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Abstract: Nowadays, soft sensor techniques have become promising solutions for enabling real-time
estimation of difficult-to-measure quality variables in industrial processes. However, labeled data
are often scarce in many real-world applications, which poses a significant challenge when building
accurate soft sensor models. Therefore, this paper proposes a novel semi-supervised soft sensor
method, referred to as ensemble semi-supervised negative correlation learning extreme learning
machine (EnSSNCLELM), for industrial processes with limited labeled data. First, an improved
supervised regression algorithm called NCLELM is developed, by integrating the philosophy of
negative correlation learning into extreme learning machine (ELM). Then, with NCLELM as the
base learning technique, a multi-learner pseudo-labeling optimization approach is proposed, by
converting the estimation of pseudo labels as an explicit optimization problem, in order to obtain
high-confidence pseudo-labeled data. Furthermore, a set of diverse semi-supervised NCLELM
models (SSNCLELM) are developed from different enlarged labeled sets, which are obtained by
combining the labeled and pseudo-labeled training data. Finally, those SSNCLELM models whose
prediction accuracies were not worse than their supervised counterparts were combined using a
stacking strategy. The proposed method can not only exploit both labeled and unlabeled data, but also
combine the merits of semi-supervised and ensemble learning paradigms, thereby providing superior
predictions over traditional supervised and semi-supervised soft sensor methods. The effectiveness
and superiority of the proposed method were demonstrated through two chemical applications.

Keywords: soft sensor; unlabeled data; label scarcity; semi-supervised learning; ensemble learning;
pseudo labeling; evolutionary optimization; negative correlation learning; extreme learning machine

1. Introduction

Modern industrial processes are equipped with a large number of measurement
devices, in order to allow the implementation of advanced monitoring, optimization, and
control of the production process. However, many crucial quality variables in industrial
process are difficult to measure online, due to the lack of reliable hardware sensors or the
high investment in the purchase and maintenance of apparatuses. To tackle this problem,
soft sensor technology, as a promising indirect measurement tool, has been proposed,
to enable real-time estimations of difficult-to-measure process variables [1,2]. The basis
of a soft sensor is to build a mathematical model describing the relationship between
the difficult-to-measure target variable and the easy-to-measure secondary variables, and
then perform online estimation for the query data, based on the built predictive model.
Generally, soft sensors can be divided into two categories: first principle, and data-driven
methods. The former method type requires deep physical and chemical knowledge, which
is often impossible in many real-world applications. Alternatively, data-driven methods,
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only relying on historical process information and data analytics techniques, have gained
great popularity in soft sensor applications over the past two decades [3–8].

In the context of data-driven soft sensor modeling, having sufficient process data is
of great importance to guarantee the generalization capability of the model. Typically, a
sample for model development can be split into two parts, i.e., attributes (also termed as
inputs) and label (also termed as output), which correspond to the easily obtained process
variables and the target variable to be estimated, respectively. Thus, the modeling samples
with labels are called labeled data, while those lacking labels are called unlabeled data.
However, the insufficiency of data information is very common in practical applications,
which makes it difficult to establish an accurate data-driven model. Roughly speaking,
there are two common data deficiency issues: (i) both input and output information
are insufficient, and (ii) unlabeled data are sufficient, but labeled data are scarce. One
popular approach to deal with the first scenario is virtual sample generation (VSG) [9,10]
methods, which are applied to create virtual samples, using the original small data set.
Another solution to this problem is transfer learning [11–13], which enables improving
the model performance by sharing the relevant information from other domains with rich
data. As for the second scenario, active learning [14,15] has been employed to provide
the labels for the most informative unlabeled data, using an oracle such as a human
annotator; thus, enlarging the labeled modeling data. Alternatively, semi-supervised
learning (SSL) [16–20] has been widely used to enhance model prediction performance,
by leveraging both labeled and unlabeled data. In practice, there are usually abundant
unlabeled data, but limited labeled data in industrial processes, which has been the main
bottleneck of building accurate soft sensor models. Thus, this paper focuses on semi-
supervised soft sensor development.

As an important branch of machine learning, SSL, has undergone a long history and
has become a hot topic [16–20]. SSL algorithms can effectively exploit information from
both labeled and unlabeled data to build models whose accuracies are usually better than
those obtained from only using the limited labeled data. So far, five typical classes of
SSL algorithms have emerged [16]: generative models, semi-supervised support vector
machines (S3VM), graph-based methods, self-training, and co-training. However, many of
the current SSL methods mainly focus on the prediction of discrete variables in classification
problems, such as imaging analysis and processing, natural language processing, and
speech recognition [17]. Unfortunately, it is difficult or impossible to transfer these methods
to the regression problems directly, as is often the case in soft sensor applications, which
mainly concerns predictions of continuous target variables. Hence, research on semi-
supervised soft sensors has gained considerable attention in recent years. A detailed review
and discussions on this topic can be found in reference [18]. Here, we only outline some
representative research:

(1) Probabilistic generative models: This type of method aims to improve the estimation
accuracy of the underlying distribution of the input space by introducing abundant
unlabeled data. These methods assume that all samples, labeled and unlabeled,
are generated from the same underlying model. The main difference among the
different generative methods lies in the underlying assumptions. For example, Ge
and Song [21] proposed a semi-supervised principal component regression (PCR)
model, using a probabilistic method. The method first formulates a generative model
structure according to the traditional PCR model. Then, by assuming that both
probability density functions of the principal component and the process noise are
Gaussian, the optimal parameters with respect to the data distribution are optimized
by maximizing a likelihood function using an expectation-maximum algorithm, where
supervised and unsupervised objectives are involved. Similarly, a semi-supervised
probabilistic partial least squares regression model was developed for soft sensor mod-
eling [22]. However, the assumption of Gaussian distribution is often ill-conditioned
for industrial processes with multiple modes, where the process data usually exhibit
non-Gaussian characteristics. To tackle this issue, non-Gaussian distribution based
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assumptions have been introduced to build generative soft sensor models, such as
a mixture semi-supervised probabilistic PCR model [23], semi-supervised Gaussian
mixture regression [24], semi-supervised Dirichlet process mixture of Gaussians [25],
semi-supervised mixture of latent factor analysis models [26], and Student’s-t mixture
regression [27]. Overall, the key to building an accurate generative model lies in
accurate model assumptions, which are often difficult to determine without sufficient
reliable domain knowledge.

(2) Graph based methods: Methods of this type are based on manifold assumptions and
require constructing a semi-labeled graph to assure the label smoothness over the
graph. To this end, one needs to define a graph where the nodes denote labeled and
unlabeled samples, and where the edges connect two nodes if their corresponding
samples are highly similar. One typical example of such method is the label propaga-
tion method [28], originally proposed for addressing classification problems. As for
graph based SSL soft sensors, it is a common practice to embed the graph based regu-
larization into the cost function based on traditional supervised regression techniques.
For example, two semi-supervised soft sensors were developed, by integrating the
extreme learning machine (ELM) method and the graph Laplacian regularization
into a unified modeling framework for industrial Mooney viscosity prediction [29,30].
Similarly, Yan et al. [31] developed a semi-supervised Gaussian process regression
(GPR) for quality prediction, by using a semi-supervised covariance function, which
was defined by introducing the manifold information into the traditional covariance
function. Moreover, to enhance the model performance for handling complex pro-
cess characteristics, as well as exploiting unlabeled process data, Yao and Ge [32]
proposed a semi-supervised deep learning model for soft sensor development. First,
it implements unsupervised feature extraction through an autoencoder with a deep
network structure. Then, ELM is utilized for regression, by introducing manifold
regularization. In addition, Yan et al. [33] proposed a semi-supervised deep neural
regression network with manifold embedding for soft sensor modeling.

(3) Representation learning based methods: A general strategy for these methods is to
use unlabeled data to assist in extracting abstract latent features of the input data.
The most common techniques for this purpose are deep learning methods [34], such
as convolutional neural networks, deep belief networks (DBN), long/short-term
memory neural networks, and a large variety of autoencoders. Besides its strong
representation ability, deep learning is inherently semi-supervised and, thus, can
effectively exploit all available process data. As an early attempt, Shang et al. [35]
employed a DBN to build soft sensors for estimating the heavy diesel 95% cut-point
of a crude distillation unit (CDU). However, traditional representation techniques
are mainly implemented in an unsupervised manner, where the output variable
information is ignored. To address this issue, several research works have focused
on exploring semi-supervised representation learning techniques. For instance, Yan
et al. [36] proposed a deep relevant representation learning approach based on a
stacked autoencoder, which conducts a mutual information analysis between the
representations and the output variable in each layer. Similar research has also been
reported in references [37–39].

(4) Self-labeled methods [40]: The core of such methods is extending the labeled training
set by adding high-confidence pseudo-labeled data. In such a modeling framework,
one or more predictive models are first trained with labeled data only, and then
refined using the extended labeled set through iterative learning. Two representative
examples are self-training [41], and co-training [42], based on which some variants
have also been proposed, such as COREG [43], Tri-training [44], Multi-train [45], and
CoForest [46]. As an instantiation of self-training, a semi-supervised support vector
regression model was proposed and verified using 30 regression datasets and an
industrial semiconductor manufacturing dataset [47]. In the method, the label distri-
bution of the unlabeled data is estimated with two probabilistic local reconstruction
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models, thus providing the labeling confidence. Differently, based on the co-training
paradigm, Bao et al. [48] proposed a co-training partial least squares (PLS) method for
semi-supervised soft sensor development, by splitting the total process variables into
two different parts, serving as two views. Instead of using single-output regression
techniques, four semi-supervised multiple-output learning soft sensor models [49]
were developed. In addition, by applying a spatial view, a temporal view, and a
transformed view together, a multi-view transfer semi-supervised regression was
developed, by combining transfer learning and co-training for air quality predic-
tion [50]. Another example is a co-training style semi-supervised artificial neural
network model for thermal conductivity prediction based on a disagreement-based
semi-supervised learning principle [51]. The core of this method is constructing two
artificial neural networks learners with different architectures, to label the unlabeled
samples. Despite the simplicity and flexibility of implementation, the success of
self-labeled SSL soft sensors heavily depends on the reliable confidence estimation of
pseudo-labeled data.

According to the type of unlabeled data utilized, the above-mentioned semi-supervised
modeling methods can be categorized into two groups: i.e., regularization embedding
and pseudo labeling based approaches. The former methods aim to improve the model
training, while the latter ones seek to enhance the model generalization capability by
enlarging the labeled training data using high-confidence pseudo-labeled data. Compared
to the regularization based SSL methods, pseudo labeling based ones have the merits of
easy implementation and flexible wrapping with any base learning technique. Thus, in
this work, we focus on pseudo-labeling semi-supervised soft sensor development. How-
ever, traditional pseudo-labeling SSL methods often encounter several drawbacks. One
particular problem is the difficulty in defining confidence evaluation criterion. The most
commonly used strategy is to evaluate the improvement rate of prediction performance
after introducing the pseudo-labeled data [43]. Unfortunately, using such criterion cannot
effectively characterize the complex hypothesis behind the labeled and unlabeled data.
Another problem is that traditional pseudo-labeling strategies, such as self-training and
co-training are prone to resulting in error propagation and accumulation along with the
iterative learning. Thus, it is appealing to investigate the new paradigm of pseudo-labeling,
to achieve reliable pseudo-label estimation.

In addition to augmenting the labeled training data, ensemble learning also plays
a crucial role in enhancing the prediction performance of soft sensors [52–55]. Usually,
ensemble methods can produce a strong ensemble model that is significantly more accurate
than a single learner [56]. Although semi-supervised and ensemble learning approaches are
two distinctive learning paradigms, they can be complementary to each other with efficient
combination. On the one hand, the introduction of ensemble learning into SSL allows avoid-
ing the difficulty in selecting model parameters and overcoming the drawback of single
predictive model; thus, reducing the modeling uncertainty and improving the prediction
reliability. On the other hand, the utilization of unlabeled data is helpful for improving the
accuracy and diversity of base models, which is of great importance for constructing high-
performance ensemble models. Therefore, the effective combination of semi-supervised
and ensemble learning has attracted much attention from researchers on soft sensor de-
velopment. For example, some research attempted to combine multiple homogeneous or
heterogeneous base learners to construct semi-supervised ensemble models within the
self-labeled learning frameworks (e.g., self-training and co-training) [50,51,57]. In addition,
some scholars used unlabeled data to enhance the diversity of base models, thus improving
the ensemble performance [29,58,59]. Moreover, Shao and Tian [60] proposed a soft sensor
method based on a semi-supervised selective ensemble learning strategy. This method
uses abundant unlabeled samples to help achieve reliable process state partition. These
examples show that the combination of semi-supervised and ensemble learning is expected
to improve the performance of a soft sensor model.
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In light of the above-mentioned problems, in this work, a new semi-supervised soft
sensor modeling method namely EnSSNCLELM was developed for high-quality prediction
of industrial processes where the labeled data are limited but the unlabeled data are
rich. The feasibility and superiority of the proposed method have been validated through
application to a simulated fed-batch penicillin fermentation process and an industrial
chlortetracycline fermentation process. Overall, the main contributions of this paper
are threefold:

(1) An improved supervised regression model NCLELM was developed and serves as
the base learning technique for the proposed EnSSNCLELM modeling framework.
Despite the fast training speed, ELM is prone to deliver unstable predictions, due to
the random assignments of input weights and biases. By introducing the ensemble
strategy of negative correlation learning into ELM, the NCLELM algorithm allows
explicitly increasing the diversity among the base ELM models and, thus, enhancing
the prediction accuracy and reliability.

(2) A multi-learner pseudo-labeling optimization (MLPLO) approach is proposed to
achieve pseudo-label estimation. Differently from traditional self-labeling techniques
such as self-training and co-training, the MLPLO method attempts to build an explicit
optimization problem with the unknown labels of the unlabeled data as the decision
variables. Meanwhile, by exploring the inherent connections between labeled and
unlabeled data, the individual and collaborative prediction performance of multiple
learners are defined and integrated as the optimization objective. Then, an evolu-
tionary optimization approach is adopted to solve the formulated pseudo-labeling
optimization problem (PLOP), so as to obtain high-confidence pseudo-labeled sam-
ples for expanding the labeled set. A significant advantage of MLPLO is its strong
capability for avoiding the error propagation and accumulation found with commonly
used iterative learning.

(3) By effectively combining a MLPLO strategy with ensemble modeling, the proposed
EnSSNCLELM soft sensor method allows achieving the complementary advantages of
semi-supervised and ensemble learning. On the one hand, semi-supervised learning is
helpful for enhancing the accuracy and diversity of ensemble members by providing
different high-confidence pseudo-labeled sets. On the other hand, combining multiple
semi-supervised models using ensemble methods makes it possible to fully utilize
the information of unlabeled data and reduce the modeling uncertainty caused by
sub-optimal parameter settings and data selection.

The rest of the paper is organized as follows. Section 2 provides a brief introduction
of ELM modeling and negative correlation learning (NCL). The proposed NCLELM and
EnSSNCLELM soft sensor methods are elaborated in Section 3. Section 4 reports two case
studies, to demonstrate the feasibility and efficiency of the proposed approach. Finally,
conclusions are drawn in Section 5.

2. Preliminaries
2.1. Extreme Learning Machine

ELM [61] is a computationally efficient learning method for training single-hidden
layer feedback networks (SLFNs). Unlike traditional gradient-based iterative learning, the
input weights and hidden node biases of a ELM model are randomly assigned, and then
the output weights of SLFNs can be obtained analytically, which enables extremely fast
training of ELM.

Given a training set D = {X, y} with X = {xi}L
i=1 and yl = {yi}L

i=1 representing input
and output data, respectively, where L is the number of training samples, and xi ∈ Rd,
yi ∈ R1. Then, a standard ELM model with Nnode hidden nodes and the activation function
g(·) can be mathematically modeled as

∑Nnode
i=1 βigi

(
xj
)
= ∑Nnode

i=1 βig
(
wi·xj + bi

)
= oj, j = 1, ···, L (1)



Sensors 2021, 21, 8471 6 of 31

where wi = [wi,1, wi,2, . . . , wi,d]
T is the input weight vector that connects the ith hidden

node and the input nodes, βi denotes the output weight that connects the ith hidden node
and the output node, and bi represents the bias of the ith hidden node. While numerous ac-
tivation functions have been defined, a simple sigmoidal function g(x) = 1/(1 + exp(−x))
is adopted in this study.

To train an ELM model, the fitting errors on the training data are expected to be zeros.
In other words, the parameters, i.e., βi, wi, and bi, must satisfy the following equation:

Hβ = y (2)

where

H =

 g(w1·x1 + b1) · · · g
(
wNnode ·x1 + bNnode

)
...

. . .
...

g(w1·xL + b1) · · · g
(
wNnode ·xL + bNnode

)


L×Nnode

(3)

β =
[
β1, ···, βNnode

]T, y = [y1, ···, yL]
T (4)

Since the input weights and the hidden layer biases have been randomly generated,

training an ELM model is equivalent to finding a least-squares solution
^
β for the linear

system Hβ = y:
^
β = H†y (5)

where H† is the Moore–Penrose generalized inverse of the hidden layer output matrix H.

2.2. Negative Correlation Learning

NCL [62] is a learning approach originally proposed for neural network ensembles. It
introduces a correlation penalty term into the cost function of each individual network in
the ensemble, thus allowing explicitly maximizing the diversity among the base models.
In this way, NCL can produce individual networks interactively on the same training set
and the training errors of these models tend to be negatively correlated. Given a training
set {xi, yi}L

i=1, NCL combines N neural networks fn(xi) to form an ensemble model:

fens(xi) =
1
N

N

∑
n=1

fn(xi) (6)

To train network fn, the cost function en for network n is defined by:

en =
1
L

L

∑
i=1

( fn(xi)− yi)
2 + λ

1
L

pn (7)

where λ ≥ 0 is a weighting parameter on the penalty term pn:

pn =
L
∑

i=1

{
( fn(xi)− fens(xi))· ∑

m 6=n
( fm(xi)− fens(xi))

}
= −

L
∑

i=1
( fn(xi)− fens(xi))

2
(8)

where the first term is the empirical training error of the network, while the second is a
correlation penalty term.

During the training process, as shown in Equations (7) and (8), all the individual
networks interact with each other through their penalty terms in the cost function. Each
network aims to minimize the difference between fn(xi) and yi, whereas the difference
between fens(xi) and fn(xi) is maximized. In other words, NCL considers training errors
from all other networks while training a network. The parameter λ controls the trade-off
between the training error term and the penalty term. In the extreme case of λ = 0, all
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individual networks are trained independently. With the increase of λ, more and more
attention is paid to minimizing the correlation-based penalty.

3. Proposed NCLELM and EnSSNCLELM Soft Sensor Methods

To handle the issue of label scarcity for quality prediction in the industrial process,
this work aims to leverage both labeled and unlabeled data, to improve the inferential
performance of soft sensors, by combining semi-supervised and ensemble learning. For
this purpose, we propose NCLELM and EnSSNCLELM soft sensor methods, which are
described in detail in the following sections.

3.1. NCLELM

In recent years, ELM has gained growing popularity in soft sensor applications, due to
its fast learning speed and good generalization performance [63–66]. However, ELM often
produces unstable predictions, due to the uncertainties caused by the random assignments
of input weights and biases in the learning process. A popular approach to this problem is
to utilize an ensemble strategy to improve the stability and accuracy of the ELM model.

Since the NCL learning approach has been proven effective for enhancing the ensem-
ble performance by explicitly maximizing the diversity among base models [67–69], we
derived the NCLELM algorithm by introducing NCL into ELM learning. NCLELM aims
to encourage the diversity among component ELM models, by reducing the correlation
among their outputs, and, thus, gaining an overall good ensemble accuracy. Thanks to the
fast training speed of ELM, NCLELM can also be trained very efficiently, using the multiple
ELM models that are included in the learning. Subsequently, we present the proposed
NCLELM method in detail.

Given a training set D = {xi, yi}L
i=1 and an ensemble of ELM models containing NELM

individuals, the error function of the nth individual is expressed as follows:

en(βn) =
1
2

{
‖ Hnβn − y ‖2 −λ ‖ Hnβn − fens ‖2

}
(9)

where Hn and βn denote the hidden-layer output matrix and output-layer weight vector
for the nth individual ELM model, respectively, and y = [y1, y2, . . . yL]

T is a column vector.
λ is a trade-off parameter on the correlation penalty term. fens denotes the simple average
of outputs from NELM individuals:

fens =
1

NELM

NELM

∑
n=1

Hnβn (10)

Then, the solution to the quadratic optimization problem in Equation (9) can be
obtained by setting (∂en/(∂βn)) = 0, that is

∂en

∂βn
= (Hnβn − y)THn − λ(Hnβn − fens)

(
1− 1

NELM

)
Hn = 0 (11)

By substituting Equation (10) into Equation. (11), we can get

∂en

∂βn
= (Hnβn − y)THn − λ

(
Hnβn −

1
NELM

ΣNELM
n=1 Hnβn

)(
1− 1

NELM

)
Hn = 0 (12)

Furthermore, Equation (12) is transformed as

[1−
(

NELM − 1
NELM

)2
λ]HT

nHnβn +
NELM − 1

N2
ELM

λ
NELM

∑
m 6=n

HT
nHmβm = HT

ny (13)
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By applying Equation (13) to all individual errors en and all output weights βn, and
let

Gn,n = [1−
(

NELM − 1
NELM

)2
λ]HT

nHn (14)

and

Gn,m =
NELM − 1

N2
ELM

λ
NELM

∑
m 6=n

HT
nHm (15)

Then the overall optimization of all individual ELM models is achieved by solving a
linear system, as follows:

Gβens = T (16)

where G =

 G1,1 · · · G1,NELM
...

. . .
...

GNELM,1 · · · GNELM,NELM

, βens =

 β1
...

βNELM

, and T =

 HT
1 y
...

HT
NELM

y

.

Finally, the solution to βens can be analytically obtained as

^
βens = G−1T (17)

3.2. EnSSNCLELM

The proposed EnSSNCLELM method can be split into three steps: (i) obtaining
high-confidence pseudo-labeled data, (ii) building diverse semi-supervised models, and
(iii) combing diverse semi-supervised models.

3.2.1. Formulating the Pseudo-Labeling Optimization Problem

Traditionally, the pseudo labels for the unlabeled data are estimated through self-
labeling techniques, such as self-training and co-training. However, such strategies are
essentially an implicit optimization, and they often encounter error accumulation and
propagation. In addition, it is difficult to evaluate the confidence of pseudo labels effectively.
Thus, in our recent study [70], a single-learner pseudo-labeling optimization (SLPLO)
scheme was proposed, to achieve reliable estimations of pseudo labels in an explicit way.
Nevertheless, one particular drawback of this approach is that only utilizing one single
learner to evaluate the goodness of pseudo labels may lead to a high risk. By contrast,
multiple learners can provide diverse views and insights, which are preferable to obtain a
reliable confidence evaluation.

Therefore, in this work, we propose a multi-learner pseudo-labeling optimization
(MLPLO) approach, aiming to produce more reliable pseudo labels than the SLPLO scheme.
The task of MLPLO is to explicitly approximate the unknown labels for given unlabeled
data, by relying on a group of diverse learners to explore the available information behind
the labeled and unlabeled data.

As preliminary steps, the decision variables, optimization objectives, and constraints
should be determined in advance; thus, formulating the pseudo-labeling optimization

problem. Given a labeled training set Dl =
{

Xl , yl
}

, where Xl =
{

xl
i

}L

i=1
and yl =

{
yl

i

}L

i=1
are the input and output data, respectively, and L represents the number of labeled samples.
Meanwhile, denote Xu =

{
xu

i
}U

i=1 as the input data for the unlabeled dataset Du, where

U is the number of unlabeled samples. In addition, let yu =
{

yu
i
}U

i=1 be the pseudo labels
of Xu and Dpl = {Xu, yu} be the pseudo-labeled set, where yu are actually unknown in
practical applications and remain to be estimated. Hence, yu is determined as the decision
vector for the proposed MLPLO problem (MLPLOP).

Subsequently, the objective function should be defined to evaluate the quality of the
candidate solutions. For the MLPLO approach, it is necessary to build multiple NCLELM
models with high diversity, when considering NCLELM as the base learning technique.
This can be achieved by repeating the random generation of input weights and biases,
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thereby producing diverse NCLELM models H = {NCLELM1, ···, NCLELMM}. It is worth
noting that, during the MLPLO process, the initial configurations of input weights and
biases will remain unchanged, though the output weights will be updated with the change
of training set.

Within the multi-learner PLO scenario, the key to defining appropriate optimization
objective lies in analyzing the individual and collaborative prediction capability of base
models on the labeled and pseudo-labeled data. Specifically, four evaluation criteria are de-
fined; including the individual accuracy using the pseudo-labeled data, individual accuracy
improvement after including the pseudo-labeled data, smoothness of labeled and pseudo-
labeled data, and ensemble accuracy of multiple learners using the pseudo-labeled data.

Suppose there is a pseudo-labeled set Dpl = {Xu, yu} that needs to be optimized,
we randomly divide Dpl into M equal-sized training subsets Dpl =

{
Dpl

1 , · · · , Dpl
M

}
and

then feed these to the built NCLELM models, respectively, where Dpl
i =

{
Xu

i , yu
i
}

={(
xu

i,1, yu
i,1

)
, · · · ,

(
xu

i,P, yu
i,P

)}
with P denoting the number of samples in the ith subset.

The goal of such data partition is to promote the diversity of NCLELM models. Next, the
defined evaluation criteria are discussed as follows.

(1) Individual accuracy using the pseudo-labeled data. It is well known that successful
data-driven modeling greatly relies on the assumption that modeling data are inde-
pendent and identically distributed. That is to say, good prediction performance on
unseen samples can be attained only when the test and training data come from the
same distribution. This assumption usually applies to developing data-based models
for industrial processes. Thus, in the context of semi-supervised modeling, we assume
that the labeled and unlabeled data are drawn from the same distribution. Intuitively,
this implies that a NCLELM model trained with the pseudo-labeled data can also
provide accurate predictions on the labeled set, if the pseudo labels are estimated well
enough. Specifically, suppose Hpl =

{
hpl

1 , hpl
2 , · · · , hpl

M

}
denote the diverse NCLELM

models learned from the pseudo-labeled subsets Dpl
1 , Dpl

2 , · · · , Dpl
M, respectively. It is

obvious that we expect the performance of hpl
i on Dl to be good if the acquired Dpl

i has
high quality. Furthermore, by considering all individual accuracies simultaneously,
the overall accuracy is minimized:

min
yu

F
(

yu, Xu, yl , Xl , H
)
=

M

∑
i=1

1
L

L

∑
j=1

(
ŷpl

i,j − yl
j

)2
(18)

where ŷpl
i,j represents the predicted label of the jth labeled sample using hpl

i , and yl
j is

the jth actual label.

(2) Individual accuracy improvement after including the pseudo-labeled data. In many
self-labeling semi-supervised learning algorithms [48–50], the pseudo labels are usu-
ally estimated from the already built predictive models. Then, the confidence of these
pseudo-labeled data is evaluated according to the prediction accuracy enhancement of
the model after adding the target pseudo-labeled data to the original training set. The
larger the performance improvement, the higher the confidence of the pseudo-labeled
data. Similarly, we also employ this way to evaluate the confidence of the optimized
pseudo labels. Suppose Hl+pl =

{
hl+pl

1 , hl+pl
2 , · · · , hl+pl

M

}
are the NCLELM models

learned from Dl ∪Dpl
1 , Dl ∪Dpl

2 , · · · , Dl ∪Dpl
M, respectively. Then, it is desirable to

minimize the prediction errors of Hl+pl on the labeled training set:

min
yu

F
(

yu, Xu, yl , Xl , H
)
=

M

∑
i=1

1
L

L

∑
j=1

(
ŷl+pl

i,j − yl
j

)2
(19)
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where ŷl+pl
i,j is the predicted label of the jth labeled sample using hl+pl

i .

(3) Smoothness of labeled and pseudo-labeled data. The objective functions in
Equations (18) and (19) focus on evaluating the characteristics of pseudo-labeled
subsets, but do not consider the overall confidence of all pseudo labels. According
to the smoothness assumption [16,17], similar inputs will lead to similar outputs.
Obviously, this assumption should also hold true for the mixed data of labeled and
pseudo-labeled data, if we can obtain high-confidence pseudo labels. A popular
approach using this idea, is introducing a regularization term to the cost function in
semi-supervised learning, e.g., semi-supervised ELM [29] and semi-supervised deep
learning [33]. In this way, the information behind the unlabeled data can be utilized
in model training, to avoid overfitting. Thus, in our proposed MLPLO approach,
we introduce Laplace regularization to ensure the smoothness of the labeled and
pseudo-labeled data during the optimization process. After mixing the labeled sam-
ples Dl and pseudo-labeled samples Dpl , a graph based regularization term, called
smoothness objective, is defined and expected to be minimized:

min
yu

F
(

yu, Xu, yl , Xl
)
= yTLy (20)

where y denotes the outputs of the labeled and pseudo-labeled sets, i.e., y = [y1, y2, ···,
yL, yu,1, yu,2, ···, yu,U], and L represents a graph Laplace matrix with (L + U)× (L + U)
dimensions, which can be calculated from L = D−W. D is a diagonal matrix with
the elements determined as follows:

dii =
L+U

∑
j=1

wij (21)

where wij ∈W represents the connection weight between two nodes xi and xj in the
graph model. Usually, wij can be calculated by

wij = e−
‖xi−xj‖

2

2δ2 , i, j = 1, 2, ···, L + U (22)

(4) Ensemble accuracy of multiple learners using the pseudo-labeled data. In addi-
tion to the smoothness objective, the collaborative confidence evaluation can also
be achieved through the ensemble prediction performance of NCLELM models
Hpl =

{
hpl

1 , hpl
2 , · · · , hpl

M

}
. Thus, we expect to minimize the ensemble prediction

errors of Hpl on the labeled training set:

min
yu

F
(

yu, Xu, yl , Xl , H
)
=

1
L

L

∑
j=1

(
ŷens

j − yl
j

)2
(23)

where ŷens
j is the ensemble prediction output of the jth labeled sample. By ensuring

the ensemble prediction accuracy, the confidence of the pseudo labels can be further
improved. It should be noted that, although many strategies can be used for achieving
this combination, the simple averaging rule was chosen because complex schemes are
likely to cause overfitting [71].

Combining the above four optimization objectives, we obtain the synthesized objective
function for the MLPLO approach, to get high-confidence pseudo labels:

yu∗ = min
yu

F
(

yu, Xu, yl , Xl , H
)

=
M
∑

i=1

1
L

L
∑

j=1

(
ŷpl

i,j − yl
j

)2
+ γ1 ∗

M
∑

i=1

1
L

L
∑

j=1

(
ŷl+pl

i,j − yl
j

)2

+γ2 ∗ yTLy + γ3 ∗ 1
L

L
∑

j=1

(
ŷens

j − yl
j

)2

s.t.ymin ≤ yu ≤ ymax

(24)
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where yu =
[
yu

1,1, yu
1,2, ···, yu

1,P, ···, yu
M,1, yu

M,2, ···, yu
M,P

]
denotes the decision vector,

γi ≥ 0 ( i = 1, 2, 3) are trade-off parameters. [ymin, ymax] are the lower and upper bounds
with each pair of elements for one decision variable being denoted as

[
ymin,i,j, ymax,i,j

]
,

where i = 1, 2, ···, M and j = 1, 2, ···, P. Note that the upper and lower settings can severely
affect the efficiency of the MLPLO approach, so they should be determined carefully. To
this end, the prediction uncertainty of the pseudo labels is first estimated through a proba-
bilistic modeling technique and then utilized to aid in determining the boundary of the
decision variables. Specifically, in this work, a GPR modeling technique [72] is applied to
provide the confidence intervals of the pseudo labels, which includes three steps, i.e., first,
building a GPR model from the labeled data Dl , then, obtaining the prediction variances of
the unlabeled data using the GPR model, and, finally, determining the search ranges based
on the confidence intervals.

3.2.2. Solving the Pseudo-Labeling Optimization Problem

For the formulated MLPLO problem shown in Equation (24), it can be seen that
NCLELM training and prediction are performed repeatedly during the calculation of the
objective function, which means the objective function fails to satisfy continuity, differen-
tiability, convexity, etc. Obviously, the classical optimization techniques are not suitable for
solving such a optimization problem. Fortunately, evolutionary algorithms, inspired by
biological phenomena, have earned great success in both machine learning and engineer-
ing applications for many tasks, such as feature selection, model selection, and optimal
scheduling [73–77]. Unlike the classical optimization methods, evolutionary approaches
conduct a parallel search, and they have the advantages of adapting to complex problems,
where derivability and convexity are not required. Despite the availability of numerous
evolutionary algorithms, for the sake of simplicity, one of the most well-known and com-
monly used approaches, genetic algorithms (GA), is chosen as an example to illustrate how
to solve the MLPLOP problem through an evolutionary approach.

The strategy of producing high-confidence pseudo labels using GA optimization is
illustrated in Figure 1. The details of individual representation, fitness evaluation, and
evolutionary operations are presented, as follows:

(1) Individual representation. In most cases, the quality variables in the industrial process
are real numbers, thus the decision variables yu =

{
yu

1,1, yu
1,2, ···, yu

1,P, ···, yu
M,1, yu

M,2, ···, yu
M,P

}
are encoded as chromosomes by real-number coding, as illustrated in Fig. 2. In addition, an
initial population with Npop individuals is generated randomly within the range of [ymin, ymax].

(2) Fitness evaluation. The goal of this step is to determine the quality of candidate
solutions in the populations. In this case, we compute the value of the objective function
defined in Equation (24) and use its reciprocal as the fitness value to evaluate the goodness
of the chromosomes.

(3) Evolutionary operations. If the stopping condition is not satisfied, the GA needs
to generate an offspring population by executing evolutionary operations; i.e., selection,
crossover, and mutation. The selection operator can find the good solutions with the largest
fitness values in a population. Crossover creates new individuals, by combing the genes of
one individual with those of another. In mutation, the genes in individuals will make small
random changes to create mutation children. Such an operation provides genetic diversity
and allows enlarging the search space.
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After performing the GA based MLPLO optimization, the optimal solution encoding
the best pseudo labels is obtained, i.e., yu

∗ =
[
yu
∗,1,1, yu

∗,1,2, ···, yu
∗,1,P, ···, yu

∗,M,1, yu
∗,M,2, ···, yu

∗,M,P

]
.

Then, by combining yu∗ with its corresponding Xu, we get the optimized pseudo-labeled
set Dpl =

{
Xu, yu∗

}
.

3.2.3. Building Diverse SSNCLEM Base Models

In order to obtain a good ensemble model, we need to construct accurate and diverse
base models. Once the MLPLO process is completed, a group of pseudo-labeled samples
can be obtained and further combined with the labeled set to build a set of SSNCLELM
models. It is fairly easy to see that the performance of the SSNCLELM model is highly
dependent on the quality of the optimized pseudo-labeled samples. Hence, to ensure the
reliability of the MLPLO process, the following two problems should be handled properly:

(1) Selection of the unlabeled samples. Though there are a large number of unlabeled
data available for SSL learning in practical industrial processes, the number of unlabeled
samples for the MLPLO approach cannot be too large. As indicated in Figure 2, the
dimension of the decision variables is equal to the size of the selected unlabeled data;
hence, inclusion of too many unlabeled samples will inevitably make the MLPLOP problem
become a large-scale optimization problem [78]. In this case, it is very difficult to obtain
good a search performance, efficiency, and effectiveness. In addition, introducing too many
pseudo-labeled samples into the SSNCLELM model construction will also weaken the
influence of the labeled samples, thus leading to high modeling risk. Therefore, it is more
realistic to generate diverse small-scale pseudo-labeled sets and then construct diverse
SSNCLELM base models.
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(2) Setting of the trade-off parameters {γ1 , γ2, γ3}. Besides the unlabeled data se-
lection, another important factor affecting the optimization performance of the MLPLO
approach, is determining an appropriate combination of trade-off parameters. In practice,
it is a difficult task to find a globally optimal combination of the three parameters, and
there is usually more than one combination that can meet the requirements. Considering
this, a natural method is to apply diverse settings of trade-off parameters for the MLPLO
process, thus avoiding the difficulties in parameter selection, as well generating diverse
pseudo-labeled samples. This is very helpful for enhancing the diversity of SSNCLELM
base models.

In light of the above problems, we aim to generate diverse SSNCLELM models
through a multi-model perturbation mechanism, which combines random assignment
of NCLELM model parameters, random selection of small-scale unlabeled samples for
MLPLO optimization, and diverse settings of trade-off parameters {γ1, γ2, γ3}.

Let Φk =
{
{NCLELMinit,i}M

i=1, Du′ , {γi}3
i=1

}
k

denote the specialized setting for the

kth run of diverse SSNCLELM model construction, where {NCLELMinit,i}M
i=1 are gener-

ated by randomly assigning input weights and biases, the selected unlabeled data Du′

are randomly resampled from Du, and {γi}3
i=1 is a combination from γ1 ∈ {γ1,i}k1

i=1,
γ2 ∈ {γ2,i}k2

i=1, and γ3 ∈ {γ3,i}k3
i=1. By applying Φk to the proposed MLPLO approach, an

enlarged labeled set Dl+pl = Dl ∪ Dpl
k can be obtained and further used to update the

initial models {NCLELMinit,i}M
i=1, thus resulting in a set of diverse SSNCLELM models{

SSNCLELMk,1, SSNCLELMk,2, . . . , SSNCLELMk,M
}

. By repeating the above procedure
K = k1 × k2 × k3 times, we can obtain a total of K×M diverse SSNCLELM models:

Φ1 : {SSNCLELM1,1, SSNCLELM1,2, . . . , SSNCLELM1,M}
...

ΦK : {SSNCLELMK,1, SSNCLELMK,2, . . . , SSNCLELMK,M}
(25)

3.2.4. Combining Diverse SSNCLEM Base Models

After obtaining diverse SSNCLELM models, we need to combine these models in an
appropriate manner. It is a common practice to utilize all base models for the ensemble con-
struction. However, according to Zhou’s the finding of ‘many could be better than all’ [71],
it may be better to combine only part rather than all of the base models. The underlying
reason is that there may exist poor base models, which can hurt the ensemble performance
instead of improving it. Thus, ensemble pruning has been strongly emphasized for en-
semble model construction [60,79,80]. Regarding the area of semi-supervised learning,
the introduction of unlabeled and pseudo-labeled information may lead to unsafe semi-
supervised learning [81]. That is, the prediction capability of a model cannot be improved,
but encounters deterioration after including the unlabeled and pseudo-labeled data.

Thus, we propose an ensemble pruning strategy based on performance improvement
evaluation. First, the supervised prediction performance of a NCLELM model learnt from
the labeled data is evaluated on an independent validation set Dval = {Xval , yval}. Then, a
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SSNCLELM model is trained from the augmented labeled set containing the pseudo-labeled
data, and its performance is further evaluated using the same validation set. Finally, the
performance improvement ratio is calculated, to decide whether the candidate SSNCLELM
model is retained or not. Specifically, for the ith SSNCLELM, the performance improvement
ratio (PIR) is calculated as follows:

RMSEinit
i = NCLELMi.evaluate(Dval) (26)

RMSEi = SSNCLELMi.evaluate(Dval) (27)

PIRi = (RMSEinit
i − RMSEi)/ RMSEinit

i (28)

where RMSEinit
i represents the RMSE of the ith NCLELM on Dval and RMSEi is the RMSE

of the ith SSNCLELM on Dval . Then, a threshold PIRth is required to select SSNCLELM
models whose PIR values exceed PIRth. In general, PIRth can be set to 0, as used in our case
studies, which means that those SSNCLELM models without performance improvement
on the validation set are discarded.

After the ensemble pruning, suppose that a total of S ≤ K×M SSNCLELM models are
retained for ensemble construction. Since the simple average rule cannot always function
well, it is appealing to integrate the base models using a weighting scheme. Hence, in
this work, a stacking strategy is employed for model combination. The basic idea of this
approach is to use the built SSNCLELM models as the first-level learners, and then train
the second-level learner by using the outputs of the first-level leaners as inputs, while the
original output is still regarded as the output of the model. That is,

EnSSNCLELM = Stacking(SSNCLELMsel,1, · · · , SSNCLELMsel,S) (29)

Specifically, given an independent validation set Dval = {Xval , yval}, the prediction

outputs
^
yval =

{
^
y

1

val ,
^
y

2

val , ···,
^
y

S

val

}
on Dval can be obtained using the selected base models{

SSNCLELMsel,i
}S

i=1. Then, a stacking model can be built from
{

^
yval , yval

}
, where

^
yval and

yval . are used as input and output data, respectively. To effectively handle the collinearity
issue among the SSNCLELM base models, a PLS stacking model is built. Thus, for one
query sample xq, the ensemble prediction output ŷq can be obtained as

ŷq = β0 +
S

∑
i=1

βi ŷi
q (30)

where {β0, β1, · · · , βS} denotes the PLS regression coefficients, and ŷi
q is the predicted

value from the ith SSNCLELM model.

3.2.5. Implementation Procedure of the EnSSNCLELM Soft Sensor

The pseudo-code of the proposed EnSSNCLELM soft sensor method is described in
Algorithm 1, and its workflow is illustrated in Figure 3.

Algorithm 1 EnSSNCLELM soft sensor method.

INPUT: Dl: labeled set
Du: unlabeled set
Dval: validation set
npop: population size for GA optimization
ngen: maximum number of iterations
{γ1,γ2,γ3}: trade-off parameters
{NELM, Nnode, λ}: the number of ELM in each NCLELM, the number of hidden node size

of ELM base models, the tradeoff parameter of NCLELM method, respectively
U′: the number of unlabeled data Du′ that requires pseudo labeling
M: the number of NCLELM models for the MLPLO approach
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Algorithm 1 Cont.

PROCESS:
1: Generate diverse combinations of parameters

{
γ1,k,γ2,k,γ3,k

}K
k=1 for the MLPLO

optimization, where K = k1 × k2 × k3, γ1 ∈
{
γ1,i
}k1

i=1, γ2 ∈
{
γ2,i
}k2

i=1 and γ3 ∈
{
γ3,i
}k3

i=1;
%% Building diverse SSNCLELM models
2: for k = 1 to K do

%% Estimating the pseudo labels through the MLPLO approach
3: Generate M new initial NCLELM models {NCLELMinit,i}M

i=1 with the
hyperparameters {NELM, Nnode, λ} by randomly setting the input weights and biases;
4: Select a small-scale unlabeled set Du′ by randomly resampling from Du;
5: Determine the pseudo labels of Du′ as the decision variables

yu
k =

{
yu

1,1, yu
1,2, ···, yu

1,P, ···, yu
M,1, yu

M,2, ··· , yu
M,P

}
with P = U′/M and set the lower and upper

bounds [ymin, ymax] for yu
k based on GPR regression analysis;

6: Encode the decision variables as real-valued chromosome s, and randomly generate an
initial population Pop = {si}

npop

i=1 with npop individuals within the decision boundary;
7: Repeat ngen times:
8: Decode the pseudo labels of yu

k from each individual chromosome in the
population;
9: Evaluate the fitness of each individual si in Pop according to Equation (24);
10: Generate an offspring population by performing selection, crossover, and
mutation operations;

mutation operations;
11: end of Repeat
12: Select the best individual s∗ from the final population;
13: Obtain the best pseudo labels yu∗ by decoding the chromosome s∗ and form the
pseudo-labeled set Dpl

k ;
%% Building diverse SSNCLELM models for each run
14: Update the initial models {NCLELMinit,i}M

i=1 using the optimized enlarged labeled set

Dl ∪Dpl
k to obtain the semi-supervised models

{
SSNCLELMk,i

}M
i=1;

15: end of for
%% Ensemble pruning based on performance improvement evaluation
16: Let Ω = {SSNCLELM1,1, ···, SSNCLELM1,M, ···, SSNCLELMK,1, ···, SSNCLELMK,M};
17: for i = 1 to K do
18: for j = 1 to M do
19: RMSEi,j = SSNCLELMi,j.evaluate(Dval);
20: PIRi,j = (RMSEinit

i,j − RMSEi,j)/ RMSEinit
i,j ;

21: if PIRi,j ≥ PIRth;
22: Add SSNCLELMi,j to the selected model pool Ωsel;
23: end of if
24: end of for
25: end of for
26: Let Ωsel =

{
SSNCLELMsel,1, SSNCLELMsel,2, . . . , SSNCLELMsel,S

}
;

%% Constructing PLS stacking ensemble model
27: Let Dval = {Xval, yval};
28:

{
ŷ1

val, ŷ2
val, ···, ŷS

val
}
= Ω.predict(Xval);

29: Let
^
yval =

{
ŷ1

val, ŷ2
val, ···, ŷS

val
}

;

30: {βm}S
m=0 = PLS.fit

(
^
yval, yval

)
, where β is the regression coefficient of PLS;

%% Online prediction
31: Given a query sample xq;

32:
{

ŷq,m

}S

m=1
= Ω.predict

(
xq
)
;

33: The final prediction output ŷq of xq are obtained by Equation (30).
OUTPUT: ŷq
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4. Case Studies

In this section, the performance of the proposed NCLELM and EnSSNCLELM soft
sensor methods are evaluated through a simulated penicillin fermentation process and
an industrial fed-batch chlortetracycline (CTC) fermentation process. The methods for
comparison are as follows:

(1) ELM [61]: the supervised single ELM model.
(2) NCLELM: the proposed supervised ensemble of ELM models using the NCL rule.
(3) EnNCLELMavg: the supervised ensemble of NCLELM models using the simple

averaging rule.
(4) EnNCLELMpls: the supervised ensemble of NCLELM models using the PLS

stacking strategy.
(5) CoELM: the co-training based semi-supervised ELM model, where the confidence

evaluation method proposed by Zhou and Li (2005) [43] is used and the Euclidean distance
is used to choose similar samples for confidence evaluation, and two different ELM models
are trained using two randomly generated feature subsets.
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(6) SSELM [29]: semi-supervised ELM model embedding the graph based
Laplacian regularization.

(7) EnSSNCLELMavg: the semi-supervised ensemble of diverse SSNCLELM models
using the simple averaging rule.

(8) EnSSNCLELM: the proposed method, the semi-supervised ensemble of SSNCLELM
models using PLS stacking strategy.

To quantitatively assess the prediction performance of different soft sensors, the
root-mean-square error (RMSE) and coefficient of determination (R2) are used:

RMSE =

√√√√ 1
N

Ntest

∑
n=1

(yn − ŷn)
2 (31)

R2 = 1− ∑Ntest
n=1 (ŷn − yn)

2

∑Ntest
n=1 (ŷn − y)2 (32)

where Ntest is the number of testing samples; ŷn and yn are the nth predicted and actual
values of the testing sample, respectively; and y is the mean value of the output variable.

4.1. Application to Penicillin Fermentation Process
4.1.1. Process Description

The penicillin fermentation process has been widely used for investigating the model-
ing, monitoring, and controlling of batch processes [82,83]. A flow diagram of the process is
illustrated in Figure 4. Since formation of secondary metabolites (in this case, penicillin) is
not associated with cell growth, the cells generally grow in a batch culture and then achieve
synthesis of antibiotics through a fed-batch operation. In general, the penicillin production
process lasts for 400 h, during which two cascade controllers are used to maintain the
pH and temperature. In addition, the sterile substrate and air are continuously fed into
the bioreactor to supply the nutrients for cell growth and product formation, as well as
satisfying the oxygen consumption necessary for the microorganisms.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 33 
 

 

 
Figure 4. Flow diagram of penicillin fermentation process. 

Table 1. Input variables for soft sensor development in the penicillin fermentation process. 

No. Variable Description (Unit) 
1 Culture time (h) 
2 Aeration rate (L/h) 
3 Agitator power (W) 
4 Substrate feed rate (L/h) 
5 Substrate feed temperature (K) 
6 Dissolved oxygen concentration (g/L) 
7 Culture volume (L) 
8 Carbon dioxide concentration (g/L) 
9 pH (−) 

10 Fermenter temperature (K) 
11 Generated heat (kcal) 
12 Cooling water flow rate (L/h) 

4.1.2. Prediction Performance and Discussion of NCLELM 
To verify the effectiveness and superiority of the proposed NCLELM, we conducted 

the experiments as follows: 
(1) Two application scenarios with different labeled data sizes were considered. The 

first case used 200 labeled samples collected from five batches for model training, while 
the second case used 800 labeled samples from the same batches. In addition, 800 labeled 
samples from another five batches were used for testing. 

(2) The prediction performance of NCLELM with respect to different parameter 
configurations {𝑁, 𝑁୬୭ୢୣ, 𝜆}  was analyzed, where 𝑁 ∈ {5,10,15,20},  𝑁୬୭ୢୣ ∈{5,6, ⋯ ,30}, and 𝜆 ∈ {0,0.2, ⋯ 1}. Among these parameters, 𝑁 and 𝑁୬୭ୢୣ affect the 
model complexity significantly, while 𝜆 indicates the degree of concern placed on 
minimizing the correlation-based penalty. 

(3) A comparison between NCLELM and ELM was performed to demonstrate the 
advantage of the NCL rule. Since both methods exhibit a random nature, due to the 

Figure 4. Flow diagram of penicillin fermentation process.

In our experimental study, the process data were collected from the PenSim plat-
form, which was developed by the Process Modeling, Monitoring, and Control Research
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Group of Illinois Institute of Technology for simulating the fed-batch penicillin fermen-
tation process [84]. The software PenSim can be downloaded from the website on
http://simulator.iit.edu/web/pensim/index.html (accessed on 5 August 2019). In this
work, penicillin concentration was chosen as the difficult-to-measure variable, while the
relevant process variables in Table 1 were used as the input variables of soft sensor mod-
els. Moreover, the sampling interval was set as 0.5 h and the default operation settings
were considered.

Table 1. Input variables for soft sensor development in the penicillin fermentation process.

No. Variable Description (Unit)

1 Culture time (h)
2 Aeration rate (L/h)
3 Agitator power (W)
4 Substrate feed rate (L/h)
5 Substrate feed temperature (K)
6 Dissolved oxygen concentration (g/L)
7 Culture volume (L)
8 Carbon dioxide concentration (g/L)
9 pH (−)

10 Fermenter temperature (K)
11 Generated heat (kcal)
12 Cooling water flow rate (L/h)

4.1.2. Prediction Performance and Discussion of NCLELM

To verify the effectiveness and superiority of the proposed NCLELM, we conducted
the experiments as follows:

(1) Two application scenarios with different labeled data sizes were considered.
The first case used 200 labeled samples collected from five batches for model training,
while the second case used 800 labeled samples from the same batches. In addition,
800 labeled samples from another five batches were used for testing.

(2) The prediction performance of NCLELM with respect to different parameter configu-
rations {NELM, Nnode, λ}was analyzed, where NELM ∈ {5, 10, 15, 20}, Nnode ∈ {5, 6, · · · , 30},
and λ ∈ {0, 0.2, · · · 1}. Among these parameters, NELM and Nnode affect the model com-
plexity significantly, while λ indicates the degree of concern placed on minimizing the
correlation-based penalty.

(3) A comparison between NCLELM and ELM was performed to demonstrate the
advantage of the NCL rule. Since both methods exhibit a random nature, due to the random
assignments of input weights and biases; for the sake of fairness, their prediction accuracies
are provided as the simple average of those from 50 runs.

Figure 5 illustrates the testing performance of the proposed NCLELM approach for
different settings of parameters {NELM, Nnode, λ}, where the prediction performance of
ELM is also given for comparison. The effects of hyper-parameters {NELM, Nnode, λ} on
the NCLELM model performance are analyzed first. It is readily seen that, overall, the
prediction errors of NCLELM decreased with the increase of Nnode. It is also noticeable
that, when large Nnode was used, the performance enhancement resulting from the increase
of Nnode became subtle. This was mainly because a high model complexity tends to cause
overfitting when the training data are insufficient. For example, in the application case with
200 labeled training samples, as shown in Figure 5a, the testing accuracy was not improved
significantly after Nnode exceeded 15, due to the scarcity of the labeled training data. In
comparison, as shown in Figure 5b, the trend plots from the case with 800 labeled training
samples decreased more sharply and the testing RMSE values continuously became smaller
when Nnode increased.

http://simulator.iit.edu/web/pensim/index.html
http://simulator.iit.edu/web/pensim/index.html
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Figure 5. Prediction results of the ELM, EnELM, and NCLELM methods under different parameter settings. In (a,b), the
training sample size was Ntrn = 200 and 800, respectively.

Similarly to Nnode, NELM also had a great impact on the NCLELM model complexity. It
can be seen from the four subplots in Figure 5a, when a small Nnode was used for NCLELM,
a large NELM was more likely to produce a high prediction accuracy. However, when a
large Nnode was considered, the increase of NELM only led to a slight enhancement of the
testing accuracy. A similar phenomenon can also be found in Figure 5b. Based on the above
analysis, we can conclude that, when the training data size is small, a less complex model
structure is preferable; while a more complex model, which can be built by increasing
Nnode and/or NELM, is required when the training data are sufficient.

Unlike Nnode and NELM, λ was introduced to control the importance of the correlation
based penalty objective in the training loss function. When the individual model complexity
was not so high, e.g., in the case with a small Nnode, a large λ was required to ensure the
prediction accuracy of NCLELM. One possible reason for this is that, in such a situation, it
is desirable to emphasize the NCL effect of NCLELM, to guarantee the diversity among
the ELM base models, which is crucial for building a high-performance ensemble model.
As the model complexity grows, the benefits from introducing the NCL rule decline, even
though a large λ is employed. One possible answer to this question is that, when a complex
model structure is used, the diversity among the base ELM models for the NCLELM
construction can be effectively maintained only through the inherent random assignments
of the NCLELM parameter configurations. In this case, the NCL rule-based diversity
improvement is not obvious. In the case of λ = 0, NCLELM degenerates as the simple
averaging rule based ensemble of ELM models.

Subsequently, we compared the prediction accuracy of the NCLELM and ELM meth-
ods. As can be seen from the figure, similarly to NCLELM, the prediction performance of
ELM was also enhanced with the increase of Nnode. When the training data are limited
(e.g., Ntrn = 200), a moderate Nnode, such as 20 is acceptable, whereas a larger Nnode, such
as 30, is more suitable for a case with a relatively large training data size, such as Ntrn = 800.
Meanwhile, we found that the performance of NCLELM was always much better than that
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of ELM, regardless of the parameter settings and training data sizes, which implies the
outstanding performance of NCLELM. The above experimental results fully confirm the
effectiveness and superiority of the proposed NCLELM over traditional ELM.

4.1.3. Analysis and Comparison of EnSSNCLELM Prediction Results

To evaluate the effectiveness of the proposed EnSSNCLELM soft sensor method, five
batches, including 4000 labeled samples, were collected for soft sensor training. To imitate
the practical application scenario with scarce labeled data but rich unlabeled data, the
obtained training set was further divided into two parts: a small-sized labeled training set
with only 200 labeled samples, and a large-sized unlabeled training set with 3800 samples,
whose actual labels had been removed. In addition, an independent validation set including
40 labeled samples was collected from two batches for ensemble pruning and stacking.
Moreover, another five batches were obtained to assess the online prediction performance
of the soft sensors.

To build well-performing soft sensor models, some critical parameters of different soft
sensor methods should be determined in advance by cross-validation or trial and error,
as follows:

(1) ELM: The hidden node size Nnode was set as 20 by 5-fold cross-validation.
(2) NCLELM: The hyperparameters {NELM, Nnode, λ} were set as {5, 20, 0.6} by 5-fold

cross-validation, respectively.
(3) CoELM and SSELM: Nnode for the two methods were selected as 20, the maximum

number of iterations for CoELM was set as 300, and the penalty coefficient for SSELM was
set as 0.3, by trial and error.

(4) EnSSNCLELM: The hyperparameters {NELM, Nnode, λ} for the SSNCLELM base
models were the same as those of NCLELM. The M and U′ were set to 3 and 300, respec-
tively, for formulating the MLPLOP problem. In addition, the parameter configurations for
the GA based MLPLO optimization of EnSSNCLELM were set as follows: the population
size npop = 50 and the maximum number of iterations ngen = 50 for GA optimization,
and diverse combinations of trade-off parameters {γ1, γ2, γ3} were generated from the
candidate set of {0, 0.01, 0.1, 0.5, 1}. In addition, the number of principal components of
the PLS stacking model was determined by 5-fold cross-validation.

Considering that the EnNCLELMavg, EnSSNCLELMavg, and EnNCLELMpls meth-
ods are actually the degraded versions of the proposed EnSSNCLELM approach, their
parameter configurations were set to the same as those of EnSSNCLELM. Under the above
parameter settings, a total of 375 SSNCLELM models were first built based on the extended
labeled data. After ensemble pruning, 350 models were retained for constructing the
ensemble models EnSSNCLELMavg and EnSSNCLELM. Meanwhile, the NCLELM base
models, corresponding to the SSNCLELM ones, were selected for EnNCLELMavg and
EnNCLELMpls modeling.

The prediction results of different soft sensors on the testing set are tabulated in Table 2.
It can be seen that ELM had the worst performance as a single model, and NCLELM deliv-
ered a better accuracy, due to the introduction of the NCL ensemble strategy. By using ELM
as the base learning technique, two representative semi-supervised methods, i.e., CoELM
and SSELM, were developed using co-training and embedding graph regularization, re-
spectively. Though CoELM and SSELM include unlabeled data and, thus, achieved an
accuracy improvement, their prediction performance was still very poor. Furthermore,
by using NCLELM for base model building, two supervised ensemble models, namely
EnNCLELMavg and EnNCLELMpls are developed by introducing a simple averaging
rule and PLS stacking strategy, respectively. It is readily observed that, compared to
NCLELM, both ensemble methods provided a better prediction accuracy, and the com-
parison between EnNCLELMpls and EnNCLELMavg further implied the superiority of
the stacking scheme over to the simple averaging strategy. In addition, compared to
EnNCLELMavg, EnSSNCLELMavg obtained a much better prediction accuracy, due to the
utilization of unlabeled data information, which can be also revealed by the comparison
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between EnNCLELMpls and EnSSNCLELM. Overall, due to the efficient combination
of ensemble and semi-supervised learning, the proposed EnSSNCLELM approach pro-
vided a much better prediction performance than the other traditional supervised and
semi-supervised methods.

Table 2. Prediction results of penicillin concentration using different soft sensor methods in the
penicillin fermentation process.

Method RMSE R2

ELM 0.1044 0.9479
NCLELM 0.0812 0.9689
CoELM 0.0772 0.9720
SSELM 0.1019 0.9506

EnNCLELMavg 0.0778 0.9714
EnSSNCLELMavg 0.0599 0.9822

EnNCLELMpls 0.0627 0.9821
EnSSNCLELM 0.0440 0.9908

Figure 6 displays the trend plots of the predicted and actual penicillin concentrations
using ELM, EnNCLELMpls, and EnSSNCLELM methods, to provide a more intuitive com-
parison of model performance. It is evident that the predictions of NCLELM have large
deviations from the actual values, especially in the fermentation period of 40–150 h. In
comparison, EnNCLELMpls significantly reduced the deviations, due to the introduction
of ensemble learning. Furthermore, we can see that EnSSNCLELM produced smaller devi-
ations than EnNCLELMpls in the period of 70–180 h, although their prediction accuracies
are comparable in other zones. The superior predictions of EnSSNCLEM were mainly due
to the introduction of ensemble learning and the utilization of pseudo-labeled data. On the
one hand, ensemble learning allows significantly reducing the prediction uncertainty from
the base models, which is especially useful for handing the extreme deviations that often
occur for a single model. On the other hand, using an enlarged training set can effectively
improve the prediction capability of the base models, which is helpful for constructing a
good ensemble.

Subsequently, the individual model performance and ensemble prediction results
from the proposed SSNCLELM approach are illustrated in Figure 7. Since, EnSSNCLELM
is essentially an ensemble method, both the quality of the SSNCLELM base models and
the combination scheme are critical to the ensemble construction. First, the base model
performance was investigated under the supervised and semi-supervised learning settings.
To this end, once a NCLELM model was built, a corresponding SSNCLELM model with the
same input weights and biases was trained by the enlarged labeled set. From the figure, it
can be observed that the prediction RMSE values of SSNCLELM models were much smaller
than those of the NCLELM models, except for in very few cases. Obviously, such significant
performance enhancement is entirely attributed to the incorporation of semi-supervised
learning. Then, the ensemble prediction performance using different combination strategies
was compared. With the NCLELM and SSNCLELM base models, EnNCLELMavg and
EnSSNCLELMavg were built using the simple averaging rule, while EnNCLELMpls and
EnSSNCLELM employed PLS stacking. One can observe that, both EnNCLELMavg and
EnSSNCLELMavg only obtained a prediction accuracy that was inferior to the best base
model, which is mainly because the simple averaging ignores the differences among the
base models. By contrast, EnNCLELMpls provided a prediction accuracy that was close
to that of the best base model, while our proposed EnSSNCLELM approach was greatly
superior to all base models. These results further confirm the effectiveness of the proposed
pseudo-labeling technique and the PLS stacking strategy.
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Figure 6. Trend plots of penicillin concentration predictions using ELM, EnNCLELMpls, and EnSSNCLELM methods in
penicillin fermentation process.
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Figure 7. Prediction performance of individual models before and after incorporating semi-
supervised learning.

The success of the proposed EnSSNCLELM method depends highly on the quality of
the obtained pseudo labels. Thus, one remaining question is how well the pseudo labels
can coincide with the actual labels. Although in real-world applications, the actual labels
for the unlabeled data are unknown, in this case study, the true labels could be easily
acquired from the simulated platform. Hence, as illustrated in Figure 8, we present two
types of comparisons: evaluating the fitting degree of the pseudo and true labels, and
comparing the testing performance, before and after introducing pseudo-labeled data. As
indicated by the prediction results from the two example runs, the pseudo and the actual
labels achieved a strong agreement with small prediction RMSE values. Moreover, it is
noticeable that RMSESSNCLELM was much lower than RMSENCLELM, due to the inclusion of
pseudo-labeled samples. These observations further imply the effectiveness and reliability
of the proposed pseudo-labeling optimization technique.

The above results show that the proposed EnSSNCLELM method can effectively
combine semi-supervised learning with ensemble learning, thus allowing resolving the
label scarcity issue and improving the estimation reliability of difficult-to-measure variables
in an industrial process.
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Figure 8. Comparison of the real and pseudo labels estimated by the proposed pseudo-labeling
optimization method from (a) Example run 1, and (b) Example run 2. RMSEpseudo–true is the fitting
accuracy between the pseudo and true labels, and RMSENCLELM and RMSESSNCLELM denote the
prediction accuracy of the NCLELM, before and after including the pseudo-labeled data, respectively.

4.2. Application to an Industrial Chlortetracycline Fermentation Process
4.2.1. Process Description

Chlortetracycline (CTC) is a type of broad-spectrum antibiotic, which has been widely
used in pharmaceutical and agricultural production and animal husbandry. The industrial
CTC fermentation process under study is carried out by Charoen Pokphand Group Co., Ltd
(Zhumadian, China)., as illustrated in Figure 9 [65]. Generally, CTC is produced through
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the cultivation of Streptomyces aureofaciens in an air-lift stirred fermenter with a volume
of 120 m3. During the fed-batch cultivation process, real-time measurements of substrate
concentration are desirable, to facilitate efficient feeding control. However, up to now, the
feeding control is often still operated manually, due to the lack of reliable online hardware
sensors for substrate concentration measurement, which is usually achieved through offline
chemical analysis, with a long delay of 6 h. Thus, soft sensors are desirable to enable real-
time estimations of substrate concentration. In this work, the process variables listed in
Table 3 were used as inputs for soft sensor development.
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Table 3. Input variables for soft sensor development in the industrial CTC fermentation process.

No. Variable Description No. Variable Description

1 Cultivation time (min) 6 Volume of air consumption (m3)
2 Temperature (◦C) 7 Substrate feed rate (L/h)
3 pH 8 Volume of substrate consumption (L)
4 Dissolved oxygen concentration (%) 9 Volume of ammonia consumption (L)
5 Air flow rate (m3/h) 10 Volume of culture medium (m3)

4.2.2. Analysis and Comparison of Prediction Results

In this case study, a total of 14 batches of process data were collected from an industrial
fermenter, including 351 labeled samples and 3183 unlabeled samples. Among the labeled
samples, 124 were utilized for model training, 29 were used for validation, and the remain-
ing 198 samples served as the testing set. In addition, 3183 unlabeled samples were used for
the pseudo labeling optimization and semi-supervised learning. Moreover, the parameter
settings for different soft sensor models were the same as those in the application to the
penicillin fermentation process. Consequently, a total of 375 SSNCLELM models were
obtained, and 264 were selected using the ensemble pruning strategy for the construction
of the EnSSNCLELM model.

The substrate concentration prediction results for the different soft sensor methods
are presented in Table 4. It is obvious that ELM performed much worse than the other
methods, while the proposed EnSSNCLELM method performed best. Compared with the
supervised single ELM model, NCLELM achieved a performance enhancement, due to
the introduction of NCL ensemble learning. Meanwhile, both CoELM and SSELM also
reduced the prediction errors, due to the use of unlabeled data information. Furthermore,
by applying an ensemble learning philosophy and using NCLELM as the base learning
technique, EnNCLELMavg and EnNCLELMpls delivered a much better estimation per-
formance than the single NCLELM. Comparing EnNCLELMpls EnNCLELMavg indicates
that the PLS stacking outperformed the simple averaging rule. In addition, compared
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with EnNCLELMpls, the prediction accuracy of EnSSNCLELM was significantly improved,
because of the incorporation of semi-supervised learning. A similar situation also ap-
peared in the performance comparison of EnNCLELMavg and EnSSNCLELMavg. Similar
to the application in the penicillin fermentation process, once again, the application results
demonstrated the superiority of the proposed method over the traditional supervised and
semi-supervised methods.

Table 4. Prediction results of the various soft sensor methods for the CTC fermentation process.

Method RMSE R2

ELM 0.5993 0.8009
NCLELM 0.5214 0.8527
CoELM 0.5033 0.8614
SSELM 0.5566 0.8303

EnNCLELMavg 0.4916 0.8699
EnSSNCLELMavg 0.4654 0.8834

EnNCLELMpls 0.4214 0.9044
EnSSNCLELM 0.3561 0.9317

More intuitively, the scatter plots of the predicted versus actual substrate concentra-
tion values using the NCLELM, EnNCLELMpls, and EnSSNCLELM models are depicted
in Figure 10. In the scatter plot, the accuracy of the predictive model is evaluated by the
closeness of points to the diagonal line. The closer the scatter points are to the diagonal
line, the higher the model accuracy. From the figure, one can see at a glance that the test
samples exhibit an unbalanced distribution. In the small-value zone (about 1–4), the testing
samples are dense, while in the large-value zone (about 4–7), the samples are sparse. Fur-
thermore, it can be readily observed that the NCLELM, EnNCLELMpls, and EnSSNCLELM
methods provided a different prediction performance. For the small-value zone, NCLELM
suffers from large deviations from the diagonal line, implying a poor prediction accuracy.
EnNCLELMpls reduces the deviations by introducing ensemble learning, thus, indicating a
significant accuracy improvement. In comparison, EnSSNCLELM achieved the best close-
ness to the diagonal line, due to the exploitation of unlabeled data, which led to further
enhancement of the model performance. Differently, in the large-value zone, one can find
an interesting aspect, in that EnNCLELMpls performed even worse than NCLELM. One
possible reason is that some of the NCLELM base models for the ensemble construction
of EnNCLELMpls were not well learnt, due to the insufficiency of training samples in the
large-value zone, and, thus, the combination of such models resulted in a performance
deterioration instead of improvement. By contrast, the proposed EnSSNCLELM approach
still obtained the most competitive prediction accuracy in the large-value zone, which
was mainly because the inclusion of high-confidence pseudo-labeled data significantly
improved the generalization capability of the SSNCLELM base models.

In addition, Figure 11 presents the performance of the individual models before and
after incorporating semi-supervised learning for the industrial fed-batch CTC fermentation
process. One can see that SSNCLELM base models achieved a better performance than the
NCLELM base models, except for a few cases, which is attributed to the augmentation of
the labeled training data, resulting from the good pseudo-label data. After introducing the
stacking combination, EnNCLELMpls delivered a performance close to that of the best base
model, while EnSSNCLELM produced much better predictions than all the base models. In
comparison, both EnNCLELMavg and EnSSNCLELMavg did not deliver a prediction accu-
racy enhancement. This was mainly because the simple averaging rule cannot consider the
differences among the base models. Overall, the competitive performance of EnSSNCLELM
was mainly due to the introduction of semi-supervised learning for enhancing the accuracy
and diversity of the base models, as well as the utilization of ensemble learning, to further
improve the prediction accuracy and reliability.
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Figure 11. The performance of individual models before and after incorporating semi-supervised
learning for industrial fed-batch CTC fermentation process.

The above case study results further indicate the effectiveness of the proposed MLPLO
technique in extending the labeled training data and verify the superiority of the proposed
EnSSNCLELM method over traditional soft sensor methods, for providing accurate quality
variable predictions in industrial processes, especially for application scenarios with limited
labeled data.

5. Conclusions

A novel semi-supervised soft sensor modeling method, referred to as EnSSNCLELM,
was proposed for the quality variable prediction of industrial processes, where the labeled
data are scarce but the unlabeled data are rich. The proposed approach aims to enhance
the inferential performance by leveraging both the labeled and unlabeled data, as well as
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combining semi-supervised and ensemble learning paradigms to achieve complementary
strengths. First, to reduce the prediction instability and improve the prediction accuracy
of ELM, the NCLELM algorithm was developed by introducing the NCL rule into ELM
modeling. In this way, the diversity among the base ELM models is explicitly considered
during NCLELM modeling. Second, by using NCLELM as the base learning technique,
we proposed a MLPLO approach to provide high-confidence pseudo-labeled data, where
the issue of estimating pseudo labels is formulated as an explicit optimization problem
and solved through evolutional optimization. In addition, based on the extended labeled
data, a set of diverse SSNCLELM models were built. Finally, these models were com-
bined using a stacking strategy, after ensemble pruning according to the performance
enhancement of semi-supervised models against supervised models. The application
results from two chemical processes indicated that the proposed algorithm allows for a
significant performance improvement over the traditional supervised and semi-supervised
soft sensor methods.

The success of EnSSNCLELM is highly dependent on obtaining high-quality pseudo-
labeled data, as well as building and combing diverse and accurate semi-supervised base
models. Thus, how to formulate and solve the PLOP problem deserves further studies, e.g.,
defining more effective optimization objectives and employing multi-objective pseudo-
labeling optimization, instead of a single-objective method. Furthermore, it is of great
importance to ensure safe learning of the base models, i.e., avoiding reducing learning
performance significantly when using unlabeled data. This may be achieved through
efficiently selecting well-performing base models for ensemble construction and utilizing
informative unlabeled data for semi-supervised modeling. These issues are left to be
investigated in the near future.
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