, built on the value iteration (VI) algorithm, and has emerged as an effective method
to learn to plan. Despite the capability of learning environment dynamics and performing long-
range reasoning, the VIN suffers from several limitations, including sensitivity to initialization and
poor performance in large-scale domains. We introduce the double value iteration network (dVIN),
which decouples action selection and value estimation in the VI module, using the weighted double
estimator method to approximate the maximum expected value, instead of maximizing over the
estimated action value. We have devised a simple, yet effective, two-stage training strategy for VI-
based models to address the problem of high computational cost and poor performance in large-size
domains. We evaluate the dVIN on planning problems in grid-world domains and realistic datasets,
generated from terrain images of a moon landscape. We show that our dVIN empirically outperforms
the baseline methods and generalize better to large-scale environments.

Keywords: planetary rover path planning; reinforcement learning; value iteration algorithm; deep
neural network; double estimator method

1. Introduction

The planetary rover can move freely on the planet’s surface and conduct exploration
missions over a larger area than a fixed lander. However, given the distance from Earth and
the communication delay, it is difficult for the rover to receive real-time control commands
from the ground to guide its exploration activities. When the rover needs to go a target
out of view, planning a collision-free and energy-efficient path is challenging because the
uncertain planetary environments and the limited detection range of the sensors on board
make it more vulnerable to hazards,such as rocks, slopes, and craters [1].

One possible solution is to calculate the globally optimal path in advance, based on
the high-resolution terrain images taken by satellites, and then let the rover follow this
path based on the actual observation. Search-based planning algorithms [2], including
the popular Dijkstra and A*, are common approaches to path planning problems and
are guaranteed to find a solution path, if one exists, by incrementally exploring the map.
PRM and RRT are examples of sampling-based planning algorithms [3], which randomly
sample the configuration space to create a path. In high-dimension planning problems,
the sampling-based algorithms work more efficiently than the search-based methods, in
terms of computational resources, but at the cost of being non-optimal. Heuristic-based
approaches [4], e.g., genetic algorithm (GA) and particle swarm optimization (PSO), have
high proficiency in handling unknown or partially known environments.They create a set
of temporary paths within each of their iterations and choose the best path, based on their
fitness, gradually bringing them closer to the destination location. However, these classical
path planning algorithms [5] often require mapping the environmental information to grid

Sensors 2021, 21, 8418. https://doi.org/10.3390/s21248418 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6230-1122
https://orcid.org/0000-0003-1453-0398
https://doi.org/10.3390/s21248418
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248418
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248418?type=check_update&version=2


Sensors 2021, 21, 8418 2 of 16

maps or Voronoi diagrams and can not work without additional assumptions or human’s
prior knowledge about planetary environments [6]. They can only search for an optimal
policy for an instance of a certain type of environment at a time, and the policy could not
generalize to other similar, but unseen, domains.

Deep reinforcement learning (RL) aims to address this issue by first using deep
neural networks(DNNs) to extract environmental features, and then use RL algorithms
to plan, with respect to the learned features [7,8]. Model-free RL methods have devoted
to directly estimating the optimal policy or value function from massive interactions with
the environment [9,10], where the DNN is usually similar to that employed in supervised
learning. Despite a lack of explicit planning, the learned policy is effective because RL
algorithms themselves have access to high, long-term returns. While model-based RL
methods have focused on reconstructing a model of the environment’s dynamics from
the sequential inputs of full observations and then planning in the learned model [11,12],
which can effectively generalize to novel tasks.

Instead of explicitly constructing environment models and performing planning
algorithms, the value iteration network (VIN) has been proposed to combine the advantages
of model-free and -based methods, using the recurrent convolution layers to approximate
the value iteration (VI) algorithm and realizing end-to-end planning, without pre-defined
environment’s dynamics and reward functions [13]. While the VIN can only take regularly
structured data as input and the Markov decision process (MDP) behind must be fixed and
known, some recent works have further extended the usage of the VI-based architecture to
irregular graphs [14,15], dynamic environments [16], and spatially variant problems [17].

VI-based models are often plagued by training instability and poor convergence
because of the stacked convolution and max-pooling layers in the VI module. The modern
practice of convolutional neural networks has shown that the deeper networks are more
expressive. However, when the depth reaches a certain level, the network is difficult to
train effectively; not only does convergence becomes slower, but the performance even
decreases. In practice, deep neural networks have widely used (1) residual structures [18] to
solve the problem of vanishing/exploding gradients and (2) normalization operations [19]
to stabilize the training process and increase the generalization ability. However, we
experimentally demonstrate that these techniques are not helpful in training for stability
and accuracy improvement of VIN.

In this work, we present a variant of VIN, termed a double value iteration network
(dVIN). This model implicitly learns to use training data from other planners to solve
planning problems of planetary rovers and relies only on orbital images to produce a plan
that is useful in situations beyond the visible range of the ground. Inspired by [20,21], we
introduce two estimators to the VI module, decoupling the action selection from evaluation
and propose a new VI-based model. This double estimator method prefers overestimated
to underestimated values, resulting in more stable and reliable learning, and the alternate
update of two estimators acts as a regularizer, having a beneficial effect on the gradient
flow through the network.

In addition, the resolution of feature maps keeps fixed in the VI-based model, leading
to a high computational cost, especially in large-sized environments. However, we found
the VI-based model has good transfer capability among different size domains by adjusting
the iteration number of VI according to the input resolution. Therefore, we design a
two-stage training approach for VI-based models. The resulting model has much better
performance than that trained from scratch on large-size domains, as shown in Figure 1.

We demonstrate that, when combining the double estimator method with a two-
stage training strategy, the dVIN significantly improves the performance of VIN on path
planning tasks and outperforms the CNN-based model [22] by a wide margin in large-size
environments. The main contributions of this work are summarized as follows:
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• By introducing a double estimator approach, we propose the double value iteration
network, a variant of the VIN that can effectively learn to plan from natural images.

• We design a two-stage training strategy, based on the characteristics of VI-based
models, which can help them achieve a better performance in large-size environments
with a lower computational cost.

• Experimental results on grid-world maps and terrain images show that the dVIN
significantly outperforms not only the previous VI-based models but also a CNN-
based model.

The paper is organized as follows. Section 2 provides some preliminaries of this paper.
Section 3 describes the proposed dVIN architecture for global path planning. The experi-
mental results and some discussion are presented in Section 4. The conclusion is given in
Section 5.
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Figure 1. Success rate in test set vs. domain size. Our dVIN outperforms three baseline methods on
the grid-world path planning task, especially on large-size domains. VIN* is trained from scratch in
64× 64 domains. Additionally, its performance is much lower than that of the VIN trained with the
two-stage training strategy.

2. Preliminaries
2.1. Markov Decision Processes

The MDP can usually be represented as a tuple [S ,A, P,R], with S being the set
of state s, A being the set of action a, P the state-transition distribution mapping each
state-action tuple (s, a ) to a probability distribution over states (with p(s′ | s, a ) denoting
the probability of transitioning to state s′ from s by choosing action a) andR ⊂ R the set of
reward r. In RL, the goal of the agent is to select actions in a fashion that maximizes the
cumulative expected reward.

A policy π is a mapping from each state to a distribution over actions (with π(a | s)),
denoting the probability of choosing a in state s). If the current state is St = s at time t,
and actions are selected according to a stochastic policy π, the value function, denoted vπ(s),
is the expected return when starting in s, following π thereafter, and can be defined by:

vπ(s) = Eπ

[
∑
k=0

γkRt+k+1 | St = s

]
, (1)

where γ ∈ [0, 1] is a discount factor that trades off the importance of immediate and
later rewards.

Similarly, we define the action-value function as the expected return, starting from s,
taking the action a, and thereafter following policy π, which can be written as:

qπ(s, a) = Eπ

[
∑
k=0

γkRt+k+1 | St = s, At = a

]
. (2)
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We denote all the optimal policies by π∗, and they share the same state-value function,
called the optimal state-value function, denoted v∗ and defined as v∗(s) = max

π
vπ(s). The

optimal action-value function q∗ is defined as q∗(s, a) = max
π

qπ(s, a). We can further write q∗,
in terms of v∗, as:

q∗(s, a) = E[Rt+1 + γv∗(St+1) | St = s, At = a]. (3)

The Bellman optimality equation expresses the fact that the value of a state under an
optimal policy must equal the expected return for the best action from that state, that is
v∗(s) = max

a
qπ∗(s, a). An effective way to finding an optimal policy is value iteration:

vk+1(s) = max
a ∑

s′ ,r
p
(
s′, r | s, a

)[
r + γvk

(
s′
)]

. (4)

For arbitrary v0, vk can be shown to converge as k → ∞ to v∗, under the same
conditions that guarantee the existence of v∗ [8].

2.2. Double Q-Learning

Q-learning, a popular reinforcement learning algorithm, has successfully been used to
optimally solve MDPs. The update of Q-learning can be given as:

Qt+1(s, a) = Qt(s, a) + αt(s, a)
(

YQ
t −Qt(s, a)

)
, (5)

where the target YQ
t = r + γmax

a
Qt(s′, a).

Q-learning approximates the value of the next state by maximizing over the estimated
action values in that state. The max operator uses the same Q functions to select action
and evaluate its value, which makes it more likely to select overestimated values, resulting
in overoptimistic value estimates and a large performance penalty in stochastic MDPs.
To avoid this overestimation, a double estimator method was proposed to decouple the
selection operator from the evaluation.

A double Q-learing algorithm [20] stores two Q functions, and each function is updated
with a value from the other for next state. Despite two set of weights, one of them is used
to determine the greedy policy, with the other determining its value. The two functions are
learned by randomly assigning each experience to update one of them, so the method is
not less sample-efficient than standard Q-learning.

In [21], without having to introduce another set of weights, the target network in
the DQN provides a natural candidate for the second Q function. Therefore, the online
network is used to evaluate the greedy policy, but the target network is to estimate the
value. The target can be written as:

YDDQN
t = r + γQ

(
s′, argmax

a
Q
(
s′, a; θt

)
; θ−t

)
. (6)

Compared with double Q-learning, the weights of target network θ−t , instead of the
weights of a second network θ′t, are used for the evaluation of the current greedy policy.

2.3. Value Iteration Network

Considering the planning problem in 2D grid-word domains, the purpose is to find
a shortest path from the start position to the goal, without encountering any obstacles.
Let M denote the MDP of the domain where we design our policy π. We also assume
there is another unknown MDP M̄, such that the optimal policy π̄∗ contains some useful
information that can be used to solve π∗ in the original MDP.

The VIN is an end-to-end architecture that is equipped with the ability to learn
and solve M̄ and add the solution as a part of the policy π. To establish a connection
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between M and M̄, we let r̄ = fR(φ(s)) and p̄ = fP(φ(s)), where φ(s) is denoted by the
observation of the state s, and the functions fR and fP will be as some elements in the
policy learning process.

We further assume that M̄ has the same state and action spaces as M, namely, s̄ = s,
ā = a. Additionally, fR maps an image of the grid-world domain to a positive reward at
the goal position, while fP encodes deterministic movements in the grid-world that the
agent can once move from the current position to its neighborhood. The VI module can be
approximately written as:

v̄k = max
a

q̄k = max
a

h
(

r̄, v̄k−1
)

, (7)

where k ∈ [1, K] is the iteration number of the VI module.
In 2D navigation tasks, the MDP has the local connectivity structure. Therefore,

the transition function h can be represented as a convolution operator. The VI policy can
then be generally written as:

v̄k
i,j = max

a
q̄k

a,i,j, q̄k
a,i,j = ∑

(i′ ,j′)
W [r,v]

a,i′−i,j′−j

[
r̄i′ ,j′ , v̄k−1

i′ ,j′

]
, (8)

with the tuple (i′, j′) ∈ N (i, j) being the neighbor of the agent’s position (i, j) and W the
parameters of the convolution kernel.

The architecture of VIN is depicted in Figure 2.
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Figure 2. Architecture of the VIN. Input1is a (2×m× n)-sized image, where m and n represent
the length and width of the domain, encoding the obstacle presence and goal position, respectively.
Input2 is a tuple (i, j) of the current position. Output is the probability distribution over available
actions. The attention module is given to improve performance, by reducing the effective number of
parameters during learning. The recurrence K was chosen, in proportion to the domain size, to ensure
that information can flow from the goal position to any other position.

3. Methods

Each iteration of the VI module can be seen as passing through a convolution and
max-pooling layer, and recurrently applying a convolution layer that is K times equivalent
to the information flowing through a K-layer plain convolutional network. The expressive
capacity of neural networks typically grows significantly as the depth increases, enabling
strong generalization performance. It is necessary for the VIN because the depth should
be efficient for the reward signal to propagate from the goal to any other position and be
some function of the length of the shortest path.

Deeper networks are usually more difficult to train, resulting from vanishing/
exploding gradients and poor signal propagation. These problems have been largely
addressed by residual learning [18,23], careful initialization, and normalization, such as
BatchNorm and LayerNorm [24]. Practitioners have also proposed some similar methods
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to improve the performance of VIN, including sharing weights between layers, replacing
the max-pooling operator with the softmax function [25] or intrducing a LSTM cell with
complex gating mechanisms, instead of the convolution layer [26]. However, these methods
either bring slight improvement in performance or have excessive computational cost.

The max-pooling operator in the VI module of Equation (8) can be simply rewritten as:

Vk(s) = Qk
(

s, argmax
a

Qk(s, a)
)

, (9)

which includes a maximization step over estimated action values, which tends to prefer
overestimating values and sometimes learns unrealistically high values. If overestimation
occurs, the iterative algorithm can lead to overestimation propagating throughout our
estimates, resulting in all the values being overestimated. Although this uniform overopti-
mism might not hurt the resulting policy, in practice, overestimation errors will differ, due
to the approximate VI algorithm.

With the single estimator in Equation (9) resulting in the overestimation, we construct
the two Q functions, QA and QB, with same architecture but different parameters. While
each value function is updated with the maximum valued action, according to one Q
function, the estimated value of this action varies from the other, which can be expressed as:

Vk
A(s) = Qk

A

(
s, argmax

a
Qk

B(s, a)
)

,

Vk
B(s) = Qk

B

(
s, argmax

a
Qk

A(s, a)
)

.
(10)

The two estimates are then used as the maximum expected value, with the next
iteration continued.

In addition, ensemble methods are commonly used, in practice, to improve the perfor-
mance of deep learning models [27,28]. Even by simply averaging the output of multiple
weak learners, we can obtain a new model with better performance [29]. Ideally, if our
model can be trained sufficiently, both estimators should be optimal, and either estimate
can be used as the maximum expected value for the next iteration. However, in practice,
two estimators are weak, so we use the ensemble of estimates as the maximum expectation
for better performance. The estimated value can be written as:

Vk(s) = ωAVk
A(s) + ωBVk

B(s), (11)

where ωA and ωB are learnable scalar parameters, and ωA + ωB = 1. Figure 3 shows the
architecture of the weighted double VI module.

This double estimator method uncouples the selection of an estimator and its value,
preventing the erroneously optimistic value function estimates and, instead, uses two
estimates to learn a conservative estimate of the value function, providing a lower bound
on the true value. Besides, this underestimation not only gives a clear motivation and
interpretation, but contributes to facilitate well-behaved gradients and deep reward signals
propagation, with these improvements being more noticeable in large-scale domains.
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Figure 3. The approximate VI module with weighted double estimator.

4. Experiments and Discussion

In this section, we evaluate the proposed dVIN architectures as policy representations
of global path planning task in two kinds of environments, including synthetic grid-world
domains and overhead terrain maps of a lunar landing site.

We compared our dVIN with three baseline methods, including VI- and CNN-based
models, as follows.

• VIN: It is the first proposed NN architecture with explicit planning computation by
end-to-end training. Our implementation follows most of the original settings in [30],
using a 1× 1 convolution layer to implement the reward function, 3× 3 convolutional
layer to approximate the state-transition function, and maximization operation, along
the action channel, to obtain the state values.

• SVIN: Compared to the VIN, two optimizations have been proposed to enhance
the network training and improve performance. One is to construct a multi-layer
convolution network to produce better reward mapping, as in [30]. The second is
to replace the max-pooling operation with the softmax of Q function over actions,
under the assumption of probabilistic action policy, with the aim of more efficient
gradient propagation. However, in this work, we focus on the performance of the VI
module, so the multi-layered reward network is not considered in our implementation.

• DB-CNN: The task setting of path planning is more like semantic segmentation than
image classification, assigning a semantic label to each pixel, which is the optimal
action in our case. Ref. [22] designed a two-branch convolutional network, where
branch 1 is similar to conventional CNNs for classification tasks, which extract global
features by a series of stacked convolution layers and down-sampling operations,
while branch 2 always keeps the feature map resolution consistent with the input for
better local feature representation.

We empirically evaluate all models using the same metrics as [13], namely prediction
loss, success rate, and trajectory difference. The prediction loss is defined as the average
0-1 loss of model outputs, relative to labels. A trajectory is said to be successful if it,
by rolling out the models, reaches the target from the initial state without hitting any
obstacle; the success rate measures the percentage of successful trajectories generated in
test domains. The trajectory difference denotes the average deviation, in length, of the
predicted successful ones from the optimal.

We also discuss the technical details of the model implementation and impact of
training strategies on the model performance. All models and experimental code are
implemented based on the PyTorch framework [31] and will be open-sourced in the future.
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4.1. Grid-World Domain

Our first experimental domain is a grid-world with random placed obstacles. Each
obstacle occupies one cell, and the number of obstacles increases with the domain size,
but their percentage over all the available space is kept fixed for ease of difficulty control.
The agent can take one step forward to eight adjacent cells at a time, with the aim of finding
a collision-free shortest path from the start position to the goal.

4.1.1. Performance in Small-Size Domains

On the one hand, because the baseline methods perform well on domains of size 8× 8
and 16× 16, it is difficult to bridge the performance gap between various methods. On
the other hand, to directly compare the results reported in previous works, and effectively
evaluate the quality of our baseline system, we start the first set of experiments on 28× 28
domains.

The training set contains 10k grid-world instances, where the obstacles are randomly
generated, but the proportion of obstacles to the total available space is fixed at 50%. For
each instance, we used the A* algorithm to calculate a shortest-path trajectory, so a total
of about 10k optimal trajectories were generated as training samples. The number is
approximate because there may be no collision-free valid path between the random start
and target positions.

We then represent each trajectory of length T, in the form of a state-action sequence
(s0, a0, s1, . . ., aT−1, sT), where for each state-action pair (s, a), the state s = (i, j) denotes
the x-y coordinate of current position, and the action a is an one-hot vector that denotes the
best action corresponding to the state. A full training sample consists of a state-action pair
(s, a), plus an observation of the environment o, that can be represented as an image of size
(m× n× 2), with one channel encoding the obstacle presence (1 for obstacle, 0 otherwise),
while the other encoding the goal position (1 at the goal, 0 otherwise), where (m× n) is the
size of the domain.

We train each model for 30 epochs, with the RMSprop optimizer, and choose the initial
learning rate of 0.004, with a mini-batch size of 128, while reducing the learning rate, by
10×, in the last 6 and last 2 epochs, respectively [32]. In addition, we also use the 1cycle
learning rate scheduler [33], implemented in PyTorch, with the maximum learning rate of
0.008 and batch size of 256, which aims to alleviate the training instability of VINs, speed
up the convergence, and improve the training accuracy. We refer to these two learning rate
policies as steps LR and 1cycle LR, respectively. The recurrence K of the VI module is set to
1.5× the domain size; that is, K = 42 for 28× 28 domains.

Figure 4 shows the training and test error for all models during training, and we
can easily distinguish the differences between the CNN- and VI-based models from the
curve features. The DB-CNN obtains a low error from the beginning of training, and the
error always decreases steadily with almost no oscillation. These models are relatively
insensitive to the choice of hyper-parameters and maintain a relatively stable performance
overall for different random seeds and learning rate adjustment strategies, although 1 cycle
LR does lead to better accuracy, compared to step LR. Since the DB-CNN is essentially a
reactive policy, lacking planning computation and mapping the state input to a one-step
forward prediction, it performs weaker on the test set than on the training set, with 2.60%
error on the training set under 1cycle LR, compared to 7.58% error on the test.

VI-based models, compared with the DB-CNN, seem to generalize better to domains
outside the training set. The test and training error remain almost the same during training,
indicating that they are not simply fitting the training set, but learning how to solve a
class of problems through explicit planning computation. However, we also show that the
VI-based models suffer from training instability and are more sensitive to the initialization
conditions; choosing different random seeds can lead to large differences in the final
performance. When adopting 1cycle LR, the VI-based models become more unstable in the
early training stage. As the learning rate gradually increases to 2× the initial learning rate
in step LR, the models almost stop converging, and the errors get saturated and oscillate at
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a high level; however, as the learning rate begins to decrease, the errors decrease rapidly
and start to be smaller than that of using step LR at about 20 epochs and continues to
decrease until the end of training.
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Figure 4. Training (top) and test error (bottom), with all models. The model trained with 1cycle LR
converges better, although with a higher error in the early training stage. The dVIN has the best
performance in the test set.

We have observed that, after removing the deep reward network of SVIN, the softmax
operation has limited improvement on model performance. In contrast, our proposed
dVIN has a surprising performance, with much smaller error than other VI-based models
on both the training and test sets. Although the training error is slightly higher than
that of DB-CNN, the test error is only 3.28%, which is much lower than the 7.58% of
DB-CNN, and even lower than the training error of 3.47%. Overall, our proposed dVIN
architecture substantially improves the performance of VI-based models on path planning
tasks and is also able to generalize better to new, unseen task instances, compared to the
CNN-based model.

Table 1 shows more experimental results. It is worth noting that the success of a path
is the result of successive multi-step decisions and does not only depend on the quality of
the single-step prediction; so, there is no strict correspondence between the prediction loss
and the success rate between different models, but, in general, the lower the prediction loss,
the higher the final success rate. However, we also find that if two models have similar
prediction losses, the simple model usually has a higher success rate, which is intuitive.
Thus, although the dVIN is a bit more complex, compared to the vanilla VIN, its much
lower prediction loss still guarantees a higher success rate than the latter.

Table 1. Performance on 28× 28 grid-world domain.

Training Strategies Methods Pred. Loss Succ. Rate Traj. Diff.

step LR

VIN 0.129 89.31% 0.451
SVIN 0.121 89.72% 0.405

DB-CNN 0.079 97.78% 0.402
dVIN (ours) 0.050 99.45% 0.120

1cycle LR

VIN 0.121 92.01% 0.454
SVIN 0.103 94.50% 0.330

DB-CNN 0.076 98.57% 0.402
dVIN (ours) 0.033 99.93% 0.032
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Moreover, although the DB-CNN has smaller prediction loss and higher success rate
than the VIN and SVIN, its trajectory difference is not much different from the latter two.
Even when using 1cycle LR, the DB-CNN has a 5% higher success rate than the SVIN,
but its trajectory difference is larger. This further indicates that, compared to the CNN-
based model, the VI-based models is not limited to single-step prediction, but focuses more
on long-term planning.

4.1.2. Generalization in Large-Size Domains

Previous works have shown that the VIN performs well on small-size domains, thanks
to the efficient propagation of the reward signal across the whole map, but as the map
size increases, the VI module performs the planning computation for a long horizon by
increasing the number of iterations. However, this not only increases the computational
cost significantly, but also makes the unconstrained iterative process more unstable, making
it difficult for the model to be trained effectively; thus, the performance on large-size maps
degrades rapidly.

In fact, the state-transition distribution does not change when the domain size in-
creases, so we further test how these models, trained on small-size maps, will perform on
large maps. We can apply the VI-based model maps different sizes by adjusting the number
of iterations K. However, with the original implementation, in [3], requiring a fixed input
image size, we devised a new version, called DB-CNN*. We added an adaptive global
average pooling layer on top of the last convolution layer, which pools the features and
generates fixed-length output. We also referred to [34] and scaled up the model accordingly,
so that the last convolution layer can output feature maps of size 4× 4, with a 128× 128
image fed into the network. Compared with the vanilla DB-CNN, the modified model has
a similar performance on 28× 28 domains.

We constructed two test sets, containing 5000 maps, with sizes of 64× 64 and 128× 128,
respectively, where the percentage of obstacles to the whole space remains at 50%. Table 2
shows the performance of all models on these two data sets, and we emphasize that these
models were only trained on 28× 28 domains.

Table 2. Performance on 64× 64 and 128× 128 grid-world domain. All models were only trained in
28× 28 domains and directly tested in large-size domains.

Methods
64 × 64 128 × 128

Succ. Rate Traj. Diff. Succ. Rate Traj. Diff.

VIN 69.96% 1.623 35.10% 2.502
SVIN 74.53% 1.289 37.04% 2.025

DB-CNN* 37.02% 2.654 6.68% 1.361
dVIN (ours) 87.65% 0.169 60.90% 0.183

The VI-based models achieve better performance than the DB-CNN*, indicating that,
even with the modified architecture, CNN-based models have difficulty generalizing
to larger domains, due to different policy mechanisms. Specifically, the VIN achieves a
success rate of 69.96% on 64× 64 maps, 20% higher than that reported in [3], and the latter
result was obtained by training the network for 100 epochs, using 10K instances. Our dVIN
achieves an even higher success rate of 87.65% on 64× 64 maps, which is 7% higher than
that of the DB-CNN trained from scratch, and 60.9% on 128× 128 maps, which is also much
higher than the other three methods. It is worth emphasizing that we trained all models on
28× 28 maps only, requiring fewer computational resources than training models from
scratch on larger size maps.
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4.1.3. Fine-Tuning in Large-Size Domains

We further consider whether we could achieve better results for VI-based models
if we continued to fine-tune them with a small number of large-size instances. So, we
constructed two small data sets, containing only 100 maps, with sizes of 64 × 64 and
128× 128, for tuning the models well-trained on 28× 28 maps. We trained each model for
10 epochs, with an initial learning rate of 0.0002, decaying the learning rate to 0.95 at the
end of each epoch and setting a batch size of 32, considering the limitation of GPU memory.

Figure 5 shows a set of grid-world instances with different sizes. Table 3 shows the
performance of fine-tuned models on the test sets containing large-size maps.

28× 28

64× 64

128× 128

optimal path

predicted path

start

goal

Figure 5. Random instances of grid-world domains with the size of 28× 28, 64× 64, and 128× 128,
with the dVIN-predicted trajectories and ground-truth shortest paths between random start and
goal positions.
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Table 3. Performance on 64× 64 and 128× 128 grid-world domain. All models were first trained in
28× 28 domains and then fine-tuned with a few large-size instances.

Methods
64 × 64 128 × 128

Pred. Loss Succ. Rate Traj. Diff. Pred. Loss Succ. Rate Traj. Diff.

VIN 0.178 70.56% 1.450 0.203 49.01% 2.996
SVIN 0.170 76.75% 1.336 0.184 53.56% 2.207

DB-CNN* 0.178 55.70% 3.374 0.348 16.74% 6.203
dVIN(ours) 0.037 98.85% 0.103 0.062 88.66% 0.822

We can see that VI-based models perform better than the DB-CNN, which has difficulty
benefiting more from the two-stage training strategy. Specifically, the VIN and SVIN show
limited improvement on 64 × 64 maps but have nearly 15% improvement, compared to
the non-tuned model on 128 × 128 maps. The success rate of dVIN is even 98.85% on
64× 64 maps, which indicates that our double estimator method substantially improves the
upper-performance limit of the VI-based model and can outperform the CNN-based model,
with less computational cost after training, with a simple two-stage training strategy. The
dVIN also has a success rate of 88.66% on 128 × 128 maps, almost the same performance as
the VIN and SVIN on 28 × 28 maps, which demonstrates that the relatively conservative
value estimation method enables a more stable signal propagation on large-size domains
and, thus, a better long-term behavior.

Overall, although path planning on grid-world domains seems to be a relatively
simple task, NN-based methods usually perform poorly on large-size maps, as shown in
Figure 1. Our proposed dVIN architecture benefits from the contrastive learning of two
value estimators, avoiding the appearance of outliers during the iterations that may affect
the stable propagation of the gradients. In addition, the two-stage training strategy of fully
training on small-size maps and then fine-tuning on large-size maps, combined with the
advantage of parameter sharing of VI-based models, helps the dVIN scales better with the
size of the environment at a small cost.

4.2. Rovers Navigation

We further explore whether the dVIN can learn better planning strategies than the
baseline methods, when taking natural images as input. We demonstrate this on the
orthomosaic (overhead terrain images) of the Apollo 17 landing site, as shown in Figure 6,
which has a resolution of 0.5 m per pixel, created from images provided by the Lunar
Reconnaissance Orbiter Camera.

Figure 6. The orthomosaic (left) and corresponding DEM (right) of the Apollo 17 landing site, with a
resolution of 0.5 m per pixel.



Sensors 2021, 21, 8418 13 of 16

We cropped the orthomosaic into non-overlapping image patches, as input to neural
networks, and considered regions with an elevation angle of 10 degrees or more as obstacles,
based on the external DEM data. We then randomly specified the start and target positions
on obstacle maps and used the A* algorithm to generate the shortest paths as training
samples. Figure 7 shows a cropped terrain image and the matching grid map, generated
from the external elevation data. It is worth noting that the DEM data was only used to
generate expert paths and is not part of the input to neural networks, which can only see
terrain images and must infer elevation data from them.

predicted path start goal

Figure 7. The predicted trajectories between random start and target positions in the lunar domains.
From left to right: terrain image, DEM, and grid map, generated from DEM with the resolutions of
128× 128. Note that the terrain image is used as the network input, and the elevation data is not
available for the learning model.

The experimental setup remains the same as in the previous section, i.e., the models
are fully trained on small-size images, and then fine-tuned on large-size ones. We do not
include the CNN-based model in the comparison because the two-stage training strategy
is not suitable for the DB-CNN, and it is too expensive to train models from scratch on
large-size images.

Besides increasing the iteration number of the VI module, previous works usually
added more layers to improve the expressive capability of models, when using higher
resolution images as input [13,22,25]. However, our results show that we can obtain better
performance without adding more network layers under the two-stage training method
because increasing the number of iterations is somehow equivalent to stacking more layers,
and deeper networks are usually better feature extractors with more expressive power.
Additionally, due to the parameter sharing of the K recurrent layers, the VI-based models
generalize better than the CNN-based model, while the effective depth is much larger.
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The results in Table 4 show that the VI-based models can learn to plan on natural pic-
tures and have an even higher planning success rate than in the grid-world domains, when
the input resolution is the same. Here, we do not consider the difficulty of distinguishing
between obstacles and non-obstacles from terrain images because the VI-based networks
are deep enough to have good feature extraction capabilities to solve this problem. Thus,
even in cases where the single-step prediction accuracy is not very high, the model is more
likely to plan successful paths, due to the small probability of collision with obstacles.
Overall, the dVIN significantly outperforms the baseline models, with natural images as
input, and generalizes well to large-size domains, thanks to the two-stage training strategy.

Table 4. Performance on lunar domain. For all domain sizes, the dVIN significantly outperform
other VI-based models. Note that the performance gap increases dramatically with problem size.

Methods
32 × 32 64 × 64 128 × 128

Succ. Rate Traj. Diff. Succ. Rate Traj. Diff. Succ. Rate Traj. Diff.

VIN 95.17% 0.236 78.57% 1.255 59.79% 2.234
SVIN 96.43% 0.193 80.65% 1.131 63.23% 2.173

dVIN(ours) 99.85% 0.076 98.19% 0.138 89.82% 0.478

5. Conclusions

In this work, we propose a novel end-to-end planning model, named the double
value iteration network (dVIN). When using terrain images of the planets’ surface as
input, the dVIN can output safe and energy-efficient paths through the explicit planning
computation, to help rovers perform better in their exploration missions. We introduce
a weighted double estimator approach to the VIN, with one estimator determining the
maximizing action and the other providing the estimate of its value. We then use the
weighted mean of the two values obtained to approximate the maximum expected value
of the next iteration, intending to reduce the overestimation and result in more stable
and reliable learning. We compare the dVIN with three baseline methods, including
VIN, SVIN, and DB-CNN, on path planning tasks of grid-world domains and a data
set generated from lunar terrain images. The experimental results show that the dVIN
significantly outperforms the other VI-based models and generalizes better on the test set,
in comparison to the CNN-based model. In addition, we design a simple, yet effective,
two-stage training strategy, which involves full training on small-size maps and fine-tuning
on a few large-size maps. When trained with this technique, the VIN and SVIN can achieve
similar performance as the DB-CNN as the size of environments grows, and the dVIN
performs much better than the baseline methods. By pre-training on the 32× 32 lunar
domain, our dVIN achieves an 89.82% success rate on the 128× 128 domain, outperforming
the VIN by 30.03% and SVIN by 26.59%, while using less computing resources than training
from scratch.
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