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Abstract: Gravure printing, which is a roll-to-roll printed electronics system suitable for high-speed
patterning of functional layers have advantages of being applied to flexible webs in large areas. As
each of the printing procedure from inking to doctoring followed by ink transferring and setting
influences the quality of the pattern geometry, it is necessary to detect and diagnose factors causing
the printing defects beforehand. Data acquisition with three triaxial acceleration sensors for fault
diagnosis of four major defects such as doctor blade tilting fault was obtained. To improve the
diagnosis performances, optimal sensor selection with Sensor Data Efficiency Evaluation, sensitivity
evaluation for axis selection with Directional Nature of Fault and feature variable optimization with
Feature Combination Matrix method was applied on the raw data to form a Smart Data. Each phase
carried out on the raw data progressively enhanced the diagnosis results in contents of accuracy,
positive predictive value, diagnosis processing time, and data capacity. In the case of doctor blade
tilting fault, the diagnosis accuracy increased from 48% to 97% with decreasing processing time of
3640 s to 16 s and the data capacity of 100 Mb to 5 Mb depending on the input data between raw data
and Smart Data.

Keywords: defect detection; Directional Nature of Fault; gravure printing; fault diagnosis;
roll-to-roll printed electronics; sensor data characterization

1. Introduction

Roll-to-roll processing is highly advantageous because it results in multiple functional
layers of electronic circuitry printed on large flexible materials (i.e., web) [1–3]. Gravure
printing is the desirable mode for fabricating these printed electronic devices, owing
to its characteristic high-speed patterning of component layers [4–6]. Gravure printing
can be classified into the following four phases: inking, doctoring, ink transfer, and ink
setting [7,8]. Printing defects can be generated by undesired printing conditions and ink
characteristics during each printing phase [9–12]. For example, during the doctoring phase,
the misalignment of the doctor blade at either side can degrade the ink uniformity in
the engraved patterns in the width direction (i.e., transverse direction (TD)). Moreover,
non-uniform nip roll pressure can negatively affect the uniformity of the pattern thickness
in the TD. To derive high-quality patterns with uniform thickness using the roll-to-roll
gravure printing process, it is necessary to recognize and diagnose these.

In this study, a method of data characterization using sensor data efficiency evaluation
(SE), directional nature of fault (DNF), and feature combination matrix (FCM) is proposed
to diagnose these major faults. The aim is to recognize defects in advance and improve the

Sensors 2021, 21, 8454. https://doi.org/10.3390/s21248454 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2396-9044
https://orcid.org/0000-0001-9862-2833
https://doi.org/10.3390/s21248454
https://doi.org/10.3390/s21248454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248454
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248454?type=check_update&version=2


Sensors 2021, 21, 8454 2 of 18

diagnosis results by optimizing the training (input) data acquired from multiple sensors
for the machine-learning fault diagnosis model. We find that the misalignment of the
doctor blade, eccentricity of the nip and printing rolls, and non-uniform nip pressure can
be indirectly measured via the vibration of the doctor blade, the nip roll, and the frames
supporting the printing module. Through the acquisition of vibration data using multiple
sensors, a vibration dataset (i.e., Raw data) is acquired. The smart data clearly show the
characteristics of the vibration caused by the factors mentioned above, and they are selected
from the raw dataset using the proposed methods in three phases to maximize performance
efficiency. The evaluation criteria include diagnosis accuracy, positive predictive value
(PPV), processing time for diagnosis, and data capacity. The performance of the machine-
learning model developed using smart data was compared to that of the model just using
the raw dataset.

With significant growth of industrial machines, recent studies have raised concerns
regarding the maintenance of operating conditions. Profound interest in the fields of fault
diagnosis based on data acquisition of sensors has been shown in recent research. Xia
et al. presented convolutional neural network-based feature extraction approaches for fault
diagnosis of rotating machines with multiple sensors [13]. Duan et al. have reviewed fields
of fault diagnosis and condition monitoring based on multi-sensors for rolling bearings
by presenting foundational knowledge [14]. Studies with multirate data and sensors for
fault diagnosis by feature extracting deep learning models has been carried out by Zhao
et al. and Huang et al. [15,16]. Research for fault diagnosis based on data optimization in
recent studies has been shown by Bazan et al. and Wang et al. [17,18]. Lee et al. proposed
quantification methods of fault features for rotary machine fault diagnosis. Most studies
regarding fault diagnosis have shown methods of feature extraction to improve the results
of machine learning from the data acquisition of sensors.

As shown in studies abovementioned, diagnosing the abnormal conditions with
multiple sensors show promising results of fault diagnosis; however, the efficiency of
diagnosis performance is without consideration. As studies focus on methods or strategies
to conclude in diagnosis, this paper proposes methods to optimize multiple sensor data by
selecting an optimal sensor. Furthermore, in comparison with Bazan et al., the performances
of diagnosis results regarding accuracy, and data reduction stretch to positive predictive
value and diagnosis processing time [17]. Related to Lee et al., this paper proposes strategies
based on quantification methods to evaluate the efficiency of each phase [19].

2. Methodology of Data Characterization
2.1. Procedure of Data Characerization from Raw Data to Smart Data

Procedure of data characterization is led with data acquisition with three acceleration
sensors which are attached to the doctor’s blade and the frame of the gravure printing
system. Each sensor is capable of acquiring data with three axes. Then on, experimentally
acquired raw data is achieved in three phases, as shown in Figure 1. During Phase 1, the
acquired sensor data are evaluated for efficiency (SE), and the most efficient (optimal)
sensor is chosen for DNF processing in Phase 2 to extract the most sensitive of three axes
from the sensor. Then, a list of feature variables is tallied for training data using the FCM
method in Phase 3. Finally, the processed smart data are used as input to the machine-
learning fault diagnosis model to classify the printing process operating conditions during
the major fault occurrences. Further description of smart data characterization through
Phases 1–3 will be extensively illustrated in detail in Sections 2.2–2.4.

2.2. Sensor Data Efficiency Evaluation

The optimally efficient sensor is selected using an evaluation procedure based on
Equation (1), which leverages three variables. α is the ratio of the data capacity between
raw data and single-sensor data. β is the ratio of the data processing time, and γ is the ratio
of the misclassification rate. Likewise, β and γ is a ratio between raw data and single-sensor
data. Since the value of SE in Equation (1) is dependent on the ratio of three variables
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of two comparing data, the sensor rating the highest SE is selected as the optimal single
sensor. In other words, a sensor with the clearest distinction to the raw data in three aspects
abovementioned is likely to score the highest SE.

SE =
α + β

2γ
(1)

In the case of this experiment, the diagnosis results from the raw data of three triaxial
sensors were compared.
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2.3. Directional Nature of Fault

The DNF method extracts valid data from raw data by evaluating the sensitivity
of the axial information from a single sensor. After Phase 1, the DNF method evaluates
axes X, Y, and Z to extract valid data for fault diagnosis. The DNF method is defined in
Equation (2), where α and β are weight factors defining the relative ratio between kurtosis
and standard deviation. k f and kn are the kurtosis of the fault and normal conditions,
respectively. std f and stdn are the standard deviation of the fault and normal conditions,
respectively. Based on the probability distribution curve, the standard deviation of the
abnormal condition data has a wide distribution of data points [20,21]. The kurtosis of
an abnormal condition has an imbalanced distribution [22]. The DNF number based on
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Equation (2) can thus be acquired from each axis. The axis with the highest DNF number
defines the most sensitive and valid data for training.

DN =
1

α + β
(α

k f

kn
+ β

std f

stdn
) (2)

2.4. Feature Combination Matrix

The FCM method selects and extracts statistical feature variables. As shown in Figure 2,
feature extraction is performed when the list of statistical feature variables is acquired from
the dataset from Phase 2 [23,24]. The extracted features are then combined into the three
features of a three-dimensional volume. As mentioned in Section 2.3, based on a normal
distribution, the distribution of data points is likely to be imbalanced, broad, skewed, or
irregular [25–27]. Comparing the volume acquired from the combination of the three features,
the volume of the normal condition data is smaller than that of the abnormal condition.
Hence, the combination producing the largest difference between the two volumes of different
conditions reflects higher classification accuracy. The distance between the two datasets is
also a factor that improves classification performance because it distinguishes between normal
and abnormal conditions. The Mahalanobis distance is applied to evaluate the distance
between two datasets in a multivariate space, including correlated points for multiple variables,
considering the densities of the datasets [28–31]. Using the volumes of normal/abnormal
feature combinations and the Mahalanobis distance feature variables, the Feature Variable’s
Dimensional Coordination number (FDCN) can be obtained. As shown in Equation (3), the
FDCN evaluates the combination of extracted features to ranks them according to efficiency. V1
represents the volume of the normal condition feature combination, V2 represents the volume
of the abnormal condition feature combination, and Md represents the Mahalanobis distance
between V1 and V2.

FDCN = Md

(
V2 −V1

V2 + V1

)
(3)

The selected feature combination through evaluation of the FDCN is then applied to be
used as training data for developing a machine learning fault diagnosis model.
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3. Experimental Data Acquisition

The experimental data acquisition for major fault diagnosis of the gravure printing
system is shown in Figure 3. As shown, acceleration Sensors 1, 2, and 3 were installed on
both sides of the doctor blade and the frame supporting the printing module. All sensor
outputs were obtained using a data acquisition module (NI-9230, National Instruments).
Table 1 lists the specifications of the acceleration sensor and the NI-9230 module. When
the sensors obtained the vibration data, they were transferred to the LabVIEW software to
monitor and save the acquired data.
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Table 1. Specifications of acceleration sensor and NI-9230 module.

Item Parameter Value

Sensor

Sensor Type Share Accelerometer, Triaxial
Sensitivity

[
mV/

(
m/s2) ] 5.15

Measurement Range
[
m/s2 ] ±1000 g peak

Frequency Range [Hz] 2–5000 Hz
Resolution

[
m/s2 ] 0.003 (rms)

Module
Sampling Rate Range [Hz] 0–1651.6
Sampling Time per Trial [s] 36,000

The possible main faults during the printing process of the gravure printing system
are shown in Figure 4. The four main faults of the experimental design include doctor
blade tilting, printing roll eccentricity, nip roll eccentricity, and nip force non-uniformity. To
detect the main faults for diagnosis, the experimental variables included the doctor blade,
nip force, and tension. Cases with and without doctoring, and cases with and without
nipping were tested under tensions of 2, 4, and 6 kgf. Regarding the nip force, the nipping
cases were tested under 5 and 10 kgf, as shown in Table 2.

As shown in Table 3, each case was tested under different tension, nip force, and
doctoring conditions. The data used for diagnosing the doctor blade tilting fault required
Cases 1 and 2 at an operating tension of 2 kgf, Cases 7 and 8 at an operating tension of
4 kgf, and Cases 13 and 14 at an operating tension of 6 kgf. Cases 1, 7, and 13 had different
operating tensions; however, they were tested without and without doctoring. Cases 2, 8,
and 14 also had different operating tensions with and without doctoring. The data for the
fault diagnosis of the doctor blade tilting fault were acquired from the comparison of each
case at the same operating tension. The data for diagnosis printing roll eccentricity were
acquired from Cases 1, 7, and 13, which lack nipping and doctoring. Case comparison for
nip roll eccentricity required conditions without doctoring; hence, Cases 5, 11, and 17 with
a nip force of 10 kgf were compared to cases 1, 7, and 13. Nip force non-uniformity cases



Sensors 2021, 21, 8454 6 of 18

were selected using the nip force data shown in Figure 5. Cases 9 and 15 with uniform nip
forces were compared to Cases 11 and 17.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. Experimental data acquisition by sensor position designation within the printing section. 

The possible main faults during the printing process of the gravure printing system 
are shown in Figure 4. The four main faults of the experimental design include doctor 
blade tilting, printing roll eccentricity, nip roll eccentricity, and nip force non-uniformity. 
To detect the main faults for diagnosis, the experimental variables included the doctor 
blade, nip force, and tension. Cases with and without doctoring, and cases with and with-
out nipping were tested under tensions of 2, 4, and 6 kgf. Regarding the nip force, the 
nipping cases were tested under 5 and 10 kgf, as shown in Table 2.  

 

 
Figure 4. Possible main faults during gravure printing process: (a) Doctor blade tilting fault; (b) Printing roll eccentricity 
fault; (c) Nip roll eccentricity fault; and (d) Nip force non-uniformity fault.  

Figure 4. Possible main faults during gravure printing process: (a) Doctor blade tilting fault; (b) Printing roll eccentricity
fault; (c) Nip roll eccentricity fault; and (d) Nip force non-uniformity fault.

Table 2. Experimental design of data acquisition with experimental variables of tension, nip force,
and doctoring.

Case No. Tension [kgf] Nip Force [kgf] Doctoring

1

2

Without Nipping Without Doctoring
2 Without Nipping With Doctoring
3 5 Without Doctoring
4 5 With Doctoring
5 10 Without Doctoring
6 10 With Doctoring

7

4

Without Nipping Without Doctoring
8 Without Nipping With Doctoring
9 5 Without Doctoring
10 5 With Doctoring
11 10 Without Doctoring
12 10 With Doctoring

13

6

Without Nipping Without Doctoring
14 Without Nipping With Doctoring
15 5 Without Doctoring
16 5 With Doctoring
17 10 Without Doctoring
18 10 With Doctoring
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Table 3. Case comparison for fault diagnosis of possible main faults during printing process of gravure printing system.

Case No. Tension [2 kgf] Tension [4 kgf] Tension [6 kgf]

Doctor Blade Tilting Case 1 vs. Case 2 Case 7 vs. Case 8 Case 13 vs. Case 14
Printing Roll Eccentricity Case 1 Case 7 Case 13

Nip Roll Eccentricity Case 1 vs. Case 5 Case 7 vs. Case 11 Case 13 vs. Case 17
Nip Force Non-Uniformity - Case 9 vs. Case 11 Case 15 vs. Case 17
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4. Results
4.1. Doctor Blade Tilting Fault Diagnosis
4.1.1. Doctor Blade Tilting Fault Diagnosis Based on Raw Data

In this section, the fault diagnosis results of the doctor blade tilting fault based on the
raw data are presented in Table 4. The raw data in this case include all data acquired from
Sensors 1, 2, and 3. The diagnosis of a doctor blade tilting fault at an operating tension
of 2 kgf showed 58.2 with a diagnosis accuracy of 1508.9 s and a processing capacity of
115 Mb. For a tension of 4 kgf, accuracy rates of 48.1% at 3640.4-s processing time required
100-Mb data capacity. At a tension of 6 kgf, the accuracy of fault diagnosis rates was 67.2%,
which was the highest among tensions by 368.4 s with 113-Mb data size.

Table 4. Doctor blade tilting fault diagnosis based on raw data (i.e., Sensors 1, 2, and 3).

[SVM] 2 kgf 4 kgf 6 kgf

Accuracy [%] 58.2 48.1 67.2
Positive Predictive Value [%] 51.4 36.7 64.4

Processing Time [s] 1508.9 3640.4 368.4
Data Capacity [Mb] 115 100 113

4.1.2. Optimal Sensor Selection Based on Sensor Efficiency Evaluation Method

The sensor data efficiency method described in Section 2.2 was applied to the raw
data to select a single optimal sensor for performance improvement. Because the raw
data comprised all sensor data, the sensor data efficiency method evaluates the sensors
individually, as shown in Table S1. To evaluate the efficiency of SE, the data capacity
(α), processing time (β), and misclassification rate (γ) must be obtained from individual
sensors. Sensors 1 and 2 from Figure 3 were evaluated because both were installed on
the doctor blade in the same directions as the X, Y, and Z axes. Tables S1–S3 show the
results of the sensor data efficiency evaluation, comparing the raw data to the data of
Sensors 1 and 2. The results of the doctor blade tilting fault diagnosis for optimal sensor
selection in Tables S1–S3 show that the highest SE results for Sensor 1 are as listed in
Table 5.

Table 5. Result of sensor data efficiency evaluation for optimal sensor selection of doctor blade tilting
fault.

SE Sensor 1 Sensor 2

2 kgf 6 5.79
4 kgf 6.69 5.70
6 kgf 8.17 5

The result of the optimal sensor selection can be verified in Table S4 as compared with
Table S5, based on the performance of the diagnosis results. It can also be seen that the
diagnosis result of Sensor 1 was improved in accuracy, processing time, and data capacity
compared with the result of raw data diagnosis shown in Table 4.

4.1.3. Optimal Axis Selection Based on the DNF Method

Sensor 1 from the raw data of the doctor blade tilting cases was selected as the optimal
sensor, and the DNF method was used to evaluate axes X, Y, and Z from Sensor 1 to extract
the most sensitive axis. As mentioned in Section 2.3, based on the kurtosis and standard
deviation of normal and abnormal conditions, the DNF number was calculated. The axis
having the highest number of DNFs resulted in the highest diagnostic performance. As
shown in Table 6, the DNF number evaluation of the X, Y, and Z axes from Sensor 1 is
shown. As shown in Table 6, the axis having the highest DNF number differed depending
on the operating tension. For a tension of 2 kgf, the Y-axis resulted in the highest DNF
number. Tensions of 4 and 6 kgf showed the highest DNF numbers on the X-axis. The
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theory of achieving the highest diagnosis performance depending on the DNF number
is verified in Tables S6–S8. Table S6 shows the highest accuracy of diagnosis for tensions
of 4 and 6 kgf along the X-axis, and Table S7 illustrates the best result for a tension of
2 kgf. The proposed method evaluates the sensitivity of the axis using the DNF number,
which resulted in a high rate of diagnosis accuracy and decreased processing time and data
capacity requirements.

Table 6. DNF Number of axis X, Y, and Z from Sensor 1 of doctor blade tilting fault.

DN X Axis Y Axis Z Axis

2 kgf 8.27 11.66 6.00
4 kgf 16.76 15.53 8.64
6 kgf 1.59 1.32 1.01

4.1.4. Feature Variable Optimization Based on FCM Method

As shown in Figure 2, 12 feature variables were extracted from the data acquired
during Phases 1 and 2. From the 12 feature variables, four were selected to be coordinated
into a feature combination. The four variables in this case were skewness, kurtosis, standard
deviation, and peak-to-peak. The left and right sides of the statistical feature variables
are generally symmetrical around the mean on a normal distribution. Hence, skewness
and kurtosis are selected as indicators to determine how far the distribution shape of
the data deviates from normal. Skewness measures the asymmetry of the distribution.
The more symmetric the data, the closer the skewness to zero. Furthermore, because
kurtosis is a measure of outliers present in the distribution, there are clear criteria for
discriminating between normal and abnormal, such as finding a value of three in the
Gaussian probability distribution. In the case of peak-to-peak, peak vibration can be
observed on the distribution chart when an abnormality occurs. Hence, the FCM method
was applied to skewness, kurtosis, standard deviation, and peak-to-peak. The coordination
of three feature variables of the selected four forms a volume, as shown in Figure 6. The
red volume represents the three-dimensional feature variables of the abnormal condition
data. The blue volume represents normal condition data. A significant volume difference
between normal and abnormal conditions is visible. After evaluating the coordination
of feature combinations from the selected feature variables using the FDC number from
Equation (3), the combination having the highest FDC number was used as input data to
train the machine-learning fault diagnosis model. As shown in Table 7, the fault diagnosis
results of the doctor blade tilting condition improved, owing to the data characterization
process of Phases 1, 2, and 3. Compared with the results of the raw data-based diagnosis in
Table 4, the smart data-based fault diagnosis resulted in an improved accuracy of 90.1%
from 58.2% at a tension of 2 kgf. At 4 kgf, the accuracy improved from 48.1% to 86.2%, and
67.2% to 97.0% at a tension of 6 kgf. The processing time reduced from 1508.9 s to 33.9 s at a
tension of 2 kgf. It reduced from 3640.4 s to 37.5 s at 4 kgf. It reduced from 368.4 s to 16.6 s
at 6-kgf tension. The data capacity was also reduced from approximately 113 Mb to 4 Mb.

4.2. Printing Roll Eccentricity Fault Diagnosis
4.2.1. Printing Roll Eccentricity Fault Diagnosis Based on Raw Data

The fault diagnosis of printing roll eccentricity was conducted using the raw data of
processes at tensions of 2, 4, and 6 kgf, as listed in Table 3. As shown in Table 8, the results
based on the raw data showed a diagnosis accuracy of 69.7–76.9%. The processing time of
the raw data diagnosis ranged from 208.0 s to 237.9 s.

4.2.2. Printing Roll Eccentricity Fault Diagnosis Based on Smart Data

The diagnosis of the printing roll eccentricity fault data was performed in the same
order as the doctor blade tilting diagnosis procedure described in Section 4.1. Based on
the raw data of Phase 2, the sensor data efficiency evaluation was applied to select a
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single optimal sensor. As shown in Tables S9–S11, the data capacity, processing time, and
misclassification rate of each case were computed to obtain SE, as shown in Table 9. SE
results of Sensor 2 reflected the highest value for all tensions. The fault diagnosis results
based on Sensors 1 and 2 are shown in Tables S12 and S13 as applied to the verification of
the sensor data efficiency evaluation.
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Table 7. Doctor blade tilting fault diagnosis based on smart data.

[SVM] 2 kgf [Y Axis] 4 kgf [X Axis] 6 kgf [X Axis]

Accuracy [%] 90.1 86.2 97.0
Positive Predictive

Value [%] 89.8 85.9 97.0

Processing Time [s] 33.9 37.5 16.6
Data Capacity [Mb] 5 4 5

Table 8. Printing roll eccentricity diagnosis based on raw data (i.e., Sensors 1, 2, and 3).

[SVM] 2 and 4 kgf 2 and 6 kgf 4 and 6 kgf

Accuracy [%] 74.8 76.9 69.7
Positive Predictive

Value [%] 70.2 73.5 54.2

Processing Time [s] 237.9 208.0 237.0
Data Capacity [Mb] 111 111 110

Table 9. Result of sensor data efficiency evaluation for optimal sensor selection of printing roll
eccentricity fault.

SE Sensor 1 Sensor 2

2 and 4 kgf 24.07 29.29
2 and 6 kgf 20.29 25.15
4 and 6 kgf 19.09 27.24

Based on the selected optimal Sensor 2 data, the DNF method was applied to extract
the most sensitive axis information based on the DNF number. The results of the computa-
tion of the number of DNFs are listed in Table 10. The X-axis for tension 2 (4 kgf) resulted
in the highest DNF number followed by the Z-axis for the remaining cases. Verification
results of the selected axis depended on the cases based on the DNF number and are shown
in Tables S14–S16. Compared with Table 10, the diagnostic performance of the selected axis
having the highest DNF number provided the most efficient outcome.
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Table 10. DNF Number of axis X, Y, and Z from Sensor 2 of printing roll eccentricity fault.

DN X-Axis Y-Axis Z-Axis

2 kgf 1.12 0.91 1.06
4 kgf 1.09 0.86 1.12
6 kgf 0.95 1.01 1.06

As shown in Figure 7, the feature variables were extracted and combined into three
feature combinations for evaluation. The selected and extracted feature variables were
identical to those described in Section 4.1.4. The conditions of normal and abnormal
data formed a volume measure for each feature variable, as shown in Figure 7. The
two conditions were then computed using Equation (3) to select the training input data.
Based on the results of the FCM method, it was then used as input data for printing roll
eccentricity fault diagnosis. The results are listed in Table 11. Compared with Table 8, smart
data increased the diagnosis accuracy up to 99.1% with a processing time of 3.7 s and a
data capacity of 4 Mb. In summary, diagnosing the main fault printing roll eccentricity
with smart data improved the diagnostic performance with less time consumption and
fewer data requirements.
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Table 11. Printing roll eccentricity fault diagnosis based on smart data.

[SVM] 2 and 4 kgf [X Axis] 2 and 6 kgf [Z Axis] 4 and 6 kgf [Z Axis]

Accuracy [%] 97.9 99.1 96.3
Positive Predictive

Value [%] 93.4 94.9 92.0

Processing Time [s] 6.1 5.1 3.7
Data Capacity [Mb] 5 5 4

4.3. Nip Roll Eccentricity Fault Diagnosis
4.3.1. Nip Roll Eccentricity Fault Diagnosis Based on Raw Data

The fault diagnosis of the nip roll eccentricity based on raw data is shown in Table 12.
The results for cases of tensions 2, 4, and 6 kgf rated 42.1% to 56.0% diagnosis accuracy with
425.4 s to 597.0 s of processing time. The data capacity of the raw data ranged from 111 Mb
to 114 Mb, like the raw data capacity of doctor blade tilting and printing roll eccentricity
faults.

4.3.2. Nip Roll Eccentricity Fault Diagnosis Based on Smart Data

The smart data transition from the raw data is presented in this section. The evaluation
of the sensor data efficiency in Phase 1 used to select the optimal sensor is shown in Table 13.
Sensor 1 was selected as the optimal sensor for the next phase of the DNF method. It can
be seen that the SE of each case at Sensor 1 was higher than that of Sensor 2. As shown
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in Tables S17–S19, the data capacities of Sensors 1 and 2 maintained an average value of
43. As the capacity difference of both sensors merely influenced factor α, the major factor
influencing the outcome of SE was at factors β and γ. Tables S20 and S21 verify that the
sensor having the highest SE maintained the diagnosis result with higher accuracy.

Table 12. Nip roll eccentricity fault diagnosis based on raw data (i.e., Sensors 1, 2, and 3).

[SVM] 2 kgf 4 kgf 6 kgf

Accuracy [%] 53.8 56.0 42.1
Positive Predictive

Value [%] 46.7 47.7 33.9

Processing Time [s] 425.4 574.4 597.0
Data Capacity [Mb] 111 111 114

Table 13. Result of sensor data efficiency evaluation for optimal sensor selection of nip roll eccentricity
fault.

SE Sensor 1 Sensor 2

2 kgf 24.16 19.6
4 kgf 14.54 13.82
6 kgf 19.5 16.88

The evaluation of the X, Y, and Z axes of Sensor 1 was carried out based on the DNF
method and the DNF number. The results from the most sensitive axis for each case are
listed in Table 14. For the case of the tension of 2 kgf, the Z-axis rate had the highest DN ,
whereas tensions of 4 and 6 kgf rates were the highest in the X-axis. The diagnosis results
for each case, based on the axis of Sensor 1, are shown in Tables S22–S24.

Table 14. DNF Number of axis X, Y, and Z from Sensor 1 of nip roll eccentricity fault.

DN X Axis Y Axis Z Axis

2 kgf 0.89 0.86 1.09
4 kgf 1.53 1.30 1.04
6 kgf 1.67 1.15 0.92

The FCM method was carried out based on the results of Phase 2 in this section. The
feature variables used for coordination of the combination were identical to the results of
Sections 4.1 and 4.2 by skewness, kurtosis, standard deviation, and peak-to-peak. Kurtosis
considers the effect of data at the end of the distribution on the probability curve. Based on
the standard distribution, the kurtosis value increased with the weight of the outer values.
Hence, kurtosis refers to the sharpness of the distribution, and if the degree of dispersion
is large, the data are heterogeneous, and the height of the distribution is lowered. On the
other hand, if the degree of dispersion is small, the data are homogeneous, and the height
of the distribution increases.

The volume of normal and abnormal conditions based on the coordinated feature
variables can be seen in Figure 8. Normal volume is shown in blue, and abnormal volumes
are shown in red and yellow. The abnormal volumes differ depending on the nip force of
the data. Table 15 shows the results of the nip roll eccentricity fault diagnosis based on the
smart data. In the case of the tension of 2 kgf, the diagnostic accuracy rates were 100% with
a data capacity of 4 Mb and a processing time of 4.63 s. Compared with the results of the
raw data in Table 12, it can be seen that the fault diagnosis model performances improved
in areas of accuracy, positive predictive value, processing time, and data capacity.
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Table 15. Nip roll eccentricity fault diagnosis based on smart data.

[SVM] 2 kgf [Z Axis] 4 kgf [X Axis] 6 kgf [X Axis]

Accuracy [%] 100.0 98.4 99.5
Positive Predictive

Value [%] 98.8 97.0 98.2

Processing Time [s] 4.63 4.38 4.40
Data Capacity [Mb] 4 4 4

4.4. Nip Force Non-Uniformity Fault Diagnosis
4.4.1. Nip Force Non-Uniformity Fault Diagnosis Based on Raw Data

Fault diagnosis based on raw data was performed to detect nip force non-uniformity.
Figure 5 shows the data of the nip force for Cases 1–18. As Cases 11 and 17 in Figure 5
showed non-uniformity nip forces, the data of both cases were used as abnormal condition
data for fault diagnosis. Table 16 shows the performance of the fault diagnosis at tensions
of 4 and 6 kgf.

Table 16. Nip force non-uniformity fault diagnosis based on raw data (i.e., Sensors 1, 2, and 3).

[SVM] 4 kgf 6 kgf

Accuracy [%] 65.5 65.4
Positive Predictive Value [%] 60.3 59.4

Processing Time [s] 281.7 515.4
Data Capacity [Mb] 115 116

4.4.2. Nip Force Non-Uniformity Fault Diagnosis Based on Smart Data

The sensor data efficiency evaluation results are shown in Table 17 based on the
computation of Tables S25 and S26. It can be seen that Sensor 2 had the highest SE among
the raw data. Tables S27 and S28 can be used to verify the optimal sensor selection results
of the sensor data efficiency evaluation.

The DNF method was used to evaluate the axis of Sensor 2 by X, Y, and Z for tension
cases of 4 and 6 kgf. The DNF numbers for both cases are shown in Table 18, where the
result of a tension of 4 kgf showed axis Y as the most valid, and X for the tension case
of 6 kgf. The results of the fault diagnosis based on Sensor 2 for the triaxis are shown in
Tables S29–S31.

With identical feature variables coordinated through the FCM method, the volumes of
normal and abnormal conditions are shown in Figure 9. It can be seen from Figure 9a that
the volume of the normal condition overlaps with the volume of the abnormal condition.
Thus, the peak values and the distribution of data points for abnormal conditions were
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broad, compared with the normal volume condition. Based on the results of the FCM, the
nip force non-uniformity fault diagnosis results with smart data are shown in Table 19.

Table 17. Result of sensor data efficiency evaluation for optimal sensor selection of nip force non-
uniformity fault.

SE Sensor 1 Sensor 2

4 kgf 11.29 11.83
6 kgf 11.91 12.45

Table 18. DNF Number of X, Y, and Z axes from Sensor 2 of nip force non-uniformity fault.

DN X Axis Y Axis Z Axis

4 kgf 0.97 1.12 1.10
6 kgf 1.16 1.03 1.04
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Table 19. Nip force non-uniformity fault diagnosis based on smart data.

[SVM] 4 kgf [Y Axis] 6 kgf [X Axis]

Accuracy [%] 97.9 95.2
Positive Predictive Value [%] 93.5 90.7

Processing Time [s] 25.4 28.4
Data Capacity [Mb] 6 5

4.5. Simultaneous Fault Diagnosis

In Sections 4.1–4.4, defects caused during the printing process of gravure printing
system has been diagnosed independently. However, occasionally in real applications it is
likely for the gravure printing system to malfunction with more than one single fault. In this
section, characterized smart data has been applied under the assumption of multiple faults
appearing simultaneously to present the effectiveness of the diagnosis model performance.

Cases 6, 12, and 18 from Table 2 has been selected for the multiple fault data since the
experimental condition included with nipping and doctoring at tensions 2, 4, and 6 kgf.
Diagnosis results of simultaneous multiple faults is shown in Table 20. The effectiveness of
the smart data characterization is shown with comparison to the diagnosis result with raw
data. As the raw data of simultaneous faults contain various disturbances with noticeable



Sensors 2021, 21, 8454 15 of 18

peaks, it is less complex for the raw data-based diagnosis model to clarify the distinct
conditions for classification. Hence, the average accuracy of raw data diagnosis is at 72.3%
in which rates a higher value compared to single fault diagnosis results. Therefore, results
based on smart data rates at an average of 99% on the grounds of abovementioned basis.
In short, detecting simultaneous multiple faults based on smart data shows positive results
as shown in Table 20.

Table 20. Simultaneous fault diagnosis result based on big data and smart data.

[SVM]. 2 kgf [X Axis] 4 kgf [Y Axis] 6 kgf [Y Axis]

Accuracy [%] 70→97 74→100 73→100
Positive Predictive Value [%] 69→95 72→99 73→99

Processing Time [s] 4501→52 4035→34 4722→49
Data Capacity [Mb] 110→6 112→8 114→7

4.6. Raw Data and Smart Data Comparison for Fault Diagnosis

The fault diagnosis of four possible major faults during the printing process of the
gravure printing system based on raw and smart data is shown in Table 21. Table 21
summarizes the impact of data characterization methods for the diagnosis of the four
suggested major faults and the simultaneous faults of the gravure printing system printing
process. The diagnosis performance comparison results are shown based on raw and
smart data. All diagnosis results based on raw data and smart data are processed through
support vector machine algorithm. In Tables S32–S35, diagnosis results of the four major
faults depending on the machine learning algorithm is shown. A total of eight different
algorithms have been applied to each of the faults and consequently shows that the most
efficient outcome of the performance regarding accuracy, positive predictive value, and
processing time concludes with the use of a support vector machine algorithm to diagnose
all faults of the printing process.

Table 21. Raw data and smart data diagnosis comparison.

Main Faults Accuracy [%] PPV [%] Processing Time [s] Data Capacity [Mb]

Doctor Blade Tilting 48→97 36→97 3640→16 110→5
Printing Roll
Eccentricity 69→99 54→94 237→5 110→5

Nip Roll Eccentricity 42→100 33→98 597→4 114→4
Nip Force

Non-Uniformity 65→97 59→93 515→25 116→6

Simultaneous Faults 74→100 72→99 4035→34 112→8

Based on the results of Table 21, techniques to increase the accuracy of the classification
has been applied to faults of doctor blade tilting, printing roll eccentricity, and nip force
non-uniformity. As the abovementioned faults maintain an accuracy of 97% to 99%, it is
possible to improve the final diagnosis results by adjusting the parameter of window size.
As shown is Equation (4), the window size can be adjusted using the sampling rate and
revolutions per minute. As x is the revolutions per minute, and α as the sampling rate (Hz),
it is possible to obtain the value Ws. Once the value Ws is obtained for the three faults it is
then applied to as a fixed parameter to be diagnosed based on the smart data. The results
show in Table 22 that the contents of accuracy, PPV, and processing time have improved in
comparison to the results of Table 21.

Ws = α
( x

60

)−1
(4)
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Table 22. Smart data diagnosis improvement with window size adjustment.

Main Faults Accuracy [%] PPV [%] Processing Time [s] Data Capacity [Mb]

Doctor Blade Tilting 48→100 36→99 3640→13 110→5
Printing Roll Eccentricity 69→100 54→99 237→8 110→5

Nip Force Non-Uniformity 65→100 59→98 515→17 116→6

5. Conclusions

Printing defects generated by the misalignment of the doctor blade, eccentricity of
the nip and printing rolls, and non-uniform nip roll pressures can negatively affect the
performance of printed electronic devices. To prevent printing defects and to obtain high-
quality printed functional layers, it is necessary to recognize and diagnose factors that
cause printing defects. In this study, a method for data characterization using sensor data
efficiency evaluation (SE), DNF, and FCM methods was proposed to diagnose the possible
four major faults in the roll-to-roll gravure printing process, followed by experimental
verification. The misalignment of the doctor blade, printing roll eccentricity, nip roll
eccentricity, nip force non-uniformity, and simultaneous faults rated an average value of
56% accuracy with raw data. However, with smart data, the accuracy rated 100.0% on
average. The positive predictive value increased when the learning time was reduced from
1247 s to 12 s on average. The data capacity was reduced from 112 Mb to 5 Mb, depending
on the selection of the sensor and its axis with optimized feature variable coordination. It
is known that, with the use of smart data through sensor data efficiency evaluation, the
feature combination matrix, and DNF methods, machine learning fault diagnosis model
performance improves for classifying normal and abnormal conditions of datasets. The
proposed smart data process in this paper is the most novel and contributory aspect of
this paper because it leads to the near-perfect performance of the machine learning fault
detection model. It is also faster and less computer-memory intensive than the results
found from raw sensor data. This poses a contribution to the field, and countless industries
can benefit from the improved and most cost-efficient production of printed electronics.
Further research regarding the methodologies proposed in this paper plans to expand the
application for fault diagnosis despite the numerous numbers of sensors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21248454/s1, Table S1: Sensor data efficiency evaluation of doctor blade tilting fault under
operating tension 2 kgf, Table S2. Sensor data efficiency evaluation of doctor blade tilting fault
under operating tension 4 kgf, Table S3. Sensor data efficiency evaluation of doctor blade tilting fault
under operating tension 6 kgf, Table S4. Doctor blade tilting fault diagnosis result based on sensor 1,
Table S5. Doctor blade tilting fault diagnosis result based on sensor 2, Table S6. Doctor blade tilting
fault diagnosis result based on X axis of sensor 1, Table S7. Doctor blade tilting fault diagnosis result
based on Y axis of sensor 1, Table S8. Doctor blade tilting fault diagnosis result based on Z axis of
sensor 1, Table S9. Sensor data efficiency evaluation of printing roll eccentricity fault under case 2 kgf
and 4 kgf, Table S10. Sensor data efficiency evaluation of printing roll eccentricity fault under case
2 kgf and 6 kgf, Table S11. Sensor data efficiency evaluation of printing roll eccentricity fault under
case 4 kgf and 6 kgf, Table S12. Printing roll eccentricity fault diagnosis result based on sensor 1,
Table S13. Printing roll eccentricity fault diagnosis result based on sensor 2, Table S14. Printing roll
eccentricity fault diagnosis result based on X axis of sensor 2, Table S15. Printing roll eccentricity
fault diagnosis result based on Y axis of sensor 2, Table S16. Printing roll eccentricity fault diagnosis
result based on Z axis of sensor 2, Table S17. Sensor data efficiency evaluation of nip roll eccentricity
fault under case 2 kgf, Table S18. Sensor data efficiency evaluation of nip roll eccentricity fault under
case 4 kgf, Table S19. Sensor data efficiency evaluation of nip roll eccentricity fault under case 6 kgf,
Table S20. Nip roll eccentricity fault diagnosis result based on sensor 1, Table S21. Nip roll eccentricity
fault diagnosis result based on sensor 2, Table S22. Nip roll eccentricity fault diagnosis result based
on X axis of sensor 1, Table S23. Nip roll eccentricity fault diagnosis result based on Y axis of sensor 1,
Table S24. Nip roll eccentricity fault diagnosis result based on Z axis of sensor 1, Table S25. Sensor
data efficiency evaluation of nip force non-uniformity fault under case 4 kgf, Table S26. Sensor
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data efficiency evaluation of nip force non-uniformity fault under case 6 kgf, Table S27. Nip force
non-uniformity fault diagnosis result based on sensor 1, Table S28. Nip force non-uniformity fault
diagnosis result based on sensor 2, Table S29. Nip force non-uniformity fault diagnosis result based
on X axis of sensor 2, Table S30. Nip force non-uniformity fault diagnosis result based on Y axis
of sensor 2, Table S31. Nip force non-uniformity fault diagnosis result based on Z axis of sensor 2,
Table S32. Doctor blade tilting fault diagnosis with various machine learning algorithms, Table S33.
Printing roll eccentricity fault diagnosis with various machine learning algorithms, Table S34. Nip
roll eccentricity fault diagnosis with various machine learning algorithms, Table S35. Nip force
non-uniformity fault diagnosis with various machine learning algorithms.
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