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Abstract: Recent years have witnessed a growth in the Internet of Things (IoT) applications and
devices; however, these devices are unable to meet the increased computational resource needs of the
applications they host. Edge servers can provide sufficient computing resources. However, when
the number of connected devices is large, the task processing efficiency decreases due to limited
computing resources. Therefore, an edge collaboration scheme that utilizes other computing nodes to
increase the efficiency of task processing and improve the quality of experience (QoE) was proposed.
However, existing edge server collaboration schemes have low QoE because they do not consider
other edge servers’ computing resources or communication time. In this paper, we propose a resource
prediction-based edge collaboration scheme for improving QoE. We estimate computing resource
usage based on the tasks received from the devices. According to the predicted computing resources,
the edge server probabilistically collaborates with other edge servers. The proposed scheme is based
on the delay model, and uses the greedy algorithm. It allocates computing resources to the task
considering the computation and buffering time. Experimental results show that the proposed
scheme achieves a high QoE compared with existing schemes because of the high success rate and
low completion time.

Keywords: Internet of Things (IoT); edge computing; mobile edge computing (MEC); computation offloading

1. Introduction

Smart Internet of Things (IoT) devices are becoming increasingly popular and play an
increasingly important role in every aspect of our daily lives [1]. IoT-based applications
require different deadlines, bandwidths, and high computation performance [2]. However,
IoT devices do not have enough computing resources to satisfy the high computation
performance. This resource requirement is filled by remote and cloud centers or cloud
services [3]. However, a cloud center is located at a long distance from the device and
cannot satisfy recent time-sensitive IoT applications, such as augmented reality (AR),
virtual reality (VR), and video analysis. In addition, the backhaul network is congested by
tasks sent by a large number of devices to the cloud [4]. Edge servers have been proposed
to solve these challenges.

Recently, a new computing paradigm edge server, called mobile edge computing
(MEC), was proposed by the European Telecommunications Standards Institute (ETSI) [5].
These edge servers—also called, “the cloud at the edge of the network”—are attracting
attention as an important component in 5G network technology. Edge servers process
applications in real-time according to low communication latency since they are located
close to the device. In addition, an edge server is suitable for computation-intensive
tasks due to sufficient computation resources compared with the device [6]. Nevertheless,
edge servers have a problem in that processing efficiency degrades as several devices are
connected to the edge server. An edge collaboration scheme was proposed to solve this.

The existing edge collaboration scheme determines the collaboration target without
considering the computing resource or network resource [6,7]. Therefore, the task comple-
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tion time is increased by cooperating with an edge server with a higher load even though
there is an edge server with a relatively lower load. The edge collaborations increase
the task completion time according to computation time, thereby lowering the quality of
experience (QoE). When network resource is not considered, the edge server selects the
collaboration target based on the task processing time. The collaboration scheme cooperates
with an edge server far away from the local edge server, even though a nearby edge server
is appropriate. Thus, QoE is degraded due to increased completion time and decreased
success rate as a result of the high communication time.

Edge server processes allocate computing resources to assigned tasks by a collabora-
tion algorithm. In the existing allocation scheme, tasks assigned to the edge servers share
computing resources. When the number of processing tasks in the edge server is small,
sufficient computing resources are allocated, and the completion time to meet the deadline
is low. However, as the number of processing tasks increases, the allocated computing
resources decrease, and QoE is affected.

QoE is affected by the collaboration target determined by the edge server. There are two
main QoE factors: completion time and success rate of the tasks. The collaborative target
needs a minimum amount of computing resources to meet task requirements and improve
the task’s success rate. If the edge collaboration scheme only considers the success rate of a
task, the completion time of a task is high due to the collaboration with the high-loaded edge
server. When the edge collaboration scheme only considers the completion time of the task,
the edge server selects a collaboration target considering only the average completion time of
tasks. Therefore, even if the average completion time of tasks is the same, an edge server that
can improve the average success rate is not selected as a collaboration target.

In this paper, we propose a resource prediction-based edge collaboration scheme for
improving QoE. The proposed scheme probabilistically determines collaboration based
on computing resource prediction when the edge server receives a task. According to the
collaboration decision, an optimal collaboration target is selected to improve the success
rate of the task. We first predict the completion time of the task to select the collaboration
target. Completion time is calculated using the processing time, communication time, and
buffering time. Second, we formulate the edge collaboration problem. To solve the problem,
we use the greedy algorithm based on the predicted completion time. To guarantee the
QoE of tasks assigned according to the above algorithm, we allocate computing resources.
Computing resource allocation is determined based on the number of tasks to be processed
by the edge server according to the trade-off between computation and buffering time.

The remainder of this paper is organized as follows: Section 2 describes the evolution
of computation offloading and existing collaboration schemes. Section 3 presents collabora-
tion target decision and computing resource allocation for reducing the completion time
and improving the success rate. In Section 4, the experimental results for the proposed
scheme are presented. Finally, the conclusions are presented in Section 5.

2. Related Work

In this section, we describe the computation offloading evolution and existing collabo-
ration schemes.

2.1. Computation Offloading Evolution

Computation offloading is aimed at improving application performance using a pow-
erful infrastructure. This paradigm has evolved over the recent years with the development
of various infrastructures.

In the 1990s, Odyssey [8], which considers application behaviors such as CPU, band-
width, and battery power dynamically, was proposed to improve mobile application
performance and save battery life.

In 2001, M. Satranaraynan [9] proposed a computation offloading concept called
“cyber foraging” that augments computing capability through wired computation nodes.
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In the 2000s, cloud center and mobile computing began gaining attention in industry
and real life. Amazon released the elastic compute cloud (EC2) in 2006 [10]. With the de-
velopment of various mobile operating systems, various applications are being developed
that are useful in our daily lives. Consequently, technologies that combine mobile and
cloud computing, such as mobile cloud computing (MCC) [11], have been proposed. MCC
has become a de-facto standard for computation offloading and has been involved in the
research of several schemes such as MAUI [12], Cuckoo [13], CloneCloud [14], ThinkAir [15],
and COMET [16].

However, with increasing real-time applications, such as AR, video analytics, and
VR, computation offloading to the cloud cannot guarantee task requirements. Therefore,
researchers have focused on using computing devices located nearby to reduce network
delay. M. Satyanarayanan et al. [17] proposed “cloudlet” as a computing node between the
devices and the cloud. In 2012, Cisco announced the role of fog computing in 2012 [18],
and MEC was proposed by ETSI [5].

2.2. Existing Collaboration Scheme

As a popular optimization method in distributed computing systems, collaboration
schemes, such as cloud computing, have been intensively studied in recent years [19].
J. Liu et al. [20] used the Markov chain theory to analyze the queuing delay in each waiting
task and estimate the power consumption of an IoT device. H. Tan et al. [21] analyzed
task processing in the real world. Because stochastic optimization requires a pre-known
distribution, an optimization algorithm that can minimize the weighted completion time
with power constraints was designed.

Other collaboration schemes consider the delay in the computation time. CACTA [22]
considers the uncertainty and stochastic nature of the edge and formulates an optimization
problem by modeling the computation capacities and costs of edge nodes using the autore-
gressive integrated moving average (ARIMA) model. This scheme improves the transmission
efficiency of tasks and reduces the task completion time. Y. Zhang et al. [23] formulated the
utilization cost of computation resources by determining the collaboration target using whole-
sale and buyback models to improve the quality of service (QoS). LCDA [24] classifies the task
into latency-tolerant and latency-sensitive according to the processing deadline to select the
collaboration target. By classified tasks, LCDA reduces task completion time and increases task
success rates. When an edge server is overloaded, its performance tends to be low, which is
evident by a high transmission time. H. Zhao et al. [25] selected edge servers or cloud centers
using computation resources and task caching for improving processing and transmission
efficiency. In contrast, HOM [26] proposed a heuristic method for communication delay
minimization. This scheme uses a tree to find the shortest path to the destination edge server
and set up a multi-hop network for performance evaluation. However, processing time is high
because the load of the collaboration target is not considered. A. Jonathan et al. [27] proposed
an edge collaboration scheme to consider edge locality. They monitored the neighboring node
and selected the node based on network delay to satisfy the low latency of tasks.

Time delay and energy consumption are jointly studied in the literature. Zhuang et al. [28]
assumed that the tasks cloud be divided into various sizes and formulated a mixed-integer
nonlinear program to consider delay and energy consumption simultaneously. X. Chen et al. [29]
researched multi-user cases with multi-channel wireless contentions.

Later, they jointly considered task offloading to share computation and communica-
tion resources for the multi-user scenario with multi-tasks [30]. J. Ren et al. [31] jointly
selected edge cloud and edge server for minimizing latency by processing a task accord-
ing to computing and communication resources. HETO [32] determines collaboration
targets using weighted MAX-2SAT theory. In particular, HETO considers the asymmetry of
communication cost and the heterogeneous computing resource of the server. MSGA [33]
models applications based on directed acyclic graph (DAG). According to the application
model, MSGA schedules tasks among edge servers. X. Gong [34] established the optimal
communication scheduling and computation allocation. Based on communication schedul-
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ing and computation allocation, Gong found optimal computation nodes to reduce the task
completion time. D3PG [35] partially offloads the task to an edge server. To minimize the
task completion time, D3PG decides the offloading size of the task and network resource to
the task based on reinforcement learning, which is designed based on a dueling and double
network architecture to reduce the convergence time. S. Wang et al. [36] analyzed the
convergence rate of the distributed gradient descent. Based on the analyzed results, they
determined the best parameter between local update and global aggregation. OL4EL [37]
supports both synchronous and asynchronous learning patterns, and can be used for both
supervised and unsupervised learning tasks.

Existing schemes consider processing and transmission time in order to task comple-
tion time and process the task within the deadline. In this paper, we consider the processing
and transmission time as well as the buffering time. In addition, we propose a scheme for
allocating computing resources to process tasks, which reduces task completion time and
processes the tasks within the deadline.

3. Proposed Scheme

In this paper, we propose an edge collaboration and computing resource allocation
algorithm for improving the QoE in terms of task completion time and task success rate.
The edge collaboration is designed by task completion time and a greedy algorithm, and
the computing resource allocation is designed by processing and buffering time. In this
section, we first introduce the edge collaborative network framework. Second, we focus on
the decision-making process in the framework. Finally, the computing resource allocation
scheme is described.

3.1. Edge Collaborative Network Environment

Figure 1 shows the edge collaborative network environment. The device is connected
to the base station via a wireless network, and a large number of devices can be connected
to the edge server. The edge server is located near the base station and monitors the
base station and connected devices. The network between the edge servers is wired, and
the edge servers collaborate for task processing. For edge collaboration, the edge server
shares the tasks and resource information with other edge servers. In this paper, we make
three major assumptions. First, the device does not have sufficient computing resources to
process the task. Therefore, whenever a task is created, the device transmits the task and
task information to a connected edge server. Second, the edge server knows the bandwidth
of the network for task transmission. Finally, multiple tasks can be created concurrently
using different devices. We define task information using Equation (1).

Wj =
{

Lj, Dj
}

(1)

j denotes the index of the task, Lj denotes the size of the task j, and Dj denotes the
processing deadline of the task j. The edge server processes the task received from the
device and is aware of the task being processed

(
Eij =

{
P1, P2, · · · , PJ

})
. Eij denotes a set

of information about tasks being processed in the edge server i. i denotes the index of the
edge server. The task information recognized by the edge server is given by Equation (2).

Pj =
{

Lr
j , Rj

}
(2)
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Lr
j denotes the remaining size until the task being processed by the edge server is

completed and Rj denotes the allocated computing resource for the task. Figure 2 shows the
operation of the proposed scheme. Ci denotes the computing resource usage, Th denotes
the threshold of computing resource usage, and Cmax

i denotes the computing resource
capacity of the edge server. The task created in the device is transmitted to the connected
edge server using the wireless network. The edge server immediately decides offloading
whenever it receives a task from the device. The computing resource usage of the edge
server is predicated upon receiving the task from the devices. If the predicted computing
resource usage is lower than the threshold, the task is processed in a local edge server;
otherwise, a collaboration is determined probabilistically based on the predicted computing
resource usage and threshold. We first model the completion time of the task and formulate
an objective function to determine the optimal collaboration. To solve the complex problem
of the objective function, a collaboration target is selected using a greedy algorithm. The
tasks are then assigned to the edge server according to the selected collaboration target.
If the edge server has available computing resources, the assigned tasks are processed
immediately; otherwise, the task is stored in the edge server’s buffer. The edge server
counts the number of offloaded tasks to be processed. The computing resource allocation
is calculated by a trade-off between processing and buffering time.
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3.2. Edge Collaboration

Figure 3 shows the flow chart of the collaboration decision in the proposed scheme.
When the edge server receives a task from the device, the server calculates the computing
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resources required to add the processing of incoming tasks to those already being processed
and the task received. The proposed scheme measures the load of the edge server based
on the predicted computing resource usage; if it is lower than the threshold

(
Cmax

i ·Th
)
,

the edge server can provide enough computing resources for the task, and the task is then
stored in the buffer of the local edge server. In the opposite case, the proposed scheme
calculates the probability of task offloading (p) to reduce the load on the edge server
and improve the utilization of computing resources. Task offloading is determined by
comparing calculated probabilities with a randomly-generated value (v). The random
value is generated between zero and one based on the Gaussian distribution. When v is
lower than p, the task is processed by the local edge server to improve the utilization of
computing resources. Conversely, if v is larger than p, the edge server finds the optimal
collaboration target to reduce the load on the edge server. According to the received task,
Cpred

i of the edge server is predicted using Equation (3).

Cpred
i = Ci +

L ĵ

D ĵ
(3)

ĵ denotes the index of the task received from the device and L ĵ denotes the size of the

task ĵ. The probabilistic collaboration decision is then calculated using Equation (4).

p = min
j


√√√√Cpred

i
Cmax

i
·
Eij

Dj

 (4)

s.t. Cpred
i > Th·Cmax

i (5)

The decision to process the task locally versus collaborative offloading is determined
according to the predicted computing resources and the remaining size of the task being
processed by the edge server. As computing resource usage is expected to increase, we reduce
the number of tasks assigned to edge servers to improve QoE. However, the load on the
edge servers is reduced as the tasks get completed. Therefore, the proposed scheme reduces
collaboration probability based on the state of the task being processed in the edge server.
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According to the probabilistic collaboration, the proposed scheme predicts the com-
pletion time of the task based on the delay model for selecting the collaboration target. The
completion time of the task is determined based on the processing, communication, and
buffering times. The processing time of the task

(
Tcomp, ĵ

)
is calculated according to the

available computing resources of the edge server using Equation (6).

Tcomp, ĵ =


L ĵ

Cavail
i

, i f Cavail
i > 0

L ĵ

E{Rj} , else
(6)

Cavail
i denotes the available computing resources in the edge server and E

{
Rj
}

denotes
the expectation value of Rj, which is calculated using the average input value. If the edge
server does not have available computing resources, the task is processed after the task
being processed on the edge server is complete. Therefore, the computation time of the task
is calculated based on the computing resources allocated to the task being processed by the
edge server. Communication time

(
Tcomm, ĵ

)
, which is when an edge server collaborates

with other edge servers, is calculated using Equation (7).

Tcomm, ĵ =

{ L ĵ
ABWi,i′

, i f i 6= i′

0, else
(7)

ABWi,i′ denotes the bandwidth between the edge servers. If the edge server calculates
itself as the only valid collaboration target, the task is immediately stored in the buffer;
therefore, there is no transmission time. The buffering time of task

(
Tbu f , ĵ

)
is calculated

using Equation (8).

Tbu f , ĵ =

{
a(Ei), i f Cavail

i ≤ 0
0, else

(8)

a(Ei) denotes the delay function based on the task being processed in the edge server.
The edge server immediately processes the task if it has available computing resources. Hence,
the buffering time is zero. However, if the edge server does not have available computing
resources, tasks are stored in the buffer and a(Ei) is calculated using Equation (9).

a(Ei) =

 ∑J
j=1

Lr
j

Rj
+ ∑J′−J

J′=1
Lj′
Rj′

, i f J′ > J

∑J′
j=1

Lr
j

Rj
, else

(9)

J denotes the number of tasks being processed by the edge server and J′ denotes the
number of tasks stored in the buffer. The buffering time is determined by the number of
tasks being processed in the edge server and stored in the buffer. If the number of tasks
being processed is more than the number of tasks stored in the buffer, buffering time is
predicted by the tasks being processed. When the number of tasks being processed is less
than the number of stored tasks in the buffer, the task state does not change immediately to
the processing state. The state of the task is changed after the tasks previously stored in the
buffer are processed. Therefore, the buffering time is calculated by jointly considering the
task being processed in the edge server and stored in the buffer. The collaboration target
for QoE improvement is formulated using the delay model as follows:

Tĵ = min
{

Tcomp, ĵ + Tcomm, ĵ + Tbu f , ĵ

}
(10)

s.t. Tĵ < D ĵ (11)

∑J
j=1 Rj ≤ Cmax,i (12)
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Rj > 0 (13)

The objective function, in Equation (10), aims to minimize the completion time of the
task based on the delay model. The constraint, in Equation (11), ensures that the target of
collaboration must process tasks within the deadline to improve QoE. The constraint, in
Equation (12), ensures that the computing resource needed to process the task does not
exceed the edge server’s computing resource capacity. The constraint, in Equation (13),
ensures that all the tasks being processed are allocated computing resources from the edge
server. At this point, collaboration can be calculated using the greedy algorithm [38].

The details of the greedy-based edge collaboration are described in Algorithm 1. We
jointly consider success and completion time to improve QoE. We initialize the collaboration
target to the local edge to reduce unnecessary collaboration. In Line 3, the set of edge servers
is sorted based on the available computing resources, considering the processing time. In
Lines 8–11, we select the collaboration target when the edge server can process the task
within the deadline. In Line 8, if the load on the edge server is low, the edge server chooses
a collaboration target with sufficient available computing resources. By contrast, in Line 10,
even if buffering time occurs, we determine whether the collaboration target can provide
sufficient computing resources for the task. Collaboration targets are chosen by expected
computing resources and computational threshold. The computational threshold is calculated
using Equation (14).

Algorithm 1 Greedy-based Edge Collaboration

Input: Available bandwidth of each link, the computing resource and buffer status of edge
computing
Output: Edge server for cooperation
1: Initialize the target = i
2: Compute completion time of task ĵ in edge server i
3: Sorting the list I′ in decreasing order of computing resource of edge computing
4: For each edge computing i′ ∈ I′

5: Compute computation threshold Th ĵ

6: Compute completion time of task ĵ
7: Compute expected computing resource of task processing
8: If Cmax

i′ − Ci′ ≥ Th ĵ
9: target = i′; Break;

10: Else If E
{

Rj

}
≥ Th ĵ

11: target = i′; Break;
12: Sorting the list I′ in decreasing order of buffer delay
13: Compute sustainable delay δd
14: For each edge computing i′ ∈ I′

15: If Tbu f + Tcomm < δd
16: target = i′; Break;
17: Else If Ti′ j < Tij
18: target = i′; Break;
19: Return target

Th ĵ =
L ĵ

D−
(

Tcomm, ĵ + Tbu f , ĵ

) (14)

The computation threshold represents the computation time needed for a task to be
successfully processed. If the edge server does not have available computing resources,
the collaboration target is determined based on the computing resources allocated to the
task being processed by the edge server. The larger the computing resource allocated, the
better the QoE. When the edge server’s computing resources are insufficient and the task
cannot be processed within the deadline, we select the collaboration target to reduce the
completion time of the task in Lines 13–18. A large number of tasks affects the load on
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the network and edge servers. Accordingly, in Line 15, we select a collaboration target by
considering the transmission time and buffering time. The sustainable delay for selecting a
collaboration target is calculated as follows:

δd = D
(

1 +
√

∑N
k=1(Tk −E{TN})2

)
(15)

N denotes the number of tasks for calculating the average completion time and is
calculated using Equation (16).

N =
Cmax

i ·D
Lj

(16)

If the sustainable delay is not satisfied, the collaboration target is selected according
to the predicted completion time by the delay model. The edge collaboration algorithm
selects the edge server to which the device is connected when the collaboration target is
not found.

3.3. Computing Resource Allocation

Tasks are assigned to the edge server according to the collaboration decision and the
selection of the collaboration target. The edge server processes the tasks assigned to it and
determines the number of tasks to process according to the number of tasks in the buffer.
The computing resources allocated to each task are decided by the number of tasks to be
processed, which is calculated as in Equation (17).

ζ = max
{

k
∣∣∣∣ J′

k
<

J′

β

}
(17)

s.t. k ≥ 1 (18)

β denotes the trade-off parameter between the processing and buffering times. When
the number of tasks being processed by the edge server is small, the processing time
is short; however, the buffering time increases due to the large amount of computing
resources allocated to the task. By contrast, when the number of tasks being processed by
the edge server is large, the amount of computing resources allocated to the tasks decreases,
increasing the completion time. After calculating the number of tasks to be processed, the
computing resources allocated to each task are calculated using Equation (19).

ζ = max
{

k
∣∣∣∣ J′

k
<

J′

β

}
(19)

4. Performance Evaluation
4.1. Simulation Setup

To evaluate the performance of the proposed scheme, EdgeCloudSim [39], an extension
of CloudSim [40], was used. Figure 4 shows the network topology of edge servers in our
simulation. The network between edge servers was configured in a graph structure. Each
device has a task creation module, and the task is created according to Poisson distribution.
The number of edge servers is set to 10, the computing resources of the edge server is set
to 40,000 MIPS, and the bandwidth between the edge servers is set to 100 Mbps, Th is
set to 0.7, and β is set to 2. In the experiment, the number of devices connected to each
edge server was set randomly. To evaluate the performance of the proposed scheme, we
compared it with the Edge-only, Random, LCDA, and HOM collaboration schemes. Table 1
shows task parameters in the simulation. Task 1 represents medium sensitivity and small
size tasks. Task 2 represents high sensitivity and medium size tasks that requires more
computing resources than other tasks for achieving QoE. Task 3 represents low sensitivity
and large size tasks that requires fewer resources for QoE compared with the other two
task categories.
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Figure 4. Network topology of edge servers in our simulation.

Table 1. Task parameters in the simulation.

Task 1 Task 2 Task 3

Task Length (MIPS) 1000 1500 3000
Task Deadline (ms) 500 200 800

4.2. QoE Performance for Task 1

Figure 5 shows the QoE of collaboration schemes for Task 1. Edge-only processes tasks
on the edge server to which the device is connected. When the number of devices is small,
Edge-only achieves low completion, and no communication overhead. However, Edge-only
has a high completion time and low success rate when the number of devices is large
because it does not utilize the computation resources of other edge servers. Therefore,
as the number of tasks allocated to an edge server increases, the computing resources
allocated to the tasks decrease. Therefore, Edge-only has low QoE due to high completion
time and low success rates.
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Figure 5. QoE of collaboration schemes for Task 1: (a) Success rate; (b) Completion time; (c) Processing time; (d) Communi-
cation time.
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Random selects collaboration targets regardless of the computing and communication
resources. Therefore, it has a high completion time due to unnecessary collaboration when
the number of devices is small. The unnecessary collaborations increase the communication
time and reduce the QoE compared with other collaboration schemes. However, it has
a higher QoE than Edge-only with a high success rate (5% better than Edge-only) and low
completion time (39% less than Edge-only) because it uses the computation resources of
other edge servers as the number of devices increases.

LCDA determines the collaboration target by selecting the edge server’s computing
resources upon receiving a task. The LCDA selects the lowest loaded edge server for task
processing. When the load on the edge server is low, the LCDA selects a local edge server as
a collaboration target, resulting in low communication time. Nevertheless, LCDA shows a
higher completion time (21% more) than Edge-only due to network overhead. LCDA has a
low completion time by collaborating with an edge server that is efficient for task processing
when the number of devices is large. However, LCDA shows a higher communication time
than other schemes because the tasks are sent to the edge server according to the availability
of the computing resources. Because of this high communication time, LCDA shows the
lowest success rate (22.8% less than Edge-only) when the number of devices is 800.

HOM ranks the edge server based on the path. The collaboration target is determined
by the rank of edge server. Therefore, HOM shows a low completion time (6.2% less than
Random) when the number of devices is 1000 because HOM achieves a lower communica-
tion time than other schemes. However, HOM selects the collaboration target regardless
of the load of the edge server. HOM shows an 11% higher processing time and 2% lower
success rate than LCDA because it offloads the work to high-load collaboration targets.

The proposed scheme determines collaboration based on the available computing
resources of the edge servers. After determining the collaboration, the collaboration target
is selected according to computation, communication, and buffering time. Therefore, even
if the number of devices is small, the proposed scheme achieves a similar performance as
the Edge-only by reducing the number of collaborations. The proposed scheme guarantees
the allotment of the required computing resources for a task even when the load at all edge
servers increases. Thus, the proposed scheme has improved QoE, lower completion time
(18% less than LCDA), and a higher success rate (9.3% more than HOM) than the existing
collaboration schemes.

4.3. QoE Performance for Various Tasks

In this experiment, three types of tasks with different sizes and deadlines are used. To
evaluate the proposed scheme, Tasks 1, 2, and 3 are randomly selected with equal probability.
Figure 6 shows the QoE of the collaboration scheme for various tasks. Edge-only and Random
are used to process the task regardless of its characteristics. Therefore, efficiency is low
regardless of the availability of sufficient computing resources to satisfy the task requirements.

First, LCDA classifies the task into latency-sensitive and latency-tolerant according
to the task deadline. An appropriate collaboration target is then selected based on the
classified tasks. If the task is latency-sensitive, LCDA chooses a least-loaded edge server to
reduce the computation time. Conversely, if the task is latency-tolerant, LCDA selects the
edge server with a small number of latency-sensitive tasks processed by the edge server.
Because LCDA processes differently depending on the task characteristics, a higher success
rate (4.4% more than Random) and lower completion time (21% less than Random) than
existing schemes can be achieved.

HOM finds the shortest path based on the network bandwidth. If the number of tasks
transmitted to the edge server is large, it is determined as a low rank. By ranking according
to the network path and network load, HOM shows a high success rate (4% more than
Random) and low task completion time (28% less than Random) when the number of devices
is 1000. In particular, the processing time is similar to that of LCDA; however, it achieves
the lowest communication time compared with the other schemes.
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Figure 6. QoE of collaboration schemes for various tasks: (a) Success rate; (b) Completion time; (c) Processing time;
(d) Communication time.

The proposed scheme predicts the completion time of a task according to the deadline
and size to efficiently collaborate with the edge servers. Therefore, the processing time of
the proposed scheme is 2.4% less than HOM, and the communication time is 81% lower
than LCDA. In addition, the proposed scheme achieves an 11.2% higher success rate than
HOM because the scheme guarantees a high QoE through the optimal allocation of the
computing resources.

Figures 7 and 8 show the success rate and completion time of Tasks 1, 2, and 3.
Edge-only provides sufficient computing resources when the number of devices is small,
ensuring that QoE is high for all tasks. However, as the number of devices increases, QoE
is degraded. By contrast, Random does not consider the task characteristics as Edge-only.
Therefore, it has a high completion time and low success rate of tasks and requires many
computing resources for high QoE in Task 2.

LCDA collaborates with other edge servers based on the classified tasks and selects an
edge server that can allocate sufficient computing resources for latency-sensitive tasks, such
as Task 2. LCDA shows 64% lower than Random. By contrast, LCDA does not efficiently
collaborate on latency-tolerant tasks, such as Task 1 and Task 3; hence, the completion time
increases as the number of devices increases. LCDA shows a low success rate due to the
decrease in computing resources as the number of tasks assigned to the edge server increases.
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Figure 7. Success rate of Task 1, Task 2, and Task 3: (a) Task 1; (b) Task 2; (c) Task 3.
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Figure 8. Completion time of Task 1, Task 2, and Task 3: (a) Task 1; (b) Task 2; (c) Task 3.

HOM calculates the shortest path according to the network bandwidth and task size.
This scheme effectively reduces the communication time, resulting in low completion times
for all tasks. However, HOM cannot determine optimal collaboration according to the task
deadline. For this reason, HOM shows lower success rates (4.3% in Task 2 and 5.4% in Task 3)
than LCDA.

The proposed scheme predicts the completion time according to the characteristics
of the task and selects the optimum collaboration target that reduces the completion time
for each task. In particular, the proposed scheme allocates computing resources to ensure
high success rate of each task. When the number of devices is 1000, the completion times
of Task 1 and Task 2 using the proposed scheme are 45% and 26% higher than that of the
LCDA. The reason is that the proposed scheme allocates computing resources regardless of
task requirements. Nevertheless, the proposed scheme improves QoE by achieving a 61%
low completion time for Task 3.

5. Conclusions

In this paper, we propose a resource prediction-based edge collaboration for improving
QoE. The proposed scheme probabilistically determines the optimal collaboration target to
improve QoE between servers based on predicting computing resources when the edge
server receives a task. According to the delay model, the collaboration target is determined
using a greedy algorithm based on the task completion time. The amount of computing
resources allocated to a task is determined based on the processing and buffering times of
the task. Experimental results show that the proposed scheme achieves a low completion
time and high success rate according to computing resource allocation and greedy-based
edge collaboration. Consequently, the proposed scheme outperforms the QoE of the existing
edge collaboration schemes for various tasks.

Future work includes resource allocation based on the characteristic of tasks. In addi-
tion, the proposed scheme will be evaluated based on the performance of other parameters
and be implemented in real-world edge collaboration systems to investigate its actual
applicability and performance.
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