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Abstract: Spatial autocorrelation and skewed distribution are the most frequent issues in crash rate
modelling analysis. Previous studies commonly focus on the spatial autocorrelation between adjacent
regions or the relationships between crash rate and potentially risky factors across different quantiles
of crash rate distribution, but rarely both. To overcome the research gap, this study utilizes the
spatial autoregressive quantile (SARQ) model to estimate how contributing factors influence the total
and fatal-plus-injury crash rates and how modelling relationships change across the distribution of
crash rates considering the effects of spatial autocorrelation. Three types of explanatory variables,
i.e., demographic, traffic networks and volumes, and land-use patterns, were considered. Using
data collected in New York City from 2017 to 2019, the results show that: (1) the SARQ model
outperforms the traditional quantile regression model in prediction and fitting performance; (2) the
effects of variables vary with the quantiles, mainly classifying three types: increasing, unchanged,
and U-shaped; (3) at the high tail of crash rate distribution, the effects commonly have sudden
increases/decrease. The findings are expected to provide strategies for reducing the crash rate and
improving road traffic safety.

Keywords: crash rate modelling; spatial autoregressive; quantile regression; quantile effects; spa-
tial autocorrelation

1. Introduction

Road traffic accident causes serious property damage and casualties around the world.
In the past decades, many studies have carried out considerable efforts in all kinds of
aspects of traffic safety to reduce road crashes [1,2]. Among these studies, one of the most
attractive areas is to explore how various influential factors affect crash rates. There were a
variety of factors that have been considered in previous studies [3–8], mainly summarizing
into following four aspects: (1) socioeconomic and demographic characteristics consisting
of ages, gender, household income, etc., (2) traffic and networks including daily vehicle
mile/kilometer traveled, traffic congestion, speed limit, the number of lanes, intersections,
lane width, ramp, curvature, etc., (3) land-use type, such as commercial and residential
land-use patterns, and (4) other factors such as temporal variations.

To analyze the impacts of these contributing factors on crash rates, many micro-level
analytic models, such as the random parametric Tobit and random-effects Tobit models,
have been developed at the segment and intersection level of transportation networks [5,9].
The results revealed that factors had varying effects on crash rates due to the temporal
differences and the crash types. However, few studies have attempted to analyze how
factors influence crash rates at the macro-level or regional level. The cross-sectional analyses
are becoming increasingly attractive and have considerable potential to have an in-depth
understanding of crash rates.

It is evident that crash rate data have highly left-skewed distribution and outliers (e.g.,
maximum figure) because accident and traffic travel data commonly present significantly
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spatiotemporal differences [10,11]. The conditional mean models are highly sensitive to
outliers and fail to be extended to the full distribution of crash rate, which may make
these models output biased results and side effects [12]. However, it is more attractive for
traffic engineers to understand the effects of risky factors in sites with high crash rates than
in other locations. Since there are deaths or serious injuries in these places [13]. In this
context, it is inevitable to introduce the quantile regression (QR) model. The QR model has
several benefits compared to traditional conditional mean models. At first, it can establish
the regression function at any location of the distribution of crash rate [14,15]. Second, it
releases the assumption of the normal distribution of the dependent variables. Third, it is
insensitive to outliers and skewed distribution. These advantages make the QR model more
and more popular in the road safety context [12,16,17]. However, few studies attempted
to establish the quantile effects in crash rate analysis, and thereby some of the available
information about crash rates were underestimated.

Additionally, accident data and traffic data are obtained from different locations, and
there is a fairly strong spatial correlation among adjacent regions. Ignoring the correlation
and assuming it in residual error in statistical models may lead to biased results [18,19].
However, few previously QR-related studies have attempted to address this issue.

To fill the research gap, this study applied a SARQ model that integrates the spatial
correlations and quantile effects to estimate how the effects of regional factors on crash
rates and how are they vary with the figure of crash rates. It aims to answer the following
questions: (1) Is the SARQ model performs better than the QR model when handling crash
rates? (2) what are the effects of risky factors and how do they vary across the distribution
of crash rates? (3) how do the crash types affect the above effects?

The rest of the study is organized as follows. Section 2 describes the available data
used in this study. Section 3 introduces the QR and SARQ models. Section 4 reports the
modelling results and discusses the parameter estimations. Section 5 summarizes the
remarkable finding and gives further directions.

2. Literature Review

Previous studies have discussed the relationships between crash rates and various
risky factors at the micro-level. Specifically, reference [5] developed two types of random-
effects Tobit models to differentiate the impacts of contributing factors on crash rates
between nighttime and daytime. Reference [20] applied a random parametric Tobit model
to analyze the relationships between light, medium, and heavy vehicles and intersection
density and crash rates of slight injury and killed/severe injury at different road segments.
In addition, a full Bayesian multivariate random parameter Tobit model was employed to
estimate the relationships between various risky factors and crash rates for different crash
rates [9]. The heterogeneous effects of arterial roads, speed limit, and differences, and lane
balance design parameters on crash rates of different types were explored. These studies
provide valuable insights for understanding the variations from a relatively micro-level
perspective. However, efforts in this macro traffic safety modelling are limited.

Several traditional regression models, such as the negative binomial (NB) model, were
frequently used to estimate the relationships between crash rates and various contributing
factors. The crash data and travel data have unique features, i.e., containing lots of zero, left-
skewed distribution, and few outliers (maximum). These NB models could only overcome
a part of the deficiencies of the data, i.e., overdispersion and they fail to handle other issues
of crash rate data [21]. Especially, the central location assumption forces them to estimate
the relationships at the central location (i.e., the mean value), which makes them difficult to
be extended to non-central locations, such as the high or low tails.

The QR model, being an enhancement of the conditional mean model, can describe the
relationship between crash rate and explanatory variables anywhere at the distribution of
crash rate [14,15]. The introduction of the concept makes the QR particularly useful when
the conditional distribution does not follow the standard normal distribution. Moreover,
it has powerful robustness and flexibility for handling outliers and skewed distribution.
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These excellent advantages make the QR model increasingly popular in many research
areas including investment, finance, economics, and medicine [22,23].

Recently, many researchers have applied this model to road safety analysis. Qin
(2012) introduced the QR model in the crash frequency modelling experiment conducted
in South Dakota and confirmed that the accident influencing factors have different effects
on the accident distribution in different areas. Reference [17] estimated the relationships
between crash counts and related risk factors such as road geometry using the QR model
and compared the results with the negative binomial regression. The findings obtained
by both methods were consistent, but the QR model revealed more detailed information.
Additionally, the spatial extension of the QR model, namely, the geographically weighted
quantile Poisson regression (GWPQR) model, was also employed to analyze the spatially
heterogeneous effects of contributing factors on total crash rates at different quantiles of the
crash frequency distribution [12]. However, the QR-related applications are few discussed
in previous studies.

Reference [11] proposed a logistic quantile regression model to address continuous
bounded outcomes with crash rate prediction in which 400 roadway segments within a
region were selected in Nevada. The results showed that the logistic QR model could pro-
vide whole trend variations of estimated coefficients and give an entire view of the effects
of influencing factors. However, an important phenomenon, i.e., spatial autocorrelation
was ignored in this study. The crash data were collected at different spatial locations, so
the crash rate in one region must be affected by its adjacent regions. The global QR model
underestimates the spatial effects in the real world and may lead to biased results. However,
few studies paid attention to filling the research gap.

To summarize, when establishing the crash rate analytic models, some studies con-
sidered quantile effects, others attempted to solve the spatial autocorrelation, but rarely
both. Thus, A SARQ model was introduced in this study to understand the modelling
relationships between crash rates and a variety of contributing factors. The contribution of
this study to the literature is twofold. First, it applied a quantile version spatial AR model
to handle the spatial autocorrelation, skewed distribution, and outliers existing in the crash
rate modelling. Second, it estimated the relationships between three types of contributing
factors and total and fatal-plus-injury crash rates and analyzed how these change with the
quantiles of crash rate distribution.

3. Data Description and Preparation
3.1. Study Area

The study area covers the majority of the metropolitan of NYC, which includes four
counties (i.e., Manhattan, Bronx, Brooklyn, and Queens) and excludes Staten Island due to
few crash observations here. The spatial unit used in this study is the census tract (CT) due
to the availability of socioeconomic and demographic characteristics, as shown in Figure 1.
Few CTs were removed because of the geographical barriers, as shown in the CTs covered
by light-grey shades. As a result, a total of 2018 CTs were concluded in this study.

3.2. Data Description and Preparation

Five types of datasets, including crash data, land use data, socioeconomic and demo-
graphic attributes, road network data, and average annual daily traffic data, were collected
during the period from 2017 to 2019. As mentioned above, we used the CTs as the analysis
unit, and we aggregated all of these data at the CT level.

The crash data set was collected from the NYC Police Department (NYPD). Every
row in this set represents a crash record, containing its occurring date, time, geographical
coordinates, involved vehicle types, the number of people being injured or killed. During
the three years, a total of 237,443 crashes were recorded, including 48,390 injuries and fatal
crashes. In this study, we calculated the crash rates of total crashes and fatal-plus-injury
crashes as the dependent variables. Figure 2 shows the spatial distribution of these two
types of crash rates crossing different CTs. As observed, from the total crash rate perspective,
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the crash rates are concentrated in the southeast areas. While the fatal-plus-injury crash
rates are randomly distributed over the entire city.
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According to previous studies [8,24], the crash rate in each CT was obtained following
Equation (1).

CRi =
106 × CFi

365×∑ Lij × AADTij
(1)

where the CRi refers to the crash rate at the ith CT, CF is the crash frequency in the ith CT,
Lij and AADTij represent the length and annual average daily traveled (AADT) of the jth
segment in the ith CT, respectively.

We obtained the AADT data set from the New York State Department of Transportation
(NYSDOT). Notably, the data set only record the traffic volume count on freeways and
major arterials. In addition to being used to calculate the crash rate, AADT was applied
to generate the daily vehicle kilometer traveled (DVKT) by integrating the road network
shapefile data that was published by the NYC department of transportation. The road
network attributes set also provides the posted speed limit of each segment, in which the
speed limit varies from 15 mph to 50 mph. The above data sets could be found at the NYC
Open Data website (https://opendata.cityofnewyork.us/, accessed on 19 November 2021)
by searching for the corresponding keywords (e.g., annual average daily traveled).

Socioeconomic and demographic data were collected from the NYC geodatabase
(http://www.baruch.cuny.edu/geoportal/nyc_gdb/, accessed on 19 November 2021).
The database includes the American Community Survey (ACS) in which the education,
employment, population, median income, housing, commuting time, etc., were recorded.

The land-use information was provided by the NYC Department of City Planning
(DCP) (https://www1.nyc.gov/site/planning/data-maps/open-data.page, accessed on
19 November 2021), from which we extracted four land-use patterns: commercial, residen-
tial, garage, and industrial. Additionally, the entropy index was also calculated to measure
the diversity of land use in each CT [25]. A greater value of entropy index means that there
is a higher degree of land-use diversity.

The mentioned datasets were aggregated at the CT level and categorized into two
dependent variables and 24 explanatory variables. The detailed descriptive statistics about
these candidate variables were recorded in Table 1.

3.3. Data Processing

A preliminary diagnostic test, i.e., multicollinearity, was applied to the candidate ex-
planatory variables to avoid statistical bias. The Pearson product-moment correlation (PPC)
and (variance inflation factor) VIF were calculated to identify the statistical correlation,
and the variables with VIF values greater than 5 or PPC values greater than 0.7 would be
removed [19]. Additionally, the Moran’ I test was applied to identify whether there is a
significant spatial correlation of variables among neighbors. The Moran value commonly
ranges from −1 to +1. The positive and negative values of the Moran index indicate that
the variable is spatial clustering or spatial dispersion [7]. If the value is close to zero or the
corresponding p-value is greater than 0.1, it indicates that the variable does not have an
easy-observed spatial pattern [26]. Thus, the variables would not be considered in this study.
Moreover, considering that the model employed in this study is based on Tobler’s First
Law, we also removed the variables presenting the spatial dispersion. As a result, 15 vari-
ables, i.e., P_YOU, MHC, CWPT, MCT, P_COM, P_IND, P_ENT_I, RD, P_SL_20, P_SL_30,
P_SL_35, P_SL_40, P_SL_50, were eliminated and the rest of the remaining variables were
used in the following research.

https://opendata.cityofnewyork.us/
http://www.baruch.cuny.edu/geoportal/nyc_gdb/
https://www1.nyc.gov/site/planning/data-maps/open-data.page
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Table 1. Variables explanation and statistics.

Variables Descriptions Min Average Max S.D.

Dependent Variables

TCR Total crash rate 0.000 0.449 15.352 0.769
I-F_CR Injury and fatal crash rate 0.000 2.231 100.001 4.353

Independent Variables

Education Percent graduate high school or higher aged over 16 years old in each CT 0.000 80.058 100.000 13.922
PD The number of people per km2 in each CT (in thousands) 0.000 20.870 98.924 14.092

P_YOU Percent of youth (aged under 19) in each CT 0.000 22.779 67.100 8.196
P_ELD Percent of elderly (aged over 60) in each CT 0.000 19.139 100.000 8.444
MHC Median household incomes in each CT (in thousands / dollars) 0.000 62.479 250.000 32.923

N_VHU The number of vacant housing units in each CT 0.000 8.539 100.000 6.375
CWC Percent of people who commute to work by car in each CT 0.000 27.976 100.000 17.969

CWPT Percent of people who commute to work by public transit in each CT 0.000 55.601 100.000 16.317
CWF Percent of people who commute to work by foot in each CT 0.000 9.157 100.000 9.563
MCT Mean commute time in each CTs (minutes) 0.000 40.923 73.900 8.833

P_COM Percent of area used for commercial purpose in each CT 0.000 0.234 1.000 0.202
P_RES_L Percent of area used for residential purpose in each CT 0.000 0.726 1.000 0.204
P_GAR Percent of area used for garage purpose in each CT 0.000 0.017 0.462 0.035
P_IND Percent of area used for industrial purpose in each CT 0.000 0.017 0.856 0.057

P_ENT_I The entropy index used to measure the land use diversity in each CT 0.000 0.547 1.234 0.240
DKMT Daily vehicle kilometer travelled in each CT (106 vehicle.km) 0.000 0.411 5.489 0.580

RD The road length per km2 in each CT (km−1) 2.435 96.239 319.955 29.254
P_SL_20 Percent of segment length posted speed 20 mph to total length in each CT 0.000 0.032 1.000 0.136
P_SL_25 Percent of segment length posted speed 25 mph to total length in each CT 0.000 0.904 1.000 0.185
P_SL_30 Percent of segment length with posted speed 30 mph to total length in each C 0.000 0.012 0.508 0.042
P_SL_35 Percent of segment length with posted speed 35 mph to total length in each CT 0.000 0.003 0.396 0.024
P_SL_40 Percent of segment length with posted speed 40 mph to total length in each CT 0.000 0.005 0.530 0.037
P_SL_45 Percent of segment length with posted speed 45 mph to total length in each CT 0.000 0.005 0.482 0.030
P_SL_50 Percent of segment length with posted speed 50 mph to total length in each CT 0.000 0.023 0.527 0.064
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4. Methods
4.1. Quantile Regression Model

The QR model is proposed to overcome skewed distribution and outliers that the
conditional mean models fail to address. It allows us to analyze the effects of the explanatory
variables of the crash rate at any quantiles of the crash rate distribution. In contrast
with traditional conditional mean regression models that estimate the parameter using
the minimum residual sum of squares, QR looks for the arg min of weighted sums of
absolute residuals. The minimization problem of a quantile regression can be written as
Equation (2) [14].

β̂q = argmin
βq∈R

N

∑
n=1

∣∣Yn − xnβq
∣∣wn (2)

where β̂q is the vector of coefficient estimates, and the subscript q ∈ (0− 1) denotes the
quantile to be estimated. In addition, Yn is the nth entry of Y, Xn is the nth row of X, and
wn is the nth observation’s weight.

4.2. Quantile Version for Spatial Autoagressive Model

The effects of variables on crash rates not only changed with the quantiles but also
present affected by potential spatial autocorrelation. As the spatial extension of the QR
model, the spatial autoregressive quantile (SARQ) model can be used to account for the
spatial correlation among neighbors at both central and non-central locations [27]. For the
spatial autoregressive model, its general form can be described as:

Yt = λqWYt + βqX + ε (3)

where W is an N × N spatial weight matrix, specifying the spatial associations between Y
of different areas. N is the number of observations. λ is the parameter of spatial lag term
WYt and indicates the degree of spatial autocorrelation. β denotes the estimated parameter
of each explanatory variable. Other parameters are defined previously.

Combining quantile regression models, the SARQ model is described as:

Yt = λqWYt + βqX + ε (4)

where λq and βq represent the spatial lag term and coefficients of the explanatory variable
at the qth quantile. W is the spatial weight matrix. This model is estimated by two-stage
least squares (2SLS). The first stage is a regression of endogenous variable WYt, then the
predicted value of WYt is used as an explanatory variable and combined with explanatory
variables to obtain the predicted value of Yt [28]. For more detailed information about the
parameter estimation process, please see reference [29].

5. Results and Discussion
5.1. Model Comparison

Three common measures, i.e., mean absolute error (MAE), root mean square error
(RMSE), and R-squared (R2), were used to evaluate the model performance of QR and
SARQ models. The lower the values of RMSE and MAE are, the predicted accuracy of the
corresponding models are [30]. In addition, models with a higher value of R2 towards 1 fit
better to the data. To obtain the predicted accuracy of the two models crossing the entire
distribution of crash rates, we set the quantile value to q = 0.02, 0.03, . . . , 0.97, 0.98. The
comparison results relating to total and fatal-plus-injury crash rates are shown in Figure 3.
As observed in Figure 3a, the MAE and RMSE values at each quantile of the SARQ model
were much lower than that of the basic QR model and the R2 value of the SARQ model at
each quantile was also greater than that of the QR model, indicating that the SARQ model
outperforms the QR model in data fitness and prediction accuracy. The results are not
unnormal, as the SARQ model defines the spatial autocorrelation using a specific spatial
structure and considers more influences of unobserved factors. The sub-figure showed
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that the two quantile-based models perform best at the non-central location (i.e., 50th
quantile), which reveals the necessity of using the quantile regression models to handle the
outliers and skewed distribution of crash rate. More importantly, we could observe how
the three measures vary with quantiles, specifically, the MAE and RMSE figures present a
U-shape across the entire distribution of total crash rates, while the figure of R2 exhibits
the negative U-shape crossing the distribution. The results show that when the quantile
value move from the low tail to the high tail, the model performance improve and reach
the optimal point, and then decrease during the rest of the distribution. The U-shape not
only indicates how the modelling location affects the model performance but also provides
the best modelling location. The results of the fatal-plus-injury crash rate reveal similar
findings, as shown in Figure 3b.
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To evaluate the transferability of the SARQ model, we randomly sampled 70% of
data 5 times from the entire data for model validation. we also provide the R-squared
(R2) value to evaluate the ability of model fitness. The results are shown in Appendix A.
The model performance does not significantly deteriorate, suggesting that the model has
good transferability.

The above discussion suggested the benefits of the SARQ model in the crash rate
modelling: it could not only inherit the ability of the quantile model to deal with skew
distribution and outliers but also solve the spatial autoregression existing in crash rates.
Thus, the estimation results of the SARQ model were selected to be used for follow-
up research.

5.2. Parameter Estimation and Quantile Effects Analysis

Table 2 summarizes the parameter estimations, their corresponding statistical signif-
icance, and standard errors of SARQ models with total and fatal-plus-injury crash rates.
A comparison of coefficient estimates among the five selected quantiles (i.e., 0.1, 0.3, 0.5,
0.7, and 0.9) are provided in the table, which could help us understand how the effect of
each explanatory variable varies across different locations of crash rate distribution. We
could conclude that the signs of all coefficients are consistent with that reported in previous
studies [4,11,20]. The sign of these statistically significant coefficients remained unchanged
crossing different quantiles, although there are huge differences in the size of coefficients.
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Five variables including daily vehicle kilometer traveled (DVKT), the percentage of elderly
people (ELD_P), the proportion of the area used for the residential purpose (P_RES_L),
the percent of segment length posted 25-speed limits (P_SL_25) and the percent of peo-
ple who commute to work by foot (CWF) expresses negative relationship with total and
fatal-plus-injury crash rates. The negative coefficients of DVKT indicate that an increase
in DVKT leads to a downward trend of crash rates. The result has been reported in many
previous studies in which negative relationships were also observed [8,31]. The result can
be attributed to the fact that the greater number of DVKT makes vehicles move slowly,
which reduces the possibility of accidents [8]. However, the side effects need to be dis-
cussed in further research using more detailed crash datasets, since we observed that the
coefficients at the high tail (i.e., 0.7 and 0.9 quantiles) are not statistically significant. The
negative signs of P_RES_L and P_SL_25 frequently occurred in previous related studies,
as the figures of speed limits in residential communities are commonly low, and the legal
speed limits ensure that there are few observations of crashes in residential areas and sites
with low-speed limits [32]). Generally, the non-motorized facilities, such as pavement,
provide urban travelers with a safer travel environment, which makes the walking behavior
is more likely to be related to low crash risk. Thus, without any doubt, there is a negative
sign of CWF.

The rest of the remaining four variables, i.e., population density (PD), the percent of
people who commute to work by car (CWC), the percent of area used for garage purpose
(P_GAR), and the percent of segment length posted 45-speed limits (P_SL_45), are positively
related to crash rates in two models. The results are consistent with the previous studies
which reported that an excessive number of people, garages, CWC, and P_SL_45 leads to
a frequent occurrence of accidents. At first, the higher number of residents and garages
are, the more trips generate, and the more possibility of accidents there is. Second, the
greater number of vehicles with higher speeds will increase the crash risk and crash rates
in the situation that the traffic volume mainly depended on segment width rather than the
posted speed limits [33,34]. Third, compared with working by bicycle or foot, the crash
rates increase with the journeys working by car, because the streets are more dangerous
and crowded than pavement or bicycle lane during the commuting period [35,36].

However, we find that the coefficients of most variables are only statistically significant
at one or two quantiles in both models, which limits the understanding of quantile effects
of independent variables on crash rates. Thus, we present the statistically significant
coefficients (at the 90% confidence level) for quantiles ranging from q = 0.01, 0.02, . . . , 0.98
to illustrate how these estimated coefficients change across the entire distribution of total
and fatal-plus-injury crash rates, respectively.

As observed in Figures 4 and 5, the positive effects of CWC, PD, and P_GAR variables
increase with the quantile of the distribution of total crash rate, indicating that their
motivating effects are becoming more significant at sites with higher values of crash rates.
The above findings support the previously reported studies [11] and suggest that utilizing
the accident prevention and control measures related to the number of residents and
garages in high-crash-rates sites are more effective than being applied in areas with low
crash rates. Similar trends are observed in the coefficients of DVKT, P_RES_L, and P_SL_25,
with the figure (with negative signs) presenting a higher value at the high tail of the total
crash rates distribution than at the low tail. The quantile effects indicate that the greater
number of crash rates is, the more significant their effects on crash rates are. Generally, road
traffic conditions will become increasingly complex when the number of traffic accidents
increases [12]. In this case, any change in the values of the above three variables will lead to
a significant increase in traffic crash rates. The finding indicate that the effects of approaches
used for preventing crashes are more significant in areas where there is a high possibility of
crashes. The conclusion may be related to urban travelers’ and safety engineers’ actions.
Whether vehicle drivers or transportation departments, they always pay more attention to
accident-prone areas than other areas and are more sensitive to safety facilities or signals in
these areas, which makes these measures more useful.
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Table 2. Coefficients estimation of Spatial AR quantile model.

Variables Total Crash Rate Fatal-Plus-Injury Crash Rate

q = 0.1 q = 0.3 q = 0.5 q = 0.7 q = 0.9 q = 0.1 q = 0.3 q = 0.5 q = 0.7 q = 0.9

PD 0.554 **
(0.0014)

1.131 ***
(0.002)

1.571 ***
(0.0026)

2.240 ***
(0.004)

3.390 ** (0.004) 0.076 * (0.0003) 0.174 **
(0.0004)

0.312 ***
(0.0006)

0.431 ***
(0.0009)

0.680 * (0.003)

P_ELD −0.001 (0.002) −0.003 *
(0.002)

−0.003
(0.0034)

−0.003 (0.006) −0.006 (0.007) 0.000 (0.0003) 0.000 (0.0006) −0.000 (0.008) 0.001 (0.001) 0.002 (0.002)

CWC −0.007 **
(0.001)

−0.013 ***
(0.0017)

−0.014 ***
(0.0023)

−0.014 *
(0.0034)

−0.004 (0.004) −0.001 ***
(0.0003)

−0.002 ***
(0.0004)

−0.003 ***
(0.0005)

−0.002
(0.0009)

−0.004 (0.002)

CWF 0.002 * (0.002) 0.003 (0.0018) 0.004 **
(0.0033)

0.007 **
(0.0044)

−0.001
(0.0048)

−0.000
(0.0004)

0.000 (0.0004) 0.000 (0.0008) −0.000
(0.0012)

−0.004 (0.002)

P_RES_L −0.003 **
(0.086)

0.001 (0.108) 0.000 (0.161) −0.003 (0.272) −0.03 **
(0.303)

0.001 (0.016) 0.000 (0.028) 0.000 (0.0416) −0.001 (0.069) −0.004 **
(0.191)

P_GAR 0.170 ** (0.608) 0.314 ** (0.847) 0.300 (0.992) 0.712 ** (1.723) 0.942 (1.615) 0.040 ** (0.119) 0.065 ** (0.249) 0.100 ** (0.191) 0.141 * (0.318) 0.231 (1.095)
DVMT −1.145 **

(0.058)
−1.712 *
(0.065)

−3.252 ***
(0.073)

−2.482 (0.086) −2.756 (0.086) −0.150 (0.011) −0.413 *
(0.014)

−0.458 **
(0.014)

−0.264 (0.019) −0.789 (0.056)

P_SL_25 −0.633 ***
(0.105)

−0.834 ***
(0.116)

−1.034 ***
(0.214)

−1.323 ***
(0.287)

−1.530 ***
(0.271)

−0.102 ***
(0.027)

−0.156 ***
(0.035)

−0.199 ***
(0.032)

−0.242 ***
(0.056)

−0.274 ***
(0.183)

P_S_45 0.321 ** (0.561) 0.316 ** (0.474) 0.178 (0.649) 0.163 (0.779) 0.532 (0.946) 0.087 ** (0.098) 0.081 ** (0.125) 0.069 ** (0.113) 0.008 (0.226) 0.166 (0.754)
Note: Min, Average, Max, S.D. refer to minimum, average, maximum, and standard deviation values, respectively. *, ** and *** mean that the estimated coefficients are statistically
significant at the 90%, 95%, and 99% confidential interval, respectively.
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However, there are different patterns of coefficients related to CWF, ELD_P, and
P_SL_45. The estimated distribution of parameters of P_SL_45 exhibited a U-shape. Specifi-
cally, when the quantile value changes from the low tail to the high tail, the figure decreases
and reaches the lowest point, and then rose during the rest of the distribution. Notably, the
signs of these parameters do not change across the 97 quantiles.

In the two models, the figures of coefficients of ELD_P remain unchanged no matter
how crash rates change, meaning that the effects of elderly people on crash rates are not
sensitive to variations in crash rate itself. Unfortunately, the coefficients are very close to



Sensors 2022, 22, 5 12 of 15

zero, and only very few coefficients were statistically significant, which makes it difficult
for us to analyze its relationship with the crash rate deeply. One possible explanation is that
the ELD_P figures vary insignificantly across different CTs. Moreover, some unobserved
variables may have impacts on the relationships between ELD_P and crash rate, but it fails
to be explored. Thus, this variable has the same impacts on different CTs where there are
significant differences in crash rates.

The effects of a few variables are not only affected by the number of crash rates but
also influenced by the crash types. Figures 4 and 5 show that in the total crash rate model,
the coefficients of CWF presented a U-shaped pattern, while in the fatal-plus-injury crash
rate model, the figures are likely to be constant across different quantiles. The results
indicate that the CWF did not have a varying effect as the number of fatal-plus-injury crash
rates change.

Finally, we find that the coefficient values increase/decrease sharply at the high tail
(i.e., 0.7, 0.8, and 0.9 quantiles) of the distribution of crash rates than at the low tail (i.e.,
0.1, 0.2, and 0.3 quantiles). The result implies that the safety measures arranged by the
transportation department in areas with high crash rates should also far exceed those
arranged in areas with low crash rates. Meanwhile, the distributed pattern of coefficients
at the high tail is more unstable than that at the low tail. The result is not uncommon.
The travel environment becomes more chaotic after a crash or crashes, which means that
more unobserved factors, such as the driver’s reaction, have a greater impact on modelling
relationships that we observed.

6. Conclusions and Future Work

This study investigated how the regional factors influenced the crash rates changed
with the number of crash rates using a spatial autoregressive quantile (SARQ) model.
Using available data collected in New York City from 2017–2019, the relationships between
three types of nine independent variables, i.e., traffic networks and volume, demographic
characteristics, and land-use patterns, and crash rates (total or fatal-plus-injury) were
revealed. The main findings of this study are multi-dimensions.

At first, the SARQ model obtained more robust results in crash rates analysis for
addressing the skewed distribution, outliers, and spatial autocorrelation. Second, the
parameter analysis suggested that eight variables including CWC, PD, P_GAR, P_SL_45,
CWF, DVMT, and P_SL_25, and are the key factors influencing the variations of total and
fatal-plus-injury crash rates. The increases of the first five variables increase the crash risk,
while the growth of other variables reduces the crash rates. The effects of six variables,
i.e., DVMT, P_RES_L, CWF, PD, P_GAR, P_SL_45, on crash rates (total or fatal-plus-injury)
would become more significant with the number of crash rates. The results imply that
there should be much more strong accident prevention countermeasures in sites with
higher crash rates, and the same approaches were expected to be more effective here. Some
variables, such as ELD_P, had stable effects on crash rates no matter how the number of
crash rates varies. The effects of P_SL_45 were U-shaped, meaning that there are greater
relationships between this variable and crash rates at both high-crash rates or low-crash-
rates areas. Additionally, the effects of CWW were of difference between total crash rates
and fatal-plus-injury crash rates. The above findings indicate the considerable potential of
the SARQ model in analyzing the crash rates.

The policy-based insights of this study include the following several aspects. At first,
the speed-related traffic facilitates, such as speed bump, no speed, not only in areas with
high speed and high accident rate but also in areas with high speed and low accident rate.
In these areas, the driver’s attention is not so focused, which may lead to an increase in the
accident rate. Secondly, reducing car commuting and setting up traffic control measures
similar to that in residential areas are very effective in areas with high traffic accident rates.
Third, there should be much more strong accident prevention countermeasures, such as
restrictions of traffic entrance, limiting speed, in sites with higher crash rates. In addition,
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when the accident rate in the local area increases to a certain level, the strength of these
measures should increase exponentially rather than linearly.

Thus, in the follow-up research, the quantile effects of ELD_P should be discussed,
and advanced models that consider the spatial heterogeneity of crash rates are advocated.
We highlight that the findings are obtained using datasets in NYC. Similar experiments
are strongly encouraged to be applied in other datasets and gain more interesting and
comprehensive findings.
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