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Abstract: This paper presents a wideband low-noise amplifier (LNA) front-end with noise and
distortion cancellation for high-frequency ultrasound transducers. The LNA employs a resistive
shunt-feedback structure with a feedforward noise-canceling technique to accomplish both wideband
impedance matching and low noise performance. A complementary CMOS topology was also
developed to cancel out the second-order harmonic distortion and enhance the amplifier linearity.
A high-frequency ultrasound (HFUS) and photoacoustic (PA) imaging front-end, including the
proposed LNA and a variable gain amplifier (VGA), was designed and fabricated in a 180 nm CMOS
process. At 80 MHz, the front-end achieves an input-referred noise density of 1.36 nV/sqrt (Hz), an
input return loss (S11) of better than −16 dB, a voltage gain of 37 dB, and a total harmonic distortion
(THD) of −55 dBc while dissipating a power of 37 mW, leading to a noise efficiency factor (NEF)
of 2.66.

Keywords: high-frequency ultrasound transducers; low-noise amplifier; noise cancellation; harmonic
distortion cancellation; resistive shunt-feedback amplifier; wideband impedance matching

1. Introduction

With the recent advancements of high-frequency (>30 MHz) ultrasound transduc-
ers [1], such as polyvinylidene fluoride (PVDF) piezoelectric transducers and capacitive
micromachined transducers (CMUT), high-frequency ultrasound and photoacoustic imag-
ing have been developed rapidly. The HFUS and PA imaging with improved microscopic
resolutions opens many new medical imaging applications [2–7] in the fields of ophthalmol-
ogy, dermatology, photoacoustic microscope, intravascular imaging (IVUS), and systemic
sclerosis (SSC).

In HFUS and PA imaging, ultrasound transducers are utilized to detect the acoustic
pressure transients and to generate electrical signals accordingly. The electrical signals are
then processed by the ultrasonic imaging receiver, in which the low-noise amplifier (LNA)
is the key component. To support HFUS and PA imaging, the LNA needs to achieve low
noise and high bandwidth simultaneously. Conventionally, the LNA is designed as either
a charge-sensitive amplifier (CSA) or a voltage amplifier. Although the CSA provides low
noise performance [8,9], the feedback loop formed by the bleeding resistor and the feed-
back capacitor significantly limits the achievable amplifier bandwidth. The voltage-mode
amplifier, such as the resistive shunt-feedback amplifier in [10], achieves large bandwidth
and wideband impedance matching, however, the noise performance is poor due to the
fixed transconductance of the input transistor for the impedance matching. To improve the
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noise performance of voltage-mode amplifiers, noise-canceling (NC) techniques [11–13]
have been recently explored. Reference [12] proposes an LNA utilizing a combination of a
common-gate (CG) amplifier and a common-source (CS) amplifier for noise cancellation.
Nonetheless, the pseudo-differential structure is prone to gain a mismatch between the
CG and CS gain stages. Based on a resistive shunt-feedback amplifier structure, our recent
work [13] also demonstrates a noise-canceling wideband LNA, where a common-source
auxiliary amplifier is employed to generate an in-phase signal and an out-of-phase noise,
with respect to those of the main amplifier, for noise cancellation.

As the outputs of ultrasound transducers are normally in single-ended mode, the
LNAs are typically limited to single-ended structures, thus suffering from even-order
nonlinear distortion. To suppress the even-order harmonics, single-ended-to-differential
conversion circuits have been utilized but with the penalties of additional noise and power
consumption. To address this issue, a bulky LC resonator is used as a band-pass filter
in [14] to reject the second-order harmonic distortion. In [15], a constant transconduc-
tance structure is developed to achieve second-order intermodulation distortion (IM2)
cancellation. The constant transconductance, however, relies on precisely matched triode
transistors.

Power consumption is also a major concern in designing ultrasound LNAs. In beam-
forming applications where multiple channels are integrated on a single chip, the heat
generated by the LNAs can significantly affect chip reliability. Low power consumption is
also indispensable in portable ultrasound systems. To reduce LNA power consumption, a
step-up balun with two secondary turns is developed in [16] to alleviate the transconduc-
tance requirement for impedance matching. The use of balun, however, is not applicable to
wideband ultrasound LNAs because of its large area penalty.

In this article, which is an extension of [13,17], a complementary resistive shunt-
feedback LNA with both noise and distortion cancellations is presented to simultaneously
achieve wideband impedance matching, low noise, and high linearity for HFUS and PA
imaging applications. An electrical model of the PVDF ultrasound transducer is also
developed to guide the LNA design process. Designed in a 180 nm CMOS technology, the
LNA achieves a 0.8 nV/sqrt (Hz) input-referred voltage noise density, a 19 dB voltage gain,
and a −59.3 dBc total harmonic distortion (THD) at 80 MHz. An ultrasound front-end
with the proposed LNA and a pseudo-differential variable gain amplifier (VGA) is also
designed and fabricated. At 80 MHz, measurements show that the front-end achieves an
input-referred voltage noise density of 1.36 nV/sqrt (Hz), a better than−16 dB input return
loss (S11), a voltage gain of 37 dB, and a THD of −55 dBc. The front-end consumes 37 mW
of power from a 1.8 V supply and achieves a noise efficiency factor (NEF) of 2.66.

The overall LNA design was carried out by the following procedures. First, the
typical electrical parameters of the PVDF ultrasound transducer for HFUS and PA imaging
applications were obtained through experimental measurements. The parameters included
the resonance frequency, output impedance, and output amplitude of the transducer.
Then, an electrical model of the PVDF transducer was developed to facilitate the co-
simulation of the LNA with the ultrasound transducer. Second, given the typical PVDF
electrical parameters, the LNA design specifications, including gain and bandwidth, input
impedance matching, and total harmonic distortion, were defined. Design solutions for
improving the bandwidth, noise, linearity, and power efficiency of the LNA were then
developed. A test chip was designed and fabricated in a 180 nm CMOS technology,
and experimental measurements were carried out to validate the proposed LNA design
solutions.

The remainder of this paper is organized as follows. Section 2 describes the model
development of the PVDF transducer. Section 3 presents the LNA design solutions for
improving bandwidth, noise, linearity, and power efficiency. Section 4 describes the pro-
posed LNA design in a 180 nm CMOS technology. Section 5 presents the chip measurement
results and Section 6 concludes the paper.



Sensors 2021, 21, 8476 3 of 17

2. PVDF Ultrasound Transducer Model

Figure 1a depicts the schematic of the ultrasound transducer, which was made of a
9-µm-thick piezoelectric material PVDF film, whose resonance frequency and bandwidth
were around 50~80 MHz and 75~140 MHz, respectively [18–20]. The materials of the
transducer electrodes were Indium Tin Oxide (ITO) and Aluminum (Al). The fabrication
process was conducted as follows: (1) A 9-µm-thick polarized PVDF film was cut into pieces
of suitable sizes; (2) With RF sputtering, the 200-nm-thick ITO electrodes were formed on
the two surfaces of the PVDF film; (3) With DC sputtering, the aluminum electrodes were
formed on the surfaces of the PVDF film. The effective sensing region was the 2 × 2 mm2

transparent area at the center. Figure 1b shows the photograph of the PVDF transducer and
its electrical model. Measured with an impedance analyzer, Figure 2 presents the electrical
output impedance of the transducer, where the series resistance Rs was about 50 Ω from
50 MHz to 100 MHz and the series capacitance Cs was close to a constant of 16 pF.
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Figure 1. (a) Schematic diagram of the PVDF transducer; (b) photograph of the PVDF transducer
and its electrical model.
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Figure 2. Measured output impedance of the PVDF transducer.

As shown in Figure 3a, to measure the photoacoustic response of the transducer, an
optically absorptive target made of black tape was used. The target was put under the
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transducer’s effective sensing region. During the measurement, a small amount of water
was added between the transducer and the target surface to improve the acoustic signal
coupling efficiency. The 905-nm laser pulses (pulse width: 8 ns, pulse energy: 150 nJ/pulse,
repetition rate: 1 kHz) were shot through the transducer to the target. The PA signal excited
from the surface of the target was detected by the transducer. The representative PA signal
recorded by the transducer is depicted in Figure 3b.
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Figure 3. (a) Measurement setup for the PA response of the PVDF transducer; (b) recorded PA signal
induced by laser pulse onto black tape.

Given that the typical resonance frequency of the PVDF transducer was about 50~80 MHz
where the corresponding Rs, as shown in Figure 2, was about 50 ± 10 Ω and that the
typical transducer output signal was 1 mV, as shown in Figure 3b, the LNA along with
the post amplifier was thus designed to aim to achieve about 40 dB voltage gain, −50 dBc
THD under 1 mV input, and a better than −15 dB input return loss across the transducer
resonance frequency range.

3. LNA Design and Analysis
3.1. Resistive Shunt-Feedback

The resistive shunt-feedback amplifier, as depicted in Figure 4, was chosen as the basic
building block for the proposed high-frequency LNA. The resistive shunt-feedback struc-
ture simultaneously offered a high f−3dB bandwidth and wideband impedance matching.

Neglecting the effect of parasitic capacitance Cgs of the input transistor M1 and assum-
ing RL � RF, the input impedance of the shunt-feedback amplifier could be derived as

ZIN =
RF + RL

1 + gm1RL
≈ 1

gm1
, (1)
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where gm1 is the transconductance of transistor M1. The input impedance matching
condition was then obtained as

RS= ZIN =
1

gm1
, (2)

where RS is the source impedance.
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Next, we derived the signal gain of the amplifier VY,S
VS

. The gain from node X to node
Y was derived as

VY,S

VX,S
=

(1− gm1RF)RL
RF+RL

≈ 1− gm1RF, (3)

where VY,S and VX,S are the signals at the amplifier output node and the gate node of
transistor M1, respectively. Then, under the input impedance matched condition, the signal
gain VY,S

VS
was derived as

VY,S

VS
=

VY,S

VX,S
× VX,S

VS
= (1− gm1RF)

RS
RS+ZIN

=
1
2

(
1− RF

RS

)
. (4)

The major noise components of the amplifier were the thermal noises of RS and the
amplifier input transistor M1. The noise factor of the amplifier [11] could be derived as

F > 1+
4kTγ × ZIN

4kTRS
+χ = 1 + γ + χ > 2,. (5)

where k is the Boltzmann’s constant, T is the temperature in Kelvins, γ is the channel
thermal noise coefficient and 1 < γ < 2 for submicron n-channel MOSFETs [21], and χ

represents the flicker noise and the thermal noise induced by other parts of the circuit (e.g.,
RF and RL). From Equation (5), the achievable noise figure (NF) was larger than 3 dB and
was often larger than 5 dB practically. The noise performance of the wideband resistive
shunt-feedback amplifier clearly needs to be improved.

3.2. Feedforward Noise Cancellation

To improve the noise performance, feedforward noise cancellation [13] was exploited.
Figure 5 depicts the noise-canceling technique where an auxiliary amplifier was used to
generate an in-phase signal and an out-of-phase noise with respect to those of the main
amplifier M1. The main amplifier M1 had an inverting signal gain, as shown in Equation (4).
The noise gain of the main amplifier M1 could be derived as

VY,N

VX,N
= 1 +

RF
RS

, (6)

where VX,N denotes the input-referred thermal noise of M1, and VY,N is the corresponding
output noise. From Equation (6), the main amplifier M1 had a non-inverting gain for noise.
To cancel the noise of M1, the auxiliary amplifier, as shown in Figure 5, was designed to
have an inverting amplification for both the signal and the noise at node X. With the main
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amplifier and the auxiliary amplifier exhibiting opposite noise gains, noise cancellation can
thus be achieved.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 18 
 

 

F > 1 + 
4kTγ × ZIN

4kTRS
 + χ = 1 + γ + χ > 2,. (5) 

where k is the Boltzmann’s constant, T is the temperature in Kelvins, γ is the channel 

thermal noise coefficient and 1 < γ < 2 for submicron n-channel MOSFETs [21], and χ 

represents the flicker noise and the thermal noise induced by other parts of the circuit 

(e.g., RF and RL). From Equation (5), the achievable noise figure (NF) was larger than 3 

dB and was often larger than 5 dB practically. The noise performance of the wideband 

resistive shunt-feedback amplifier clearly needs to be improved. 

3.2. Feedforward Noise Cancellation 

To improve the noise performance, feedforward noise cancellation [13] was ex-

ploited. Figure 5 depicts the noise-canceling technique where an auxiliary amplifier was 

used to generate an in-phase signal and an out-of-phase noise with respect to those of the 

main amplifier M1. The main amplifier M1 had an inverting signal gain, as shown in Equa-

tion (4). The noise gain of the main amplifier M1 could be derived as 

RL

RS

RF

M1

VS

Y

X

Main Amplifier

˗AAUX

Z
VNOISE

Noise

Signal

Auxiliary Amplifier

VOUT

 

Figure 5. Block diagram of the feedforward noise-canceling technique. [13] 

VY,N

VX,N
 = 1 + 

RF

RS
, (6) 

where VX,N denotes the input-referred thermal noise of M1, and VY,N is the corresponding 

output noise. From Equation (6), the main amplifier M1 had a non-inverting gain for noise. 

To cancel the noise of M1, the auxiliary amplifier, as shown in Figure 5, was designed to 

have an inverting amplification for both the signal and the noise at node X. With the main 

amplifier and the auxiliary amplifier exhibiting opposite noise gains, noise cancellation 

can thus be achieved. 

Figure 6 shows the transistor-level implementation of the noise-canceling resistive 

shunt-feedback LNA, where transistor M1 worked as the main amplifier, M2 with a cas-

code structure worked as the auxiliary amplifier, and M4 worked as a source follower 

combining the outputs of both amplifiers. The main amplifier and the auxiliary amplifier 

were connected in parallel with respect to node X. The input impedance condition of the 

LNA could be derived to be the same as in Equation (2). 

Ignoring the small gain reduction due to the source follower, the signal gain 
VZ,S,M

VS
 

and the noise gain 
VZ,N,M

VX,N
 at node Z contributed by the main amplifier could be obtained 

as 

VZ,S,M

VS
 = 

VY,S,M

VS
 = 

1

2
(1 −

RF

RS
) , (7) 

and 

Figure 5. Block diagram of the feedforward noise-canceling technique [13].

Figure 6 shows the transistor-level implementation of the noise-canceling resistive
shunt-feedback LNA, where transistor M1 worked as the main amplifier, M2 with a cascode
structure worked as the auxiliary amplifier, and M4 worked as a source follower combining
the outputs of both amplifiers. The main amplifier and the auxiliary amplifier were
connected in parallel with respect to node X. The input impedance condition of the LNA
could be derived to be the same as in Equation (2).
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Ignoring the small gain reduction due to the source follower, the signal gain VZ,S,M
VS

and the noise gain VZ,N,M
VX,N

at node Z contributed by the main amplifier could be obtained as

VZ,S,M

VS
=

VY,S,M

VS
=

1
2

(
1− RF

RS

)
, (7)

and
VZ,N,M

VX,N
=

VY,N,M

VX,N
= 1 +

RF
RS

. (8)

The signal gain VZ,S,A
VS

and the noise gain VZ,N,A
VX,N

of the auxiliary amplifier were derived
as

VZ,S,A

VS
=

VZ,S,A

VX,S,A
× VX,S,A

VS
= −1

2
gm2

gm4
, (9)

and
VZ,N,A

VX,N
= − gm2

gm4
, (10)

where gm2 and gm4 are the transconductance of transistors M2 and M4, respectively.
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With Equations (7)–(10), the noise-canceling condition at node Z could be obtained as

VZ,N,M
VX,N

+
VZ,N,A
VX,N

=
(

1 + RF
RS

)
− gm2

gm4
= 0,

=⇒ 1 + RF
RS

= gm2
gm4

,
(11)

and the total signal gain AS,TOT was given by

AS,TOT =
VZ,S,M

VS
+

VZ,S,A

VS
= −RF

RS
. (12)

Under the noise-canceling condition in Equation (11), the noise of the main amplifier
M1 was canceled by the auxiliary amplifier M2. The input-referred noise of the overall
amplifier was only determined by the auxiliary amplifier M2 and could be made small
with a large gm2 without impairing the impedance matching condition, which is only
determined by gm1 as shown in Equation (2). The LNA thus achieved both wideband
impedance matching and low noise performance.

3.3. Complementary CMOS Topology

To suppress the second-order harmonics in the single-ended ultrasound LNA structure,
complementary CMOS topology was investigated [17]. As depicted in Figure 7, the
complementary CMOS amplifier consisted of a PMOS-based resistive shunt-feedback
amplifier MP in parallel with an NMOS-based resistive shunt-feedback amplifier MN.
The drain current in each sub-amplifier as a function of the input signal was respectively
obtained as [22]:

ids,P = IDS,P + gm,P

(
−vgs) +

1
2!

g′m,P (−vgs
)2

+
1
3!

g′′m,P
(
−vgs

)3
+ . . . , (13)

and
ids,P = IDS,N +gm,N(−vgs) +

1
2!

g′m,N
(
−vgs

)2
+

1
3!

g′′m,N
(
−vgs

)3
+ . . . , (14)

where g′m,P, g′m,N , g′′m,P and g′′m,N are the first-order and the second-order derivatives of the
transconductances gm,P and gm,N with respect to the gate-to-source voltage vgs, respectively.
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By summing the two currents, the output current of the complementary amplifier was
obtained as

iout = ids,N − ids,P

= (g m,N + gm,P)(v gs) +
1
2!

(
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)
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)2
+ 1
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(
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)
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+ . . ..
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From Equation (15), it can be observed that the second-order harmonic can be largely
canceled if g′m,P ≈ g′m,N . The simulated drain currents (ids), the transconductance (gm),
and the first-order derivative of the transconductance (g′m) of a 240-µm/0.18-µm PMOS
MP and a 120-µm/0.18-µm NMOS MN are plotted in Figure 8. With proper biasing, the
gm,P and gm,N can be well-defined to achieve g′m,P ≈ g′m,N . As the second-order harmonic
dominated the nonlinearity of the single-ended LNA, the proposed complementary CMOS
amplifier structure provides a low-cost solution to attain good linearity while avoiding
the noise and power consumption penalties of a dedicated single-ended-to-differential
conversion circuit.
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With the complementary CMOS topology, the input impedance matching condition
was jointly determined by both the MP and MN transistors and could be obtained as

RS = ZIN =
1

gm,P + gm,N
. (16)

The signal gain of the complementary resistive shunt-feedback amplifier was de-
rived as

VZ,S
VS

=
(

VYP,S
VX,S

+
VYN,S
VX,S

)
× VX,S

VS
= [(1− gm,PRF) + (1− gm,N RF)]

RS
RS+ZIN

.

= 1
2

(
2− RF

RS

)
.

(17)

3.4. Current-Reuse Technique

To reduce the power consumption of the LNA, the current-reuse technique [23] was
investigated. Modifying the complementary amplifier in Figure 7 by stacking the P-
path amplifier with the N-path amplifier and removing the biasing current sources, the
current-reuse resistive shunt-feedback amplifier was constructed and is shown in Figure 9.
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The input impedance matching condition of the current-reuse amplifier was similar to
Equation (16) and was obtained as

RS = ZIN =
RF+rout,P,CR//rout,N,CR

1+
(

gm,P,CR+gm,N,CR

)
× rout,P,CR//rout,N,CR

≈ 1
gm,P,CR+gm,N,CR

, (18)

where gm,P,CR and gm,N,CR are the transconductance of transistors MP,CR and MN,CR, re-
spectively, assuming rout,P,CR//rout,N,CR � RF. Under the input impedance matched
condition, the signal gain was derived with the superposition principle as

VZ,S

VS
=

VZ,S

VX,S
× VX,S

VS
=

1
2
[(1− gm,P,CRRF) + (1− gm,N,CRRF)] =

1
2

(
2− RF

RS

)
, (19)

which was the same as Equation (17). In the current-reuse structure, the MP,CR and MN,CR
needed to be sized so that the output common-mode voltage was close to half VDD. The
input common-mode voltage was set by the output common-mode voltage through the
feedback resistor RF. Compared to the complementary resistive shunt-feedback amplifier
in Figure 7, the current-reuse structure only required half of the DC current to maintain the
impedance matching condition, thus reducing the amplifier power consumption by almost
half. Removing the biasing current sources also allowed a low supply voltage to be used,
as long as MP,CR and MN,CR were in saturation, which helped to further reduce the power
consumption.
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Simulation results [24] showed that the path stacking of the complementary resistive
shunt-feedback amplifier brought a 1.2 mA DC current reduction and the use of a 1.3 V
supply further reduced the power consumption by 9 mW, while the LNA could still
maintain a f−3dB bandwidth of larger than 150 MHz. The use of a low VDD, however,
mandated large sized transistors, especially in the auxiliary amplifiers, to maintain low
noise performance. This led to a large parasitic capacitance at the amplifier input node,
which could degrade the amplifier S11 at high frequencies. In designing the low-VDD
current-reuse amplifier with feedforward noise-canceling, the VDD needs to be properly
selected to tradeoff between noise, power saving, bandwidth, and high-frequency S11.

4. Proposed LNA Design

A resistive shunt-feedback LNA with the feedforward noise-canceling technique and
the complementary topology was designed in a 180 nm CMOS technology. As shown in
Figure 10, the complementary topology was formed of both the N-path and the P-path
amplifiers, where each path employed resistive shunt-feedback with feedforward noise
cancellation. In the figure, M1P and M1N are the main amplifiers, M2P and M2N are the
auxiliary amplifiers, and M4P and M4N are the analog combiners, respectively. The sizes
of the M1P and M1N transistors were 240-µm/0.18-µm and 120-µm/0.18-µm, respectively.
Both transistors were biased with 1 mA current. The corresponding gm,1P and gm,1N were
9.81 mA/V and 9.57 mA/V, respectively, leading to an input impedance ZIN of about
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51.6 Ω. The corresponding g′m,1P was 67 mA/V2 and g′m,1N was 61 mA/V2 and this helped
to achieve the cancellation of the second-order harmonic distortion. The size of the M2P
and M2N transistors were designed as 960-µm/0.18-µm and 480-µm/0.18-µm with the
corresponding gm,2P being 36.3 mA/V and gm,2N being 38.3 mA/V to achieve low noise
performance.
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Figure 10. Proposed resistive shunt-feedback LNA with the feedforward noise-canceling technique
and the complementary topology [17].

Figures 11 and 12 show the simulated S11 and frequency response of the LNA, respec-
tively. The S11 was better than −17 dB over the desired ultrasound transducer operation
frequency range. The S11 at higher frequencies was slightly degraded by the main amplifier
input node capacitance. The frequency response shows that the LNA had a gain of 19 dB,
up to 120 MHz, in the typical corner and a f−3dB bandwidth of 770 MHz. The gain variation
over the process, voltage, and temperatures (PVTs) was less than 2 dB.
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Figure 11. Simulated S11 of the proposed LNA, where SS, TT, and FF stand for the slow PMOS and
NMOS, typical PMOS and NMOS, and fast PMOS and NMOS process corners, respectively.

As shown in Figure 13, with feedforward noise cancellation, the amplifier input-
referred voltage noise density was reduced by about 3× over PVTs. The input-referred
voltage noise density was less than 0.8 nV/sqrt (Hz) over a 30–120 MHz frequency range.
The THD simulation was also performed, and the simulation results are summarized
in Table 1. The signal generated by the transducer was in the range of 0.5–2 mV peak-
to-peak, corresponding to an input signal power of −62 dBm to −50 dBm in a 50 Ω
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terminated system. As shown in Table 1, the complementary CMOS topology provided a
THD improvement of larger than 9 dB across the input signal range.
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Table 1. Simulated THD of the LNA.

PIN (dBm) −62 −56 −50

THD (dBc) @
80 MHz

NC only (NMOS) −55.1 −49.1 −42.7
NC only (PMOS) −55.7 −49.6 −43.5

NC with complementary −65.3 −59.3 −53.7

5. Measurement Results and Analysis

A high-frequency ultrasound and photoacoustic imaging front-end, as shown in
Figure 14, including the proposed LNA and a pseudo-differential VGA, has been developed
and fabricated in a one-poly six-metal (1P6M) 180 nm bulk CMOS process with a core
area of 380 µm × 350 µm. The gain of the VGA is programmable, ranging from 20 to
32 dB with a 6-dB gain step. The Figure 15 shows the die photo of the front-end. Figure 16
shows the measurements setup. The S11 and frequency response were measured with the
Keysight N5247A network analyzer. The noise density and the THD were measured with
the Keysight E4438C signal generator and the Keysight N9040B signal analyzer.
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The Gain Method [25] has been applied to measure the NF. The NF in the Gain Method
could be expressed as

NF = PNOUTD+174 dBm/Hz− AV , (20)
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where PNOUTD is the measured output voltage noise density, 174 dBm/Hz is the noise
density of 290◦K ambient noise, and AV is the measured front-end gain. Based on the mea-
sured NF, the corresponding input-referred voltage noise density, eNI, in a 50 Ω terminated
system was obtained as

eNI =

√
4kT × R50 ×

[(
10NF/10

)2 − 1
]
. (21)

The measured S11 was better than −16 dB over the frequency range of 30–120 MHz, as
shown in Figure 17. Setting the VGA with a 20 dB gain, the measured frequency response
of the front-end is shown in Figure 18. Due to the bandwidth limitation of the VGA, the
measured f−3dB bandwidth of the front-end was 89 MHz. The noise performance of the
front-end over 30–120 MHz is shown in Figure 19. The measured input-referred noise
density of the front-end was 1.36 nV/sqrt (Hz) at 80 MHz, which closely matched the
simulation result of 1.26 nV/sqrt (Hz). Figure 20 shows the measured THD of the front
end. With VIN, PP = 1 mV, the measured THD was better than −55 dBc over 30–80 MHz
and was −51 dBc at 120 MHz.
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The noise efficiency factor [26], which considers the overall trade-off among noise,
power consumption, and bandwidth, was obtained for the proposed front end. The noise
efficiency factor was defined as

NEF = VNI,RMS·

√
2ITOT

π·VT ·4kT·BW
, (22)

where VNI,RMS is the total input-referred voltage noise, ITOT is the total current drained
by the circuit, VT is the thermal voltage, and BW is the front-end bandwidth. The input-
referred noise of the front-end over 30–120 MHz was 14.2 µV and the ITOT was 20.56 mA.
The NEF of the front-end was thus determined as 2.66.

Table 2 summarizes the performance of the front-end and compares it with recently
published ultrasound amplifiers. The front-end achieved a low input-referred voltage
noise density, a low THD, a high f−3dB bandwidth, and competitive power consumption,
demonstrating the best NEF.
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Table 2. LNA front-end performance comparison.

Parameters This Work * [27] * [28] ** [29] ** [30] * [31] * [32] * [33] *

Process [nm] 180 180 28 180 130 350 350 180
Power supply [V] 1.8 1.8 1.0 1.8 3 3.3 ±2.5 1.8
Bandwidth [MHz] 770 a/90 b 100 100 30 10 75 30 33

Gain [dB] 37 17.6 20 15.2 36 20 12 19.1
Input-referred noise density

[nV/sqrt (Hz)] 1.36 4.19 1.74 3.5 7.41 2.68 6.3 1.01

Total input-referred noise [µV] 14.2 − 20.8 34.9 23.4 − 35.6 5.8
THD [dBc] −55 − − − − − − −53.5

S11 [dB] −16 − − − − − − −
Power consumption [mW] 37 43 2 0.27 12.6 − 20 16.2

Noise efficiency factor 2.66 − 3.57 3.02 18.51 − 15.36 3.69
Core area [mm2] 0.063 0.683 0.001 − 0.22 − − 0.363

* Measurement results; ** Simulation results. a LNA bandwidth; b Front-end bandwidth.

6. Conclusions

This paper presents a low-noise amplifier front-end for high-frequency ultrasound
transducers. The LNA employs a resistive shunt-feedback configuration to simultaneously
achieve a large f−3dB bandwidth and a wideband impedance matching. To mitigate the
noise in the resistive shunt-feedback amplifier, a feedforward noise-canceling technique
was developed. A complementary CMOS topology was also developed to cancel the
amplifier’s second-order nonlinear distortion. An ultrasound receiver front-end, including
the proposed LNA and a pseudo-differential VGA, was fabricated in a standard 180 nm
CMOS process. Measured at 80 MHz, the front-end achieved an input-referred noise density
of 1.36 nV/sqrt (Hz), a −16.4 dB input return loss, a 37 dB voltage gain, and a −55 dBc
THD, while consuming 37 mW of power. The front-end demonstrated the best NEF with a
large f−3dB bandwidth, wideband impedance matching, low noise and harmonic distortion,
and competitive power consumption, making it suitable for high-frequency ultrasound
transducer applications.
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