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Abstract: Concepts such as Industry 4.0 and Cyber-Physical Systems may bring forward a new
industrial revolution. These concepts require extensive connectivity far beyond what is provided
by traditional industrial networks. The Industrial Internet of Things (IIoT) bridges this gap by
employing wireless connectivity and IP networking. In order for wireless networks to meet the
strict requirements of the industrial domain, the Time Slotted Channel Hopping (TSCH) MAC is
often employed. The properties of a TSCH network are defined by the schedule, which dictates
transmission opportunities for all nodes. We survey the literature for these schedulers, describe and
organize them according to their operation: Centralized, Collaborative, Autonomous, Hybrid, and
Static. For each category and the field as a whole, we provide a holistic view and describe historical
trends, highlight key developments, and identify trends, such as the attention towards autonomous
mechanisms. Each of the 76 schedulers is analyzed into their common components to allow for
comparison between schedulers and a deeper understanding of functionality and key properties.
This reveals trends such as increasing complexity and the utilization of centralized principles in
several collaborative schedulers. Further, each scheduler is evaluated qualitatively to identify its
objectives. Altogether this allows us to point out challenges in existing work and identify areas for
future research, including fault tolerance, scalability, non-convergecast traffic patterns, and hybrid
scheduling strategies.

Keywords: Time Slotted Channel Hopping (TSCH); scheduling; Industrial Internet of Things (IIoT);
6TiSCH; DetNet; cyber-physical systems

1. Introduction

A transformation is ongoing in industry where information technology (IT) is being
integrated with operational technology (OT). Through concepts such as Industry 4.0, this
is expected to significantly increase productivity and open for new applications [1,2].
The Industrial Internet of Things (IIoT) is crucial in this transformation since it enables
massive collection of data, and process control without a wired infrastructure put into place.
The wireless connectivity is therefore a critical component of IIoT. Although existing sensor
networks employ wireless communication, they were developed for different requirements
than those posed by industrial systems. This has warranted significant research efforts
to develop wireless communication to match the performance seen in industrial cabled
networks for example in reliability, deterministic latency, and IP interoperability.

Efforts to meet these challenges have been significant in the standardization bodies:
The IETF Deterministic Networking (DetNet) working group https://datatracker.ietf.
org/wg/detnet (accessed on 12 December 2021) aims at providing the upper layers with
deterministic flows. These operate across multiple links- and network segments, and
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provide bounded latency, jitter, and loss. Flows may include wireless links, which is the
focus of the Reliable and Available Wireless (RAW) working group https://datatracker.ietf.
org/wg/detnet (accessed on 12 December 2021). The DetNet working group cooperates
with its link-layer equivalent IEEE 802.1 Time-Sensitive Networking (TSN) task group
https://ieee802.org/1/pages/tsn.html (accessed on 12 December 2021), which similarly
aim for deterministic service over IEEE 802 networks. Lastly, there also exist full or partial
network stacks for the industrial wireless domain such as WirelessHART [3], ISA100.11a [4],
and WIA-PA [5], which constitute the most popular standards for industrial wireless sensor
networks [6].

Making wireless communication a viable option to cabled networks requires research
on all layers of networking. For the Media Access Control (MAC) layer, a popular ap-
proach relies on a combination of time-slotted access and slow channel hopping: Time
Slotted Channel Hopping (TSCH). It offers potential for bounded delay and robustness
against interference.

TSCH was added to the IEEE 802.15.4 [7] standard in 2016 (First introduced in the 2012
802.15.4e amendment [8]) and was based on the implementations found in WirelessHART
and ISA100.11a. With TSCH, all nodes communicate according to a schedule that dictates
the access to each cell, i.e., who may transmit and receive at a particular time and channel.
Schedules may be built in a centralized fashion, such as done by the Network Manager
in WirelessHART. This strategy allows for increased operator control and reservation of
resources across the network in a holistic manner. However, decentralized approaches
such as collaborative or autonomously built schedules are also feasible and typically allow
for increased adaptability and fault tolerance. These different opportunities are giving rise
to a significant research effort in the area of TSCH scheduling.

Our scope is limited to schedulers proposed for the 802.15.4 TSCH MAC with IIoT in
mind. The scheduling of resources fundamentally impacts important networking metrics
such as duty cycle, packet delivery ratio, end-to-end delay, network capacity, etc. These
which are all key to fulfilling the requirements posed by industrial networks.

Existing surveys targeting TSCH scheduling are found in [9,10]. In addition to provid-
ing an up-to-date view in an area of rapid development, our survey differs in several ways:
We employ a bottom-up approach when analyzing schedulers, where each scheduler is
broken into basic components. This allows for a more granular insight as opposed to when
viewed in terms of its goal or type of mechanism employed. We also include a survey
of industrial requirements for the MAC layer and qualitatively evaluate the schedulers
against these. It allows for an understanding of research effort focus and identifies open
areas. Lastly, our survey is complemented by a holistic view of the field and each class of
schedulers, where we identify and discuss seminal works, patterns, and trends.

The contribution of this survey is as follows:

• An up-to-date overview and classification of schedulers for the TSCH MAC approach;
• A holistic view on the field of TSCH scheduling, describing its evolution, key contri-

butions and highlights, and current trends;
• Enhanced insight into TSCH scheduling through novel bottom-up analysis and quali-

tative objective evaluation;
• Identification of areas open for future research such as fault tolerance and heteroge-

neous traffic patterns, as well as challenges in existing research, including unrealistic
assumptions and lack of repeatability;

• Description and evaluation of 76 surveyed TSCH schedulers available as supplemen-
tary material;

• Proposed improvements to the established TSCH scheduling taxonomy;
• Survey of industrial requirements posed on MAC layer from IIoT.

The rest of this survey is organized as follows: Section 2 describes the requirements of
IIoT and their relations to the MAC layer. It also presents specific requirements identified
for selected applications. Next, we provide a primer on TSCH, including the channel
hopping mechanism and its rationale, before describing the 6TiSCH suite, which ties
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TSCH together with IPv6. Altogether this provides the necessary context for Section 5
and onward, where we survey and evaluate the state-of-art of TSCH schedulers according
to our taxonomy and criteria. We start by describing the evaluation method used in the
survey, summarize key contributions, and detail the evolution of the collective research
effort. Each following section addresses one category of the schedulers and presents trends,
features, and challenges. We conclude by describing areas open for future research and the
challenges observed in existing work.

2. Requirements and Applications

Requirements on OT networks differ from that of IT networks. Generally, they are
stricter and require more challenging bounds on metrics such as packet loss, delay, jitter, etc.
Following is a description of these requirements and how they relate to the MAC layer.

• Deterministic latency: Industrial communication typically requires messages to be
delivered within an upper bound on latency, and with as minor fluctuations in this
latency as possible, i.e., minimal jitter. When a network is part of a control loop, this
may be critical for the process to operate correctly. The network’s capability to provide
such guarantees is also coined as its determinism [11], as well as its predictability [12].
Together with reliability, deterministic latency is widely considered the fundamental
requirement in industrial communication [11,13–20].

• Short latency: Several industrial applications require the network to provide short
delays on communication, i.e., the time needed for a message to reach its destina-
tion [11,21]. This is especially true for, e.g., closed-loop control applications where
requirements can be in the microseconds range, as illustrated in Table 1.

• Reliability: Reliability relates to the network’s ability to transfer data successfully
between sender and receiver, and it is typically measured using end-to-end packet
delivery ratio (PDR). The MAC layer should aim to keep the frame loss at a minimum,
described as “link-reliability” in [21]. Losses may incur retransmission mechanisms
at MAC or higher layers, increasing latency and decreasing effective throughput.
Industrial environments are especially challenging with difficult channel conditions
due to co-existing networks, metal surfaces, industrial equipment, etc., [22,23].

• Fault tolerance: Industrial environments are harsh, both in terms of physical condi-
tions such as dust, dirt, humidity, vibrations, and complex RF environments. The
network must cope with challenging situations, such as, e.g., link, node, or gate-
way failures [24,25]. The MAC protocol must respond appropriately and provide the
routing layer with available links to route over [26].

• Scalability: A large number of devices (hundreds or even thousands) are expected to
be present due to their low cost, ease of deployment, increased industrial process com-
plexity, and the requirements from realizing a Cyber-Physical System (CPS) [19,27–29].

• Heterogeneous traffic: An industrial network is not a static homogeneous entity, espe-
cially in the CPS paradigm. It typically consists of heterogeneous applications with
differing requirements operating simultaneously, e.g., periodic process monitoring
and an emergency action application. In addition, their corresponding requirements
may change with time, e.g., monitoring processes that move between a transient- and
a steady-state [30].

• Throughput: Especially in automation applications, a certain throughput is needed to
meet the requirements of the industrial control loop. This is influenced by the payload
size (which is typically small, below 100 bytes [13]) and the application control cycle
time. In, e.g., closed-loop applications, the cycle time can be less than a millisecond
(see Table 1), requiring more throughput [11].

• Resource utilization

– Energy: Wireless nodes typically depend solely on batteries for energy. Each node
is expected to last for at least several years and up to decades without requiring
battery replacement or charging [31]. The MAC layer must keep the radio duty
cycle and CPU utilization as low as possible.
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– Bandwidth: Given the scarcity of (especially unlicensed) frequencies, the available
bandwidth for wireless networks is low and contested. The MAC should keep
its overhead to a minimum, and minimize its band occupancy, i.e., utilize as few
channels as possible to improve interoperability with co-existing technologies.

– Computational: A wireless node may have less than 10 kB memory and 100 kB
flash available [32]. Such hardware may not be able to accommodate complex
and computational exhaustive MAC protocols. Requiring more capable hardware
may increase the cost of each node, which may impede scalability.

• Other: A flexible and efficient topology organization is critical to accommodate, e.g., mo-
bile nodes [18], or nodes which abruptly leave or join the topology [17]. As nodes are
numerous and may be placed in hard-to-reach or dangerous locations, the network
is required to be self-organizing and self-healing without manual human interven-
tion [21]. Co-existence and interoperability between existing and new systems is a
necessity in IIoT and CPS, where rich deployments are expected [17,31]. Security
breaches in an industrial setting typically have more severe consequences than a
traditional network and may lead to dangerous or even disastrous situations [29].
In addition to its role in hop-by-hop security, the MAC protocol often relies on sig-
naling between devices or with a centralized unit, which must be secure [33]. A key
benefit of wireless networking is reduced cost [34], and a MAC protocol should there-
fore offer an implementation, deployment, and maintainability which does not require
significant capital- and operational expenditures.

Table 1. Example requirements for communication in the industrial automation domain [11,13,14,31,35].

Automation Domain Class Latency Jitter Packet Error Rate Cycle Time Range Scale

Process
Monitoring ms–s >10−9 s–days 10–100 m 50–1000 nodes

Closed-loop control ms 10−9 <250 ms 10–100 m <50

Factory Closed-loop control 0.1–2.5 ms 1–20 µs 10−9 0.5–5 ms 10–100 m <50

Specific requirements are highly dependent on the industrial application and may also
be settled by a holistic view on both application and network, as argued by Franchi et al.
in [36]. The Industrial Society of Automation (ISA) https://isa.org (accessed on 12 Decem-
ber 2021) classify applications and their requirements into three categories:

• Safety applications such as emergency shutdowns are always critical and have the most
stringent requirements.

• Control applications are diverse, and the requirements depend on whether the network
serves a closed- or open-loop system. Table 1 showed example requirements for the
automation domain, divided into (1) Process control/automation, e.g., oil, gas, and
mining, and (2) Factory/manufacturing, which is typically assembly line productions
such as in the automotive industry.

• Monitoring applications such as asset tracking and history collection are typically
limited to gathering non-critical data at longer time-spans and thus have the laxest
requirements.

More on the classification of industrial applications may be found in [21,37,38].

3. 802.15.4 Time Slotted Channel Hopping

Figure 1 illustrates a simple topology with an accompanying TSCH schedule, where
time is divided into timeslots horizontally and channels vertically. A specific cell al-
lows transmitting one packet and an optional acknowledgment, and can be identified
by its timeslot and channel offset. A cell can be shared between multiple nodes, e.g., for
broadcasts, or it can be dedicated, which yields contention-free communication. This
scheme allows for low energy consumption since devices sleep if the schedule does not
dictate otherwise.

https://isa.org
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Figure 1. Simple wireless network topology with example TSCH schedule.

A collection of timeslots repeats in periods called slotframes, which in Figure 1 is
4 timeslots long. The 802.15.4 standard does not specify the schedule content or how it
is built. This allows for application-specific solutions and opens up the research area of
TSCH schedulers.

Coordinator nodes periodically broadcast Enhanced Beacons which contains the
current absolute slot number (ASN). ASN is the total number of timeslots elapsed since the
deployment of the network, as illustrated in Figure 1. The broadcasts ensure all nodes are
synchronized and in agreement on which is the current timeslot in the slotframe.

This synchronization is also used to implement channel hopping: The industrial RF
environment is challenging with metal surfaces and interference introduced by machin-
ery, engines, welders, etc. This is further emphasized by co-existing technologies such
as Wi-Fi [19,39]. Together this exacerbates external interference and multi-path fading,
reducing the reliability of the communication [40]. These effects are frequency-dependent
and may thus be combated by hopping to a different channel every time a cell is used. The
ASN is used to identify the physical channel to use:

ChannelIndex = (ASN + ChannelO f f set) mod NumCh

where ChannelIndex identifies which channel in the hopping sequence list to use, and
NumCh is the number of channels. Consequently, the same cell will use a different channel
for each slotframe. The most popular 802.15.4 PHY in the 2.4 GHz band specifies 16 non-
overlapping channels which may be utilized in the hopping list. In [41] it was shown
this scheme may decrease the expected transmission count (ETX) by 56%, with additional
improvements being possible by employing a blacklist such that the hopping scheme
avoids the least optimal channels.

Whereas channel hopping combats the impact of frequency-dependent multi-path and
interference, dedicated cells mitigate collisions. Combined, this allows for high reliability,
low-power operations, and deterministic behavior. Interested readers may refer to [22] for
additional details on 802.15.4 TSCH.

4. Combining TSCH and IPv6-6TiSCH

Realizing the visions of Cyber-Physical Systems and IIoT requires combining indus-
trial networks, i.e., operational technology, with IP-based networks, i.e., informational
technology. A crucial part of this is realizing a network protocol stack that combines
the connectivity of IPv6 with an industry-capable MAC. In this section, we will describe
relevant work from the 6TiSCH working group https://datatracker.ietf.org/wg/6tisch
(accessed on 12 December 2021). This is important since many schedulers are designed

https://datatracker.ietf.org/wg/6tisch
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for 6TiSCH networks and utilize included mechanisms such as the 6top Protocol (6P) [42].
A tutorial on 6TiSCH may be found in [43].

4.1. 6TiSCH Stack

Figure 2 depicts the proposed protocol stack for 6TiSCH networks. It consists of exist-
ing higher-layer IETF standards such as UDP, IPv6, RPL [44], and 6LoWPAN, on top of the
IEEE 802.15.4 TSCH MAC. To integrate the two parts, a new 6top sublayer [42] is specified in
between. It provides an interface to TSCH resources such as the schedule and connectivity
statistics, as well as defining how nodes should communicate scheduling requests to each
other utilizing the 6top Protocol (6P) [42]. The 6TiSCH protocol stack is implemented in at
least four open-source embedded operating systems as per December 2021 [45]: OpenWSN
(http://openwsn.org (accessed on 12 December 2021)), Contiki-NG (https://contiki-ng.org
(accessed on 12 December 2021)), RIOT (https://riot-os.org (accessed on 12 December
2021)), and TinyOS (http://tinyos.net (accessed on 12 December 2021)).

Figure 2. The 6TiSCH protocol stack.

A 6TiSCH network consists of one or more Low Power Lossy Networks (LLN) sharing
an IPv6 subnet and running a TSCH-based mesh [46]. Figure 3 depicts this envisioned
network. Inside the 6TiSCH LLN, each node runs the 6TiSCH stack and has an 802.15.4
TSCH capable radio. The Border Routers acts as a gateway between the LLN and the
outside, performing additional duties such as 6LoWPAN termination and root role in the
RPL routing tree.

4.2. 6TiSCH Scheduling

The Scheduling Function (SF) decides the content of a node’s schedule. SFs are
interchangeable, offering operators the flexibility to employ whichever SF meets their
requirements. The workgroup therefore has limited contributions on scheduling functions:
6TiSCH specifies a minimal mode simple static schedule [47] for network bootstrapping.
Secondly, it specifies the Minimal Scheduling Function (MSF) [48] intended for generic
use-cases.

6TiSCH describes four different scheduling approaches [46] to manage the TSCH
schedule: Remote monitoring and schedule management realizes a centralized scheme, Static is
a preset fixed schedule. Neighbor-to-neighbor, and Hop-by-hop scheduling are decentralized
approaches. In hop-by-hop, a communication track is envisioned over several hops through
the network, while neighbor-to-neighbor limits its scope to the node neighborhood.

The 6top sublayer offers ways for the SF to add, delete, count, etc., cells with a neighbor
node. Any negotiations between nodes to achieve this is done by the 6P protocol described
below. 6top also offers link statistics such as RSSI, time since last packets, number of
packets, etc., which an SF can use to make scheduling decisions.

http://openwsn.org
https://contiki-ng.org
https://riot-os.org
http://tinyos.net
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Figure 3. 6TiSCH network with several backbone routers (BBR) and an optional Path Computation
Entity (PCE).

4.3. 6top Protocol

When an SF requires the 6top sublayer to change the schedules between two nodes,
6top utilizes the 6top Protocol (6P) [42] to communicate with its neighbor. Through
exchange of messages, 6P allows for negotiation of scheduling modifications such as adding,
deleting, relocating, and listing cells. These transactions typically follow a request-response
pattern where one side initiates the operation and suggest the relevant cells, upon which
the other side will respond with the result.

To exemplify the operation, Figure 4 shows a 2-step adding-of-cell transaction. At node A,
the SF has decided two cells are needed towards node B, and a 6P transaction is initiated.
Node A transmits a 6P request message with the ADD command, accompanied by a list of
candidate cells. Node B consults its SF and responds with a subset of acceptable cells—thus,
the transaction is completed, and two new cells are scheduled between nodes A and B.

A B6P Add Request
  Sequence number = 1
  NumCells = 2
  CellList = [(1,1),(2,4),(4,4)]

Layer 2 Acknowledgement

6P Response
  Sequence number = 1
  CellList = [(1,1),(4,4)]

Layer 2 Acknowledgement

Figure 4. Simplified example of 6P Add transaction between node A and B.
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5. Survey of TSCH Schedulers

The scheduling function is the heart of a TSCH solution. The arrangement of reser-
vations in time and frequency is the key decider to fulfill essential requirements such as
reliability, latency, and energy consumption. Neither the 802.15.4- nor 6TiSCH-standard
specify anything other than minimal schedules—leaving room for significant research
into scheduling mechanisms. The following sections survey these efforts and the result-
ing schedulers.

5.1. Methodology

Schedulers were identified by searching Google Scholar (https://scholar.google.com
(accessed on 12 December 2021)) with keywords “TSCH”, “Time Slotted Channel Hopping”,
and “6TiSCH”, and limited to publishing before Jan. 1st 2021. From the set of matches,
actual schedulers were identified qualitatively. Lastly, schedulers were disqualified if they
did not address 802.15.4 TSCH or if the application was unrelated to the industrial domain.

5.2. Taxonomy

A common approach is to categorize schedulers according to the fashion a schedule
is generated. This is especially useful because the generation of a schedule dictates or
influences most of its properties. Our survey is therefore organized accordingly, and
each category is presented in turn. This taxonomy is employed in several other works:
Hermeto et al. [9] utilize only Centralized and Distributed categories, while 6TiSCH adds a
Static class and divide distributed schedulers into hop-by-hop and neighbor-to-neighbor.
Lastly in [10], the authors leave out the static class and employ Centralized, Distributed,
Autonomous and Hybrid categories. Thus, based on our findings, no proposal captures the
complete range of schedulers while providing the necessary level of detail.

Based on existing schemes, we suggest an improved taxonomy in Figure 5 that en-
compasses all categories. Further, a Collaborative class replaces the distributed class. This
is done to distinguish autonomous self-sustained approaches from the collaborative joint
effort strategy. With collaborative scheduling, neighboring nodes schedule cells by ne-
gotiating or sharing dedicated information, e.g., via the 6P protocol or piggy-backing
on data- or routing-packets. This as opposed to autonomous scheduling, where each
node builds a schedule without any dedicated communication between neighbors or a
central entity, denoted as “pure” autonomous scheduling in [49]. Lastly, we capture the
crucial differences within the collaborative strategy by sub-dividing into three groups,
local, recursive and end-to-end. This grouping reflects the differences in how reservations
are made and the awareness of traffic requirements, as shown in Table 2. We distinguish
neighbor-to-neighbor schedulers (coined in 6TiSCH, see Section 4.2) which operate only on
local information such as queue sizes, from those aware of neighbors traffic requirements—
allowing for greater insight. We favor the term end-to-end as opposed to hop-by-hop in
6TiSCH, as it clearly conveys how the reservations are managed between two peers.

Scheduling

Centralized Decentralized

Autonomous Collaborative

Local Recursive End-to-end

Static Hybrid

Figure 5. Classification of scheduling strategies according to schedule generation.

https://scholar.google.com
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Table 2. Properties of collaborative strategies.

Collaborative Strategy Traffic Requirements Reservation Protocol End-to-End Aware 6TiSCH Notation Example

Local Local One-hop Neighbor-to-neighbor OTF

Recursive Multi-hop One-hop Neighbor-to-neighbor DeTAS, DeAMON

End-to-end Multi-hop Multi-hop X Hop-by-hop CFDS

Within the local group, schedules are based on local traffic requirements, and the
scheduling protocol only operates across one hop. Nodes evaluate only their own local
information such as queue size or cell utilization to decide the cell allocation. Consequently,
to meet traffic requirements end-to-end, the local approach relies on each node to react on
its queue length, cell utilization, etc.

Within the recursive group, the traffic requirements are known along a path, while
reservations are made on a one-hop basis. Signaling the requirements are either done
using a dedicated protocol or deduced from existing cell reservations. By combining this
information with knowledge of the traffic generated at the node, a scheduler can calculate
the accumulated requirements. This process operates recursively and depends on each
node fulfilling and forwarding the requirements to ensure sufficient resource allocation.

Within the end-to-end group, both requirements and reservations are made in an end-
to-end fashion. This is achieved by employing a multi-hop protocol such as the Resource
Reservation Protocol—Traffic Engineering (RSVP-TE) [50] to disperse information and
ensure end-to-end reservations. This also allows the originating node to be aware of the
success or failure of the reserved path.

5.3. Timeline

To show the evolution of TSCH schedulers, Figure 6 presents a timeline of the 76 dif-
ferent proposals reviewed in our survey. The bubble size indicates the number of citations—
intended to give an impression of the impact of each scheduler. Seminal contributions
become highlighted, such as TASA [51], DeTAS [52] and Orchestra [53], upon which many
other schedulers expand or compare themselves against. It is also worth noting more recent
proposals like LOST [54], DeAMON [55], ALICE [56], and MABO-TSCH [57] which have
already garnered attention. Other schedulers of interest include OTF [16], which served as
an early foundation for the 6TiSCH Minimal Scheduling Function (MSF). Surveying the
more recent years showed that advances are now happening in increasingly specialized
and smaller increments, such as the numerous enhancements to Orchestra. This as opposed
to the larger leaps seen in the earlier years of TSCH scheduling research.

In some cases, a scheduler is presented across multiple publications. This is often done
to expand the scheduler evaluation, e.g., adding testbed experiments as in DeTAS [58],
or to expand or enhance the scheduler as done by Hosni et al. [59,60].

After 2015 there has been a marked increase in new scheduler proposals, indicating
a growing interest in the area, as depicted in Figure 7. Contributions are concentrated
around centralized and collaborative approaches. However, recently, a slight decline in
centralized proposals has been observed. Autonomous and hybrid schedulers were first
proposed in 2015 and 2016, yet have lately gotten increased traction. Despite the limited
number of schedulers, there are notable proposals in the autonomous category, especially
Orchestra, as indicated in Figure 6. It should also be noted that four out of the ten hybrid
schedulers employ autonomous mechanisms—which will be discussed in Section 9.



Sensors 2022, 22, 15 10 of 34

2013 2014 2015 2016 2017 2018 2019 2020 2021

Portaluri et al.

MASTER

REA-6TiSCH

OA-TSCH

SSAP

LDSF

E-MSF

Khorov et al.

Brun-Laguna et al.

Local Voting

Layered

OST

TESLA

QSS

CLS Karaagac et al.*

AMUS MABO-TSCH

e-TSCH-Orch

PAAS

Fafoutis et al.

ALICE

BOOST

Phung et al.

Escalator

Orchestra

Elsts et al.

Devaja et al.

SPRF

Minet et al.

PRCOS

Chen et al.

EES/VAM

Ojo et al.

MODESA

Yang et al.

Wu et al.

Farias et al.

ADP

TASA-RTX

TASA*

Khoufi et al.

MILS

Concise

Dawn

Muraoka et al.

LLSF

CFDS

DiSCA

Wave*

Hosni et al.*

DeTAS*

Zhang et al.

PID-based

Instant

DIVVY

SIM

Kim et al.

SFSB

LaDiS

Yoo et al.

TREE

LOST

Fahs et al.

ASAPE-OTF

Stripe

ReSF

DeAMON

P-SBC

E-SF0

DeBraS*

SFloc

OTF

Collaborative Centralized Autonomous Hybrid

Figure 6. Timeline of schedulers. Size of bubble is relative to number of citations according to Google
Scholar. * indicate multiple publications for same scheduler—earliest publication date is shown.
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Figure 7. Cumulative distribution of schedulers per category.

Simulation is, and has always been, by far the most popular method for evaluat-
ing TSCH schedulers. Figure 8 depicts this trend. The most popular simulators include
COOJA [61], 6TiSCH simulator [62] and OpenSim [63]. Surprisingly, experimental evalua-
tion is still not commonplace, despite the increased availability of open testbeds such as
FlockLab 2 [64] and FIT IoT-Lab [65]. However, later years have seen increased employ-
ment, perhaps spurred by initiatives such as the recently established annual Workshop on
Benchmarking CPS and IoT [66], and related works towards a common framework [67]
and methodology [68]. Real-world or testbed experiments are typically the final steps
in evaluations due to their complexity and time-consuming setup. Thus the evaluation
method(s) usually indicate a scheduler’s maturity, e.g., the influential proposals Orchestra,
OTF, and DeTAS have all been evaluated in testbed setups. A survey on available testbeds
and simulators may be found in [69]. Analytical modeling is rarely used and typically
employed as a preliminary to, e.g., identify theoretical bounds.
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Figure 8. Cumulative distribution of schedulers per evaluation method.

The vast majority, 70 out of the 76 surveyed schedulers, target or evaluate a converge-
cast traffic pattern where all nodes transmit to one sink, typically located at or beyond the
network root. Convergecast mimics the classical monitoring application where a logger
or controller receives information from a range of sensors. Convergecast patterns yield a
funneling effect where traffic intensity increases close to the sink. Schedulers must adjust
for this, which may be challenging in, e.g., autonomous strategies where the uneven distri-
bution of resources is difficult to implement. As depicted in Figure 9a, only six schedulers
employ divergecast patterns in their evaluation. These include the autonomous sched-
ulers Orchestra and ALICE, which consider IoT-like applications such as request-response
transactions and firmware downloads. Thus there has been limited attention towards, e.g.,
sensor-to-actuator traffic patterns required in concepts such as Smart Manufacturing [70].
However, note that several collaborative and (especially) centralized schedulers have de-
signs that should enable them to support divergecast patterns, even though they have only
been evaluated for convergecast traffic.

Convergecast

Divergecast

Heterogeneous

Homogeneous

(a) (b)

Figure 9. Distribution of evaluated traffic scenarios in schedulers. Divided into patterns, i.e., where
traffic flows, and profiles, i.e., the intensity of each flow, as suggested by [69]. (a) Traffic patterns;
(b) Traffic profiles.

The traffic profiles, i.e., the intensity of traffic generated at each node, are heteroge-
neously distributed in 60 of the surveyed schedulers, as shown in Figure 9b. This matches
event-based applications where, e.g., alarms trigger sudden transmissions, or process
monitoring where traffic changes according to conditions in the process such as tempera-
tures, pressure, etc. A heterogeneous traffic profile is typically challenging for autonomous
and centralized schedulers where the schedule may need to be continuously adjusted to
accommodate the changing traffic and stay energy efficient. Homogeneous profiles, where
all nodes transmit with the same intensity, are usually simpler to meet. However, this
caters to a narrower range of applications, typically limited to monitoring.

5.4. Evaluation

In the following sections we go through each category successively, starting with
collaborative, autonomous, centralized, static, and lastly hybrid schedulers. For each
category we describe common properties, trends, and notable findings for the category
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as a whole. The schedulers are presented chronologically within each category, except
for schedulers that are related, e.g., one being an extension or depends on another; these
are addressed after each other chronologically. We apply a bottom-up approach where
the surveyed schedulers are analyzed by splitting them into components, i.e., the two
main decisions:

1. Cell amount: Number of cells to be scheduled
2. Cell selection: Which cells to select in the slotframe

Concerning collaborative schedulers, one or both of these tasks are solved in a col-
laborative fashion, while an autonomous scheduler always solves both autonomously.
With centralized schedulers, the tasks are typically handled simultaneously: A scheduling
algorithm is executed, and the output is a schedule with an appropriate placed cells. When
analyzing in this fashion, one will also notice that some proposals only address one of the
tasks, typically the cell selection, as in, e.g., DeBraS [71].

Further we evaluate each scheduler to identify design objectives according to the key
requirements identified in Section 2: Latency, reliability, fault tolerance, scalability, hetero-
geneous traffic, throughput, energy, and overhead. We employ a qualitative assessment
based on the claimed objectives, the evaluations conducted, and most importantly, we
investigate the mechanisms behind the proposed scheduler and to which objective they
contribute. These evaluations provide an overview of the research attention given toward
each requirement. The rationale behind our assessment is found in the description of each
scheduler. These descriptions are omitted here for brevity, yet the interested reader may
find them as supplementary material, see end section.

6. Collaborative Scheduling

A total of 35 collaborative schedulers were surveyed, making it the most popular
approach. Table 3 overviews all these broken down into their components. A significant
trend is the incremental improvement of existing work. One prominent example of this is
the On-the-Fly Bandwidth Reservation (OTF) [16]: It is an early TSCH scheduler, received
significant attention, and was selected by 6TiSCH as the foundation for its Scheduling
Function Zero (SF0) (which later became the Minimal Scheduling Function (MSF)). With
OTF being a fairly simple scheduler, there was room for different optimizations. This
can be seen in Table 3 by looking at the number of schedulers which employ OTF as a
component—expanding or enhancing its functionality. Not surprisingly, an overall trend is
observed where complexity increases as development progress.

Local collaborative scheduling is the most common with 23 out of the 35 surveyed,
as seen in the top section of Table 3. They are typically less complex than recursive and
end-to-end schedulers since traffic requirements are not transmitted but inferred from
local information such as queue size. Local collaboration may be advantageous in volatile
networks with shifting topology and traffic, and its simplicity may also be essential when
nodes have limited memory and computation capabilities. However, the convergence
suffer in some scenarios since cell allocations are updated re-actively as, e.g., queues are
filled. This as opposed to the proactive approach based on updated requirements, e.g., new
nodes added, or change in application requirements, which is the case with recursive and
end-to-end schedulers. Local collaborative schedulers may therefore be more suitable for
applications with less stringent requirements.

With recursive schedulers, the added signaling allows for a more accurate understand-
ing of traffic requirements than a local strategy. Especially in convergecast applications,
both local and recursive schedulers may yield similar schedules since local information
such as the queue at a node close to the sink also grows recursively. Yet the signaling of
actual requirements provides a more precise picture of needs and allows for proactively
adjusting allocations as requirements change. This does however come at the cost of
additional overhead and increased complexity. Recursive schedulers are thus typically
more complex than local schedulers, which may explain why most recursive proposals are
more recent and less numerous—11 out of the 35 surveyed.
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End-to-end schedulers are the most complex and introduce the most overhead among
collaborative schedulers. This must be taken into account if the topology or traffic is
volatile, with frequent schedule changes. They do however allow for the most accurate
allocations, making it suitable for scenarios with stringent requirements. The only found
scheduler is the Completely Fair Distributed Scheduler (CFDS) [72]—leaving much room
for research within this category.

When deciding which cells to allocate, a substantial portion of collaborative schedulers
randomly selects cells in the slotframe. This is especially true for earlier proposals such
as OTF. This simple strategy may yield sub-optimal performance for several metrics: For
example, LLSF [73] optimizes OTF for shorter latency by selecting cells sequentially to-
wards the sink. A random selection may yield collisions where the same cell is scheduled
by two nodes within interference-range. Such collisions are challenging if deterministic
performance is required, therefore housekeeping functions have been suggested. These
typically monitors each cell performance, and re-negotiate those performing poorly, see,
e.g., Muraoka et al. [74]. Later proposals employ more sophisticated collision avoidance
algorithms where nodes proactively avoid collisions. This is thus more common with re-
cursive schedulers, and it typically requires nodes to acquire additional information about
their neighborhood to avoid contended cells. One local example is DeBraS, where nodes
broadcast their schedules, while the recursive scheduler LOST [54] depend on nodes over-
hearing negotiations between other nodes. Knowledge of the neighborhood schedule may
also be exploited to sequentially place cells towards the sink for reduced latency, as seen in
recursive schedulers Wave and Kim et al. [75]. However, these improvements typically
come at the cost of overhead and increased complexity compared to local schedulers.

Several proposals also focus on performance improvements, and target only one
aspect of scheduling, predominantly the selection of cells. As earlier mentioned, extensions
to OTF are a classic example of this, but we also find, e.g., SFSB [76] and P-SBC [77] which
both do not treat how many cells to schedule.

Deciding the number of cells to allocate is typically done in a straightforward fashion,
i.e., simply reserving sufficient cells to meet the requirement indicated by various inputs.
The overview in Table 3, therefore, does not include a description of the algorithms. The
input to local schedulers is only local information such as queue size or cell utilization.
With the recursive group, traffic requirements and thus the need for cells are known
along a path. For both local and recursive schedulers, later proposals often include ETX
when deciding the number of cells to accommodate lossy links. This can be seen in,
e.g., ReSF [78] and DeAMON [55]. Some schedulers overprovision the number of cells
to accommodate varying traffic and link qualities. This trades reliability with latency
and energy as evaluated and addressed in [79,80]. Similar approaches are seen in, e.g.,
OTF which adds new cells proactively before bandwidth estimations require it. LDSF [81]
accommodates the worst-case and allocates cells to all possible retransmissions along a path.
Lastly, a few schedulers include more sophisticated algorithms, such as EMSF [82] which
predicts needs based on Poisson distributed traffic, Local Voting [83] aims for fairness in
the neighborhood, and the PID-based (Proportional, Integral, and Derivative) proposal by
Doming-Prieto et al. [84] rooted in control theory.

A novel approach is found in SSAP [85] where each node receives exactly one cell.
However, this cell is only activated at a slotframe-interval which matches the necessary
throughput and latency required by the application. This requires a slotframe length
significantly shorter than the expected traffic interval. A similar approach is found in ReSF
which allows nodes to specify how often the reserved cells need to be activated to reduce
idle listening.

Notably, 20 of the 35 surveyed collaborative schedulers employ a proprietary protocol
to disperse necessary information or implement its schedule. This trend might change
going forward as the 6P protocol matures. The Collaboration protocol column in Table 3
shows which protocol is utilized to build the schedule or exchange information between
collaborating nodes. This highlights those proposals using standardized solutions (typically
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the 6P protocol), and those requiring new protocols or extensions. All proposals utilize a
protocol to implement the schedule, e.g., through negotiation as with 6P. The Information
sub-column indicates if the protocol is also used to disperse information, such as traffic
requirements or schedule density, as in DeTAS [52] and E-SF0, respectively. This may
introduce a prolonged convergence period for these schedulers as new information must
be dispersed before the schedule is accurately updated.

As collaborative approaches rely on information exchanged between nodes, it is worth
noting that few schedulers consider the performance of the utilized protocol. Similar to
regular traffic, these exchanges are also prone to delays and failures which might impact a
scheduler’s performance [86]. Furthermore, the used protocol dictates the amount of over-
head introduced with every negotiation. An evaluation of the 6TiSCH 6P protocol can be
found in [87], where they identify 6P parameters such as timeout limits and retransmission-
and transmission opportunities for optimal performance in their grid scenarios.

In most schedulers, all nodes have the same role with regard to scheduling. The
Non-uniform column in Table 3 shows the 11 schedulers which require some nodes to take
on special roles, of which most are recursive. Such special roles are typically assigned
to the sink node, which becomes responsible of, e.g., initiate the scheduling, or collect
and disperse traffic requirements. In, e.g., Wave, scheduling is started at a leaf node to
ensure a daisy-chaining of cells towards the sink node to shorten latency. This allows
the collaborative scheduler to get a sense of global coordination typically reserved for
centralized schedulers. One might argue this makes these schedulers hybrid, yet since the
actual scheduling is done through negotiations between neighboring nodes, we classify
them as collaborative. Schedulers with non-uniform roles may also employ phases such
as in Stripe [88], where the schedule is built in a separate scheduling period before the
network is operational. This may negatively impact heterogeneous traffic support since
adapting the schedule requires executing a new scheduling period.

A part of the increasing scheduler complexity is handling the channel hopping list.
This is typically motivated by external interference from, e.g., co-located networks, causing
a subset of the channels to perform poorly. Three proposals incorporate such mechanisms,
as indicated in the Hop-list column. Implementations typically involve maintaining black-
lists, which identify poor-performing channels to be avoided, see, e.g., LOST and P-SBC.

The objectives of all collaborative schedulers is seen in Table 4. Most proposals target
deterministic latency, reliability, energy and heterogeneous traffic. This is expected since
the collaborative strategy allows nodes to negotiate for resources dynamically. Thus, when
required, nodes typically schedule additional cells to, e.g., accommodate a surge in traffic
or reduced link quality, or release cells to conserve energy when possible.

Of the least addressed objectives, we find fault tolerance, which few schedulers
address. One example is by Yoo et al. [89] which always schedules resources to multiple
alternative parents to improve fault tolerance and introduce load balancing. Another
approach is seen in Wave [90] which first evaluates any new links and triggers a re-
scheduling only if it causes collisions or if a new parent is selected.

Short latency is also often not targeted because it typically requires global coordination
to allocate cells in a daisy-chain manner from leaves to sink. One approach to solving this
is through non-uniform roles discussed earlier. As pointed out in Table 3, most recursive
schedulers have this property, where some nodes are responsible for, e.g., initiating or
coordinating the schedule generation., e.g., in DeAMON [55], the sink node transmits a
build-command to leaf nodes to initiate scheduling. With the process working upwards
from the leaves, it achieves daisy-chaining and thus shorter latency.
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Table 3. Components of collaborative TSCH schedulers.

Scheduler Strategy
Cell Selection Cell Amount Collaboration Protocol

Non-Uniform Hop-List
Algorithm Input Input Name Info.

OTF [16] Local Random Node schedule Cell utilization 6P
LLSF [73] Local Sequential Node schedule OTF 6P
Muraoka et al. [74] Local Random Node schedule, PDR OTF 6P
DeBraS [71] Local Collision avoidance Neighborhood schedule OTF 6P + own X
E-SF0 [91] Local Collision avoidance Neighbor schedule density OTF 6P + own X
Fahs et al. [92] Local Collision avoidance Neighborhood schedule OTF 6P
E-OTF [93] Local Random Node schedule OTF, ETX 6P
ASAP [94] Local Random Node schedule Fixed Own
TREE [95] Local Random Node schedule Queue, Cell utilization, ETX 6P
Doming-Prieto et al. [84] Local Random Node schedule Queue, cell utilization 6P
Zhang et al. [96] Local Random, blacklist Node schedule, RSSI meas. Queue, cell utilization Own
SFloc [97] Local Random or sequential Node schedule Queue, ETX 6P
Hosni et al. [59] Local Sequential, random Hop count SFloc 6P
P-SBC [77] Local Best channel PDR estimate N/A Own X X
Stripe [88] Local Sequential Node schedule Child count Own X
SFSB [76] Local Random, blacklist Node schedule, RSSI meas. Fixed 6P X X
Yoo et al. [89] Local Random Node schedule RX/TX statistics, ETX 6P + own X
Instant [98] Local Fixed Node requests Neighborhood mobility Own X X
EMSF [82] Local Random Node schedule Traffic 6P
SIM [99] Local Latin Rectangle Node schedule Traffic 6P
REA-6TiSCH [100] Local Opportunistic Node schedule, traffic type Packet characteristics Own X
Local Voting [83] Local Random Node schedule Neighborhood traffic 6P + own X
OA-TSCH [101] Local Collision avoidance Distributed channel Queue Own X X
DeTAS [52] Recursive Queue min., sequential Rank, parent Traffic requirement Own X X
Wave [90] Recursive Sequential, coll. avoid. Neighborhood schedule Traffic requirement Own X X
DiSCA [102] Recursive Sequential, coll. avoid. Neighborhood schedule Traffic requirement Own X X
DeAMON [55] Recursive Coll. avoid., sequential Neighborhood schedule Traffic req., ETX, rank 6P + own X X
ReSF [78] Recursive Coll. avoid., sequential Application, node schedule Traffic req., ETX, queue, path 6P + own X
LOST [54] Recursive Collision avoidance Neighborhood schedule Traffic req., PER Own X X
Kim et al. [75] Recursive Sequential Neighborhood schedule Traffic 6P X
DIVVY [103] Recursive Collection avoidance Neighborhood schedule Traffic, cell stats. Own X
LaDiS [104] Recursive Sequential Neighbor schedule Traffic requirement Own X X
SSAP [85] Recursive Collision avoidance Parent schedule Neighborhood sched., path delay Own X X
LDSF [81] Recursive Sequential, random Hop count Max. retransmissions, hop count 6P

CFDS [72] End-to-End Sequential, Random Rank, traffic, blacklist Traffic requirement RSVP-TE X
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Table 4. Evaluation of collaborative TSCH schedulers.
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OTF [16] X X X X X
LLSF [73] X X X X X X
Muraoka et al. [74] X X X X X X
DeBraS [71] X X X X X X
E-SF0 [91] X X X X X X
Fahs et al. [92] X X X X X X
E-OTF [93] X X X X X X
ASAP [94] X X
TREE [95] X X X X
PID-based [84] X X X X X
Zhang et al. [96] X X X X X
SFloc [97] X X X X X
Hosni et al. [59] X X X X X
P-SBC[77] X X X
Stripe [88] X X X
SFSB [76] X
Yoo et al. [89] X X
Instant [98] X X X X X
EMSF [82] X X X X
SIM [99] X X X X
REA-6TiSCH [100] X X X X
Local Voting [83] X X X X
OA-TSCH [101] X X X

DeTAS [52] X X X X X X
Wave [90] X X X X X X
DiSCA [102] X X X X X
DeAMON [55] X X X X X X X X X
ReSF [78] X X X X X X X
LOST [54] X X X X X X
Kim et al. [75] X X X X
DIVVY [103] X X X X X
LaDiS [104] X X X X X X
SSAP [85] X X X X
LDSF [81] X X X X X

CFDS [72] X X X X X

Similarly, schedulers seldom optimize for high throughput, and this typically requires
short slotframes such that cells repeat often. However, most collaborative approaches
avoid this because smaller slotframes increase the chance of scheduling collisions since
there is no global coordination. The few schedulers who address this utilize non-uniform
roles to achieve this. The common approach, e.g., in DeTAS [52], is for the sink node to
learn traffic requirements, calculate an optimal slotframe length, and lastly signal this to all
other nodes when initiating the scheduling process.

Lastly, scalability is rarely addressed directly. It is however crucial in collaborative
scheduling since nodes do not have a network-wide view, and interfering nodes may sched-
ule the same cells. This problem is exaggerated as the network scales and becomes denser.
Mechanisms to mitigate this typically involve nodes learning more about their neighbor-
hood and using this to implement more intelligent cell selection. Examples employing
this include the previously discussed DeBRAS and LOST, and E-SF0 [91] where neighbors
share the density of their schedule. A reactive approach is suggested in Muraoka et al. [74],
where a housekeeping mechanism aims to identify and re-schedule any colliding cells.
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Scalability also ties in with overhead minimization since the number of negotia-
tions needed may increase non-linearly as the network grows. This is especially true for
topologies with mobile nodes or varying traffic patterns, where a change may trigger
re-negotiations across the network. Most schedulers address this with mechanisms such as
overprovisioning and hysteresis, as in OTF, or the more sophisticated PID-based algorithm
mentioned earlier. The aim is to set the number of cells so that varying requirements do
not trigger re-scheduling, and not waste energy on idle listening.

7. Autonomous Scheduling

With autonomous scheduling, each node independently generates a schedule without
dedicated communication between neighbors or a central entity. It typically exploits
other existing sources of information to deduce which cells to utilize. These sources may
include node identifiers or addresses, cross-layer routing information such as depth in RPL
tree, or time. This eliminates overhead from the scheduling process as the information
utilized is already maintained by other network functions. Thus, no additional energy or
bandwidth is needed to build the schedule. In addition, autonomous setups should allow
for faster convergence in cases of node joining, faults, and similar—especially compared
to centralized approaches where a Path Computation Entity (PCE) must be involved.
Its simplicity also allows operators improved understanding of the network a priori, and
easier monitoring and debugging at run-time. Lastly, with little or no need for configuration,
an autonomous scheduling deployment may be more straightforward and require minimal
knowledge. This could open up the usage to a broader audience, where it was previously
considered too complex.

The major drawback of the current autonomous proposals is their inability to adapt to
changing conditions such as network size or heterogeneous traffic while fulfilling industrial
requirements for latency and reliability. Similarly, it is challenging to employ techniques
such as spatial reuse of cells or optimize for minimal slotframe size since this typically
requires collaboration.

Based on these properties, autonomous schedulers are typically favored in use-
cases without strict deterministic requirements. These include generic IoT, as seen with
Orchestra [53], or for bootstrapping or fallback from more optimized schedules, as seen in
6TiSCH Minimal Scheduling Function (MSF) [48].

Autonomous scheduling is a fairly recent topic with TSCH. However, similar tech-
niques have been utilized in earlier MAC proposals in, e.g., the Time Division Hashing
(TDH) (2005) [105] scheduling scheme and the Crankshaft MAC protocol (2007) [106].
As such, only seven TSCH autonomous schedulers are found. Orchestra [53] being the first,
it has garnered significant attention as was seen in the timeline in Figure 6. ALICE [56]
expands on Orchestra, improving especially its scalability.

Escalator [107] is a significant development that addressed some of the limitations
of Orchestra by including rank into the algorithm input. This allowed an autonomous
scheduler targeting deterministic and short latency by utilizing rank and source ID to
allocate dedicated cells sequentially at every hop towards the sink. Layered [108] continued
in the same fashion but introduced autonomous spatial reuse to reduce the channels
occupied by the scheduler—an objective seldom addressed. More recent approaches such
as BOOST [109] and Phung et al. [110] are opportunistic, relying on reducing contention
instead of elimination. Note Phung et al., which uses a novel trial-and-error scheme where
all nodes randomly try to transmit and receive packets during a learning phase to identify
appropriate cells to insert into the schedule. This might be viewed as a collaborative
approach, with the communication happening implicitly through successful and erroneous
transmission attempts.

Autonomous schedulers are inherently much simpler compared to the collaborative
strategy. This is reflected in Table 5, which overviews the components. Most schedulers use
a simple hash algorithm to decide which cells to select. The hash may yield a collision-free
schedule, however this typically requires the number of nodes to be less than the slotframe
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length. ALICE mitigates this problem by ensuring any collisions are not persistent: It adds
time as an input, represented by Absolute SlotFrame Number (ASFN) (A global counter
indicating the current slotframe since network deployment, defined as ASN (see Section 3)
divided by slotframe length), such that the hash-output and thus schedule is different for
every slotframe.

Table 5. Components of autonomous TSCH schedulers.

Scheduler
Cell Selection Cell Amount

Algorithm Input Input

Orchestra [53] Hash Node ID Fixed
ALICE [56] Hash Link node IDs, direction, time Fixed
Escalator [107] Sequential hash Node ID, Source ID, hop count Fixed
Elst et al. [111] Hash Node ID Queue, node ID, rank
Phung et al. [110] Trial-and-error N/A Trial-and-error
BOOST [109] Odd/even Rank Fixed
Layered [108] Layered hash Node ID, Source ID, hop count Fixed

Three out of the seven schedulers utilize a single node id when selecting cells. These
may be categorized as node-based schedulers, i.e., they assign cells to particular nodes.
On the contrary, ALICE is link-based since it employs node ids from both sides of a link
in addition to the traffic direction and thus assigns cells to particular links. They argue
this better matches the characteristics and needs of the network since, e.g., downward and
upward traffic receives separate resources. Lastly, Escalator and Layered may be denoted
as flow-based schedulers as they assign cells to particular flows. This opens unexplored
possibilities such as sharing flows between multiple nodes or differentiated scheduling by,
e.g., adding overprovisioning only to specific flows.

Most autonomous schedulers allocate a fixed amount of cells to each node or link.
They rely on overprovisioning to accommodate for heterogeneous traffic intensity and
tackle retransmissions. Elst. et al. [111] adds shared cells that are utilized opportunistically
based on queue size for this purpose. Similarly, Phung et al. propose nodes to employ
trial-and-error allocations for the number of required cells.

One of the key traits of autonomous schedulers is their lack of dedicated communi-
cation to build the schedule; hence it does not introduce any overhead. This is reflected
when evaluating the objectives in Table 6. One exception is Phung et al. which inevitably
introduce overhead during its learning phase. The lack of dedicated communication also
yields an inherent tolerance to faults, as there are no negotiations, recovery mechanisms, or
similar to be executed when the topology changes.

Table 6. Evaluation of autonomous TSCH schedulers.
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Orchestra [53] X X X
ALICE [56] X X X X
Escalator [107] X X X X X
Elsts et al. [111] X X X X X
Phung et al. [110] X X X
BOOST [109] X X X
Layered [108] X X X X
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Several objectives are however still largely untreated in the autonomous domain.
These include the ability to uphold requirements as the network scales, as discussed in
Section 2. Although autonomous schedulers do not introduce overhead, all current propos-
als either assume a fixed maximum number of nodes, or have performance issues as the
amount of nodes grows. Another crucial problem is the ability to handle heterogeneous and
changing traffic demands. This also makes the common convergecast scenario challenging
for autonomous schedulers since it creates a funneling effect where additional cells are
needed close to the sink. As discussed earlier, most proposals utilize a fixed amount of
cells, relying on overprovisioning or contended cells. Contention rules out the possibility
of achieving deterministic latency since the varying throughput make a pratical bound on
the latency unattainable. Escalator and Layered are the only schedulers that tackle this in a
deterministic fashion by allocating cells sequentially at each rank for every node—thus also
aiming at deterministic latency. Elst et al. and Phung et al. address this in opportunistically
by employing shared and contended cells. The remaining proposals use probabilistic
overprovisioning, as discussed earlier. The rigidity of autonomous schedules also impedes
energy efficiency since schedulers typically allocate a fixed number of cells regardless of
actually offered traffic. BOOST tries to overcome this by monitoring cell utilization and
periodically ignoring cells that have not seen traffic for a time. Lastly, Elst et al. aims to
improve throughput by allowing nodes to reuse cells that are known to be available in
their sub-tree. This technique relies on nodes learning about their tree through RPL.

Common solutions to the open challenges typically involve exchanging information
between nodes, which is not an option in an autonomous approach. Thus, if novel solutions
are not put forward, combinations with other strategies into hybrid schedulers might be
necessary. However, both algorithms and inputs were limited in variety, as highlighted in
Table 5. Indeed, the entire set of input includes only node id, source id, rank, time, direction
and queue size—leaving many facets unexplored. As a final point, it is worth noting
that most autonomous schedulers have been evaluated in a testbed or actual deployment.
This is contrary to other scheduling categories and might be explained by the proposals
being of newer date, with testbeds and equipment continuously maturing and becoming
more available. A survey on autonomous scheduling may be found in [49] (This includes
“non-pure” autonomous schedulers where information is exchanged in order to build the
schedule—categorized as collaborative or hybrid schedulers in our survey).

8. Centralized and Static Scheduling

In the centralized approach, a single Path Computation Element (PCE) running a
scheduling algorithm is typically employed to generate and distribute the schedule. Usu-
ally, the algorithms require detailed information from the network, including, e.g., node
capabilities, wireless link properties, routing- and physical topologies, etc. Using the
collected information, it is possible to create highly optimized schedules. However, fre-
quent changes in network properties, e.g., mobile nodes, changing radio environments or
altered application requirements, may be challenging to accommodate in a timely manner
without significant overhead [112,113]. This is especially true as the network scales and the
number of nodes to collect from and distribute information to increases. Thus, centralized
schedulers may be preferred when traffic, topology, and environment are less volatile such
that re-scheduling is rarely needed. In total, we surveyed 22 centralized schedulers, in
addition to two static schedulers, which will be treated at the end of this section.

The centralized strategy is utilized by existing industrial solutions such as, e.g., Wire-
lessHART [3] , implemented by its Network Manager. It also fits well into the Deterministic
Networking (DetNet) architecture [114]: Achieving the deterministic traffic flows envi-
sioned by DetNet requires a capability to reserve bandwidth, e.g., schedule cells, through-
out the network. This may be realized by a centralized TSCH scheduling approach, as
discussed in [115].

The common approach for centralized schedulers is to formalize the scheduling
problem, identify an optimal solution, and lastly apply this solution into a scheduler. With
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the problem typically being NP-hard, implementations are usually approximations, as seen
with ADP [116]. The solutions often involve an allocation algorithm rooted in graph theory
such as with TASA [51] and PRCOS [117], yet may be simpler heuristic algorithms such as
found in EES [118]. Of the 22 surveyed schedulers, TASA is especially notable since it has
had a significant influence on other centralized proposals, similar to the role of Orchestra
for autonomous and OTF for collaborative. Many succeeding schedulers employ TASAs
models or expand the scheduler itself, such as TASA-RTX [119] which extends TASA to
improve the handling of lossy links.

As mentioned, several algorithms stem from graph theory. See, e.g., coloring by TASA,
PRCOS and SPRF in Table 7 which shows all algorithms and their input. A novel approach
can be found in CONCISE [120] where multiple functions such as routing, in-network
processing, aggregation, etc., is treated alongside the schedule in a cross-layer approach.
With centralized scheduling being a fairly mature category, a range of eight different
algorithm inputs have already been proposed. Almost all schedulers require topology
knowledge, and 12 out of the 22 surveyed schedulers require knowledge of the physical
topology, i.e., all neighbors known to a node. This is typically utilized to avoid interference
and allow for spatial reuse where multiple nodes use the same cell. A novel approach is
proposed by Ojo et al. in [118] and EES, which combine knowledge of physical distance
with an interference model to deduce collision-domains.

Most schedulers limit their input to topology information and offered traffic. This may
be impeding in real deployments since several other factors may impact the network oper-
ation. Examples include link quality, node energy, queue size, and link utilization, which
may change during network operating. Only nine schedulers augment their algorithm
with such inputs.

This is contrary to the trend found in collaborative schedulers which increasingly
utilized, e.g., estimated transmissions attempts (ETX) to improve reliability. The effect
of this is seen in Table 8: Whereas centralized schedulers typically address latency, few
proposals focus on the key industrial requirement of reliability by taking, e.g., link quality
and queue sizes into account. Lacking knowledge of such properties may be an issue when
schedulers are utilized in real-world scenarios. An illustrative example is found in EES,
which optimizes the schedule for energy efficiency and network lifetime, yet does not
consider the energy available at each node.

Note however that such considerations may be difficult to realize in a centralized
scheduler, as it typically would require frequent exchanges of, e.g., link statistics and
schedule updates between nodes and a central entity. This could lead to an unacceptable
overhead, as well as it would be challenging to ensure the schedule adapts quickly enough
to maintain the required latency and reliability. Examples of approaches in this direction
include TASA-RTX which employs link quality to support retransmission capabilities, and
PRCOS which utilize node energy when optimizing the schedule for network lifetime.

The issues of scalability and overhead, especially in dynamic scenarios, are typically
not addressed in centralized scheduling, as seen in Table 8. One recent proposal has
focused on this: By adding shared overprovisioned cells assigned to particular flows,
MASTER [121] allows the schedule to adapt to fluctuations in ETX across multiple links
without re-scheduling. Furthermore, as discussed in the next section, hybrid schedulers
such as CLS [122] and QSS [123] show how a combination of strategies may be employed
to mitigate this issue. Similarly, fault tolerance is typically not addressed or mentioned in
proposals. It is thus clear that most centralized schedulers require a costly re-scheduling
process in cases of faults. Notable exceptions include Wu et al. in [124] which proactively
schedule alternate links. Centralized schedulers may therefore be more suitable when
topology and links are stable and less numerous.
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Table 7. Components of centralized TSCH schedulers.
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TASA [51] Coloring & matching X X X
TASA-RTX [119] Coloring & matching, Inverse Greedy X X X X
Farias et al. [125] Queue-based X X
MODESA [126] Greedy MODESA X X X
Wu et al. [124] Margin slots X X X
Yang et al. [127] SSA, FSC, free node X
Dawn [128] Not specified X
Chen et al. [129] LSS & LPS X X
Ojo et al. [130] Hungarian X X X
EES & V-H. [118] Greedy, VAM X X X
ADP [116] Approximate Dynamic Programming X X X
Khoufi et al. [131] Debt-based X X
PRCOS [117] Coloring & pruning, Cross-layer X X
MILS [132] Constrained Satisfaction Problem X
Minet et al. [133] Debt-based X X
CONCISE [120] Cross-layer X X
Devaja et al. [134] Message-passing max-product belief prop. X X X
SPRF [135] Coloring & matching, blossom & heuristic X X X
Khorov et al. [136] Retry & shared cell optimization X X
Brun-Laguna et al. [137] Load-based X X X
MASTER [121] Flow-based TX & Reverse Longest Path First X X X
Portaluri et al. [138] Shell-game-based X

Heterogeneous traffic is typically addressed since most centralized schedulers take
the offered traffic or similar information from each individual node as input when building
the schedule. However, similar to when faults occur, any changes while the network
operates may require significant overhead to accommodate. A few schedulers such as
Chen et al. [129] and PRCOS [117] strictly assume homogeneous traffic intensity and does
not utilize information on offered traffic, queue size, or similar. Thus, support for hetero-
geneous traffic is not aimed for, as indicated in Table 8. SPRF [135] is the only centralized
scheduler that directly addresses a divergecast traffic scenario. This might be surprising
but follows the trends seen in the other surveyed categories where convergecast domi-
nates. However, based on the algorithms utilized, most proposals should also be able to
accommodate divergecast traffic.

With regards to throughput, we saw in Table 7 how most centralized schedulers are
aware of the physical topology in the network. This may be used to incorporate spatial
reuse in the slotframes, thus reducing the slotframe length and improving throughput.
However, experimental evaluation is needed to ensure models and assumptions for the
interference range hold in real-world scenarios.
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Table 8. Evaluation of centralized and static (bottom) schedulers.

Scheduler

Objectives

D
et

.L
at

en
cy

Sh
or

tL
at

en
cy

R
el

ia
bi

li
ty

Fa
ul

tT
ol

er
an

ce

Sc
al

ab
il

it
y

H
et

er
o.

Tr
af

fic

H
ig

h
T

hr
ou

gh
pu

t

En
er

gy

O
ve

rh
ea

d
m

in
.

TASA [51] X X X X
TASA-RTX [119] X X X X X
Farias et al. [125] X X
MODESA [126] X X X X
Wu et al. [124] X X
Yang et al. [127] X X X X
Dawn [128] X X
Chen et al. [129] X X X
Ojo et al. [130] X X X
EES & VAM-HSA [118] X X X
ADP [116] X X X X X
Khoufi et al. [131] X X X X
PRCOS [117] X X X
MILS [132] X X
Minet et al. [133] X X X X X
CONCISE [120] X X X X
Devaja et al. [134] X X X X
SPRF [135] X X X X
Khorov et al. [136] X X X X
Brun-Laguna et al. [137] X X X X
MASTER [121] X X X X X
Portaluri et al. [138] X X

Park et al. [139] X X X X X
Khorov et al. [136] X

Lastly, it should be noted that several centralized proposals make assumptions such
as, e.g., perfect links in MODESA and data aggregation in [129] by Chen et al. Such
assumptions are unrealistic for actual deployments. Corroborating this, only three of the
surveyed schedulers were evaluated in a testbed or actual deployment. This is somewhat
surprising, given the utilization of centralized schedulers in tightly related technologies
such as WirelessHART.

Only two static schedulers were identified, which may not be surprising given the
strategy’s simplicity and limitations. With static scheduling, a fixed schedule is shared
among all nodes either before deployment or learned at the first association. It is typically
envisioned for bootstrapping the network, association of new nodes, or as a fallback in case
of failures. For example, a static schedule is specified by IETF in the “Minimal 6TiSCH con-
figuration” [47], consisting of a slotframe with one shared broadcast cell. Park et al. [139]
propose a static scheduler for a smart metering application where a large number of de-
vices periodically report data. The suggested static schedule is similar to a slotted ALOHA
approach where reliability and latency objectives are met through significant overprovi-
sioning, which is traded for increased energy consumption. Khorov et al. [136] focus on
how to a priori identify an optimal amount of shared cells in a slotframe—similar to work
done by Elst et al. [111] in an autonomous setting.

9. Hybrid Scheduling

Hybrid scheduling combines multiple strategies, trying to leverage the benefits of
each approach while mitigating the drawbacks. Most hybrid proposals take existing
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schemes and address deficiencies by employing a second strategy of scheduling. Several
examples include the autonomous scheduler Orchestra, which is expanded with several
new mechanisms producing multiple hybrid schedulers. For proposals based upon a
centralized component, most opt to take a minor part of the scheduling task and solve
collaboratively to improve some properties. The ten surveyed hybrid schedulers can be
seen in Table 9, which shows the strategies employed to address each component. As
indicated in the table, the schedulers can be divided into two groups according to the
strategies they expand upon.

First there are schedulers who in varying degrees expand on a static or autonomous
foundation by adding a collaborative mechanism. This is typically to alleviate some of the
inherent drawbacks of a particular scheduler or strategy. Examples include PAAS [140]
and e-TSCH-Orch [141], both targeting the lack of support for heterogeneous traffic in
autonomous scheduling. They address this by expanding Orchestra with collaborative
mechanisms which allow nodes to exchange scheduling adjustments as traffic intensity
changes. This will however negate some of the benefits of autonomous scheduling such as
minimal overhead and fault tolerance. Fafoutis et al. [142] is the only hybrid scheduler that
includes a static strategy. They aim to improve the energy-efficiency in an overprovisioned
static schedule by having nodes exchange information on how many of the overprovisioned
cells they intend to use.

Table 10 shows the components of the first group of schedulers. The table follows the
format of the collaborative schedulers (Table 3) as it provides the most valuable insight.
Except for PAAS, the collaborative contribution is limited to the number of cells to be
utilized., e.g., with e-TSCH-Orch, nodes transmit the additional cells needed, based on
current queue size, at the end of each packet. PAAS adjusts the level of contention among
child nodes by schedule instructions added to RPL packets.

Note that none of the schedulers utilize the standard 6P protocol to schedule cells. This
may be explained by the limited functionality required: Typically, nodes only exchange
a single number such as the cells required, as by Fafoutis et al. and e-TSCH-Orch. The
inclusion of a protocol such as 6P might therefore introduce unnecessary overhead that
could indicate the need for a more lightweight protocol when simplistic collaboration is
required. It may also be noted that all schedulers employ local collaborative mechanisms
(as opposed to recursive or end-to-end), i.e., they employ only local information such as
queue sizes or traffic load instead of exchanging requirements. More complex collaboration
may be an area for future research.

The second group consists of schedulers who expand on centralized schemes, again
to improve some inherent disadvantages such as overhead and scalability. In all surveyed
schedulers, this involves adding a collaborative mechanism, as illustrated in Table 9. Fur-
ther details can be seen in Table 11 which shows the components of each scheduler. The
collaborative expansions are typically limited, as indicated in the final column. MABO-
TSCH [57] adds a collaborative mechanism to modify the channel hop-list for improved
reliability, while the remaining functionality is handled in a centralized fashion (it should
be noted that this is one of the few schedulers which optimize the hop-list, as discussed in
Section 6) AMUS [143] adds the exchange of a simple end-of-queue signal so that remaining
cells in the current slotframe will not incur idle listening. CLS [122] and QSS [123] allows
deallocations to be conducted in a collaborative fashion for reduced signaling. Lastly,
Kaaragac et al. [113] employ a different approach, by envisioning critical traffic to be cen-
trally scheduled, while other traffic classes are handled collaboratively via OTF [16]. It may
be argued this is not a hybrid scheduler but rather two schedulers operating simultaneously.
Such approaches may however be an interesting area for future research, and are discussed
later. Furthermore, almost all hybrid proposals focus on cell deallocation in a decentralized
fashion. This leaves an open area of handling allocation through decentralized means.
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Table 9. Overview of components in hybrid TSCH schedulers.

Scheduler Cell Selection Cell Amount Hop-List

Fafoutis et al. [142] Static Collaborative
PAAS [140] Collaborative Autonomous
e-TSCH-Orch [141] Autonomous Collaborative
TESLA [144] Autonomous Collaborative
OST [145] Autonomous Autonomous & Collaborative

MABO-TSCH [57] Centralized Centralized Collaborative
AMUS [143] Centralized Centralized & Collaborative
Karaagac et al. [113] Centralized & Collaborative Centralized & Collaborative
CLS [122] Centralized Centralized & Collaborative
QSS [123] Centralized Centralized & Collaborative

Table 10. Components of decentralized hybrid TSCH schedulers.

Scheduler
Cell Selection Cell Amount

Algorithm Input Input

Fafoutis et al. Static N/A Queue, cell utilization
PAAS Collision optimization Neighborhood Fixed (varying contention)
e-TSCH-Orch Autonomous Node ID Queue
TESLA Autonomous Node ID Traffic
OST Autonomous Node ID Traffic

Table 11. Components of centralized-based hybrid TSCH schedulers.
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MABO-TSCH Greedy degree-ordering X Hop-list
AMUS Scheduling Sequence Matrix X X X Temporary dealloc.
Karaagac et al. Not specified X X X Application depend.
CLS Greedy CLS X Deallocation
QSS Greedy CLS, QSS optimization X Deallocation

As mentioned, the motivation behind hybrid schedulers is often to address a limitation
or drawback of existing schedulers or strategies. This is true for, e.g., PAAS, e-TSCH-Orch
and TESLA which inherit the objectives of Orchestra, yet enhance it by adding support for
heterogeneous traffic. Table 12 shows the objectives targeted by all the hybrid schedulers.
The trade-off is typically a minor increase in overhead and complexity. Similarly, Fafoutis
et al. add the same feature to a static scheduler. In the second group of centralized-
based schedulers, drawbacks of the strategy are typically addressed. AMUS addresses
the possible energy inefficiency of centralized schedules which may be sub-optimal in,
e.g., periods with less traffic than expected. Similarly, the collaborative cell deallocation in
CLS and QSS is intended to mitigate the overhead issue in centralized scheduling by not
requiring a new schedule to be calculated and distributed when cells are no longer needed.
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Table 12. Evaluation of hybrid schedulers.
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Fafoutis et al. [142] X X X X X
PAAS [140] X X X X X
e-TSCH-Orch [141] X X X X
TESLA [144] X X X X
OST [145] X X X X X X

MABO-TSCH [57] X
AMUS [143] X X X X X
Karaagac et al. [113] X X X X X X X
CLS [122] X X X X X X X
QSS [123] X X X X X X X X

With only ten hybrid proposals identified, there are still many unexplored facets.
In addition to those mentioned above, the combination of autonomous and centralized
scheduling is still untreated. Similarly, more extensive inclusions of other strategies in
centralized schedulers may be explored. Further perspectives on hybrid scheduling may
be found in Karaagac et al. [113] which discuss several hybrid strategies not implemented
by schedulers in our survey. These include having different traffic classes be scheduled by
different means: Critical traffic could follow an optimized centrally generated schedule,
while regular traffic follows a decentralized schedule. Similarly, one could differentiate be-
tween roles in a topology: Backbone nodes could follow a more rigid centralized schedule,
and leaf nodes a dynamic decentralized one. A similar concept is discussed in [115], where
a central scheduler provides an overall global perspective and a distributed part handle
local real-time variations.

10. Future Research Areas and Current Challenges

Through our work with the survey, and by comparing the requirements described
in Section 2 with our findings in the previous sections we have identified the following
challenges and future research areas.

From Tables 6 and 12 we see that the autonomous and hybrid areas have seen few
published works, leaving many facets unexplored: Autonomous approaches have appeal-
ing properties for industrial setting in terms of fault tolerance and zero overhead. However,
they have unresolved challenges, e.g., for heterogeneous applications where the traffic is
dynamic, or accommodating retransmissions. This also impacts energy efficiency, as the
same number of cells is typically allocated regardless of traffic requirement. Flow-based
autonomous scheduling contains some uncharted options as exemplified in Section 7 which
may be interesting, e.g., in networks with many nodes and few flows, or in combination
with flow-concepts from DetNet.

The benefits of hybrid solutions, as well as different combinations of centralized and
collaborative schedulers, were surveyed in [113]—with promising results. Yet other unex-
plored combinations might also prove fruitful, e.g., employing autonomous approaches
or partly dividing scheduling mechanisms—as discussed in Section 9. A final related
point: The decentralized strategy of end-to-end scheduling, where a reservation is handled
end-to-end, has received limited attention, yet seems to have promising properties when
determinism is required. The only found contribution is CFDS, which utilizes the existing
RSVP protocol—leaving room for further research into end-to-end scheduling and its
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reservation protocols. This may be particularly relevant when considering the DetNet
concepts regarding flows.

Few collaborative and centralized schedulers address the issue of node or link faults,
as was seen in Tables 4 and 8. Such faults may lead to violations of requirements such as
reliability or latency if not handled properly. Autonomous scheduling is an interesting
field in this regard, as it has inherent handling of faults by not requiring any dedicated
communication to create a new link. As mentioned above, a hybrid approach containing
an autonomous part may be interesting.

Surprisingly, most centralized schedulers assume perfect links, they do not consider
retransmissions, or they fail to offer any mechanism adapting to changing link characteris-
tics. Such assumptions are typically not realistic: As discussed in Section 3, the industrial
wireless environment is prone to varying channel quality, and mechanisms to assure relia-
bility and other requirements during fading events seem to be necessary. For collaborative
schedulers, this is often tackled by, e.g., taking link ETX into account, applying overprovi-
sioning, utilizing housekeeping mechanisms to avoid poor performing cells, etc. Yet results
show reliability may still suffer due to, e.g., scheduling collisions, especially when density
increases—as illustrated in DeBraS.

Scalability has been given limited attention in publications, yet it is a crucial require-
ment for the Industrial Internet of Things. Especially centralized schedulers may suffer
significant overhead in large networks and when frequent re-scheduling is needed. Only
MASTER was found to address this directly by overprovisioning shared cells. Interesting
contributions regarding scalability were found in hybrid solutions, detailed in Table 7,
where centralized schedulers are supplemented with decentralized features: Both CSS and
QSS reduce the necessary signaling by employing a decentralized deallocation mechanism.
An investigation into the distribution of centrally calculated schedules in 6TiSCH has been
conducted in [146]. It suggests several changes to the standard protocols which may signif-
icantly increase the efficiency of transmitting schedules from a PCE to nodes—indicating
more research is needed on the topic. Similarly for collaborative schedulers, the overhead
associated with the collaborative protocol itself is often not considered.

The 6P protocol is enjoying wide popularity, as highlighted in Table 3, however,
experimental evaluations have shown transaction failures may be significant and should
be taken into account when designing schedulers [86]. Further investigations into the
properties of 6P may thus be prudent. Lastly, it is not uncommon for schedulers to distribute
information by piggy-backing on RPL-, 802.15.4-, or application-packets. An increased
understanding is needed of these different options, and if a dedicated protocol could
be beneficial.

Few proposals directly address the issue of band occupancy, i.e., channels potentially
utilized. Although optimizing for minimal overhead is common, the number of channels
employed is often overlooked, especially in decentralized solutions. By leaving channels
unused, it eases interoperability with co-existing deployments and allows for improved
reliability through blacklisting techniques, e.g., with the Escalator autonomous scheduler,
all 16 channels in the 802.15.4 2.4 GHz band are required in its full configuration—an issue
addressed by the Layered scheduler. Similarly, all the surveyed schedulers assume fixed
size timeslots in one band, typically 2.4 GHz. Recent work has challenged this assumption
by exploring multi-PHY approaches [147,148] and heterogeneous timeslot duration [149].

The majority of work on TSCH is focused on convergecast, i.e., many devices deliv-
ering data to one sink. Clearly, this is the dominant application scenario as seen from
the research community. However, new concepts such as Industry 4.0 typically demand
different communication patterns: Node-to-node divergecast traffic allows, e.g., a product
on the conveyor to directly communicate with the relevant robot. Similarly, multicast traffic
allows data to be dispersed across a network, e.g., in a monitoring solution with multiple
interested entities. Lastly, scenarios where convergecast applications are terminated at two
or more sinks, may be relevant, e.g., for applications where reliability is especially critical.
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Furthermore, Industry 4.0 concepts may require more dynamic topology and traffic
requirements: As in the manufacturing example with products on a conveyor, the network
would need to continuously adapt to nodes moving in the topology. In addition, the traffic
load and destinations would be highly dynamic as dictated by the industrial process. As
discussed, such requirements might be challenging to achieve with a centralized schedul-
ing approach. However, few proposals have evaluated such applications. Autonomous
approaches might be suitable in dynamic topologies, as they don’t introduce any overhead
when changing parent—however, their challenges to support heterogeneous traffic has
been discussed earlier.

As highlighted throughout Section 2, security is especially crucial in industrial appli-
cations. Proposals for schedulers typically do not address security, yet there exist relevant
issues such as the security of the signaling, e.g., spoofing of 6P packets. 6TiSCH addresses
some of these issues, such as authenticating nodes before they are allowed to join a net-
work. Mitigation against jamming might also be crucial—an adversary able to deduce
the schedule could, with high efficiency, jam a network. Such attacks may have severe
consequences, especially if they could target specific key timeslots, e.g., those used for
802.15.4 beacons or routing maintenance.

All schedulers will incur overhead for implementing, deploying and maintaining a
schedule. In addition, there may also be overhead associated with maintaining state and
capturing changes in context and environment. For several of the proposals this seems
not to have been investigated. Centralized schedulers need a reliable PCE. In a changing
environment, the PCE must also collect information and deploy new schedules. All add
overhead and risk that the schedule is out of tune with the changes in the environment.
Decentralized schedulers do not require any infrastructure, yet several proposals such as,
e.g., OTF, require operators to tune parameters according to the needs of each deployment.
The workload required to identify the parameters, and how frequent adjustments are
needed, has not been investigated. As discussed in Section 7, the simplicity of autonomous
approaches typically poses fewer requirements on the operators, but often with a cost of
sub-optimal schedules in terms of, e.g., energy, throughput and band occupancy.

Reproducing and comparing experimental evaluations of schedulers are inherently
challenging. Our literature surveying has shown that publications often provide minimal
description of the setup, utilize custom testbeds or simulators, and keep implementations
closed-source. Furthermore, most evaluations use different settings for traffic patterns,
duration, RPL configuration and convergence, software versions, and so on—making
comparison inherently difficult. This challenge has been recognized in the community,
spurring initiatives such as the IoT Benchmarking consortium (https://iotbench.ethz.
ch/ (accessed on 12 December 2021)), OpenBenchmark [150], and others discussed in
Section 5.3—yet several tasks remain unresolved.

As argued in [151], a proper understanding of a scheduler requires experiments
conducted in testbeds or real-world deployments. Simulators may introduce unrealistic
assumptions or oversimplified models, leading to inaccurate results. As discussed in
Section 5.3, we found experiments are not uncommon, yet simulation is by far most
common tool for evaluation, typically without any other supplement.

11. Conclusions

This paper surveys the state of the art of TSCH scheduling targeting the industrial
domain, with a total of 76 TSCH schedulers identified, analyzed and evaluated. Each
scheduler is categorized according to the generation of the schedule: Collaborative, Au-
tonomous, Centralized, Hybrid, or Static. To gather insight, schedulers are broken down
into their components, and their objectives are qualitatively evaluated. The analysis of each
scheduler is omitted for brevity and provided as supplementary material.

Collaborative schedulers are divided into local, recursive, and end-to-end according
to how requirements and negotiations are dispersed and conducted. This highlights
properties such as the simplicity of local collaborative schedulers making them suitable

https://iotbench.ethz.ch/
https://iotbench.ethz.ch/
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for volatile networks with shifting topology and traffic. Similarly, an end-to-end approach
may provide more optimized schedules, yet with only one proposal thus far, more research
is needed. Analyzing autonomous schedulers we find they are primarily driven by seminal
contributions such as Orchestra, upon which several other proposals are expanding. Crucial
properties identified in autonomous scheduling include inherent tackling of faults, in which
new links may be added without any overhead at the MAC layer. This is particularly
interesting, as other categories of schedulers seldom address fault tolerance. Centralized
scheduling is a long-standing and widespread approach, yet unrealistic assumptions such
as perfect links are often assumed. Discussions also include the overhead associated with
centralized schedulers and their suitability in more stable networks. The few proposals
addressing this key issue are highlighted, yet we find this is often tackled by employing
collaborative mechanisms—yielding a hybrid scheduler. This trend is also identified with
autonomous scheduling, in which shortcomings such as support for heterogeneous traffic
are achieved by adding collaborative mechanisms.

A holistic view of the entire research area reveals trends such as the fairly recent
introduction and traction of autonomous and hybrid schedulers, the slow adaption of
testbed evaluations, and the lack of attention towards traffic patterns beside convergecast.
Seminal contributions are identified, such as TASA, DeTAS, OTF, and Orchestra, as well as
notable recent proposals such as ALICE, TESLA, and OST.

Lastly, areas of future research and challenges in existing work are identified. Exam-
ples of this include further exploration of autonomous, hybrid and end-to-end collaborative
approaches, which have received limited attention. Similarly, objectives such as fault tol-
erance, scalability and band occupancy are rarely addressed. Key challenges include
the evaluation of schedulers, where reproducible evaluations and testbed experiments
are lacking.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s22010015/s1, Description and evaluation of the 76 surveyed TSCH schedulers.
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