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Abstract: In the presence of unknown array errors, sparse recovery based space-time adaptive pro-
cessing (SR-STAP) methods usually directly use the ideal spatial steering vectors without array errors
to construct the space-time dictionary; thus, the steering vector mismatch between the dictionary and
clutter data will cause a severe performance degradation of SR-STAP methods. To solve this problem,
in this paper, we propose a two-stage SR-STAP method for suppressing nonhomogeneous clutter
in the presence of arbitrary array errors. In the first stage, utilizing the spatial-temporal coupling
property of the ground clutter, a set of spatial steering vectors with array errors are well estimated by
fine Doppler localization. In the second stage, firstly, in order to solve the model mismatch problem
caused by array errors, we directly use these spatial steering vectors obtained in the first stage to
construct the space-time dictionary, and then, the constructed dictionary and multiple measurement
vectors sparse Bayesian learning (MSBL) algorithm are combined for space-time adaptive processing
(STAP). The proposed SR-STAP method can exhibit superior clutter suppression performance and
target detection performance in the presence of arbitrary array errors. Simulation results validate the
effectiveness of the proposed method.

Keywords: airborne radar; arbitrary array error; clutter suppression; space-time adaptive processing;
sparse Bayesian learning

1. Introduction

Space-time adaptive processing (STAP) [1–8] is an effective approach for ground
clutter suppression and low-velocity target detection in airborne radars. The performance
of STAP mainly depends on the estimation accuracy of the clutter plus noise covariance
matrix (CCM) of the cell under test (CUT). Generally, the independent and identically
distributed (IID) target-free training samples adjacent to the CUT are used to estimate
the CCM. According to the Reed–Mallett–Brennan (RMB) rule [9], to achieve an output
signal-to-clutter-plus-noise ratio (SCNR) loss within 3 dB, the number of used IID training
samples must be greater than twice the system degrees of freedom (DOFs). However, this
requirement is hard to be satisfied in the practical heterogeneous and non-stationary clutter
environment, thereby resulting in a severe performance degradation of the STAP algorithms.

Several low-sample methods have been developed to relieve the performance degra-
dation caused by limited training data, such as reduced-dimension (RD) [10–16] algorithms,
reduced-rank (RR) [17–21] algorithms, parametric adaptive matched filter (PAMF) algo-
rithms [22,23], direct data domain (D3) [24,25] algorithms and knowledge-aided (KA)
algorithms [26–30]. Although these algorithms can reduce the number of required training
samples, they suffer from some drawbacks. The requirement of RR and RD algorithms is
still hard to be satisfied, especially for large scale systems, the order for PAMF algorithms
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is hard to be determined, the system DOFs are significantly reduced for D3 algorithms and
the exact prior knowledge of the environment is hard to obtain for KA algorithms.

Recently, with the development of sparse recovery (SR) techniques, sparse recov-
ery based space-time adaptive processing (SR-STAP) methods have been extensively re-
searched [31–39]. By utilizing the intrinsic sparsity of the clutter in angle-Doppler plane,
SR-STAP recovers a signal with a sparse coefficient vector and a uniformly discretized
space-time dictionary. Compared with the traditional STAP methods, SR-STAP can exhibit
better clutter suppression performance in a very small training samples support. However,
unfortunately, most SR algorithms, such as the iterative splitting and thresholding (IST)
algorithm [40] and homotopy algorithm [41], need the fine tuning of one or more user pa-
rameters which affect the recovery results significantly. Sparse Bayesian learning (SBL) was
proposed by Tipping and has been introduced to sparse signal recovery by Wipf for the sin-
gle measurement vector (SMV) case and multiple measurement vector (MMV) case [42–44].
Different with the general SR algorithms, SBL is parameter-independent, which can guar-
antee the robustness of the algorithm in changing environment. Moreover, SBL can get
favorable performance when the dictionary is highly coherent and its global minimum is
always the sparsest solution. Thus, for its robustness and excellent performance, sparse
Bayesian learning based space-time adaptive processing (SBL-STAP) [45,46] has received
much attention.

However, SR-STAP methods rely on the accuracy of the sparse model and suffer
performance degradation due to the model mismatch caused by array errors. Thus, several
SR-STAP methods which can handle unknown array errors are developed. A sparsity-based
STAP method considering array gain/phase error (AGPE-STAP) is proposed in [47], which
combines a conventional sparsity-based STAP method and a conventional array gain/phase
error calibration method. A sparsity-based STAP method with array gain/phase (GP)
error self-calibration has been developed in [48], which iteratively solves an SR problem
and an LS calibration problem. In [49], utilizing the specific structure of the mutual
coupling matrix, a mutual coupling calibration method is developed for SBL-STAP by
rearranging the received snapshots with the designed spatial-temporal selection matrix.
In [50], under the framework of the alternating direction method (ADM), a constraint
is added to the array GP errors, and the conventional sparsity-based STAP problem is
transformed into a joint optimization problem of the angle-Doppler profile and the array
GP errors. However, these SR-STAP methods are based on model errors and are only
suitable for gain/phase calibration or mutual coupling calibration, in practice, various
array errors often work together and some errors are difficult to model, in that case, these
methods are no longer effective. Thus, an SR-STAP method which can handle the arbitrary
array errors is urgently needed.

In this paper, we propose a two-stage SR-STAP method for suppressing nonhomo-
geneous clutter in the presence of arbitrary array errors. In our two-stage SR-STAP method,
the radar operates in two modes. In the first stage, radar operates in measurement mode,
this mode needs a long coherent processing interval (CPI) to ensure sufficient Doppler
resolution. Then, utilizing the spatial-temporal coupling property of the ground clutter, a set
of spatial steering vectors with array errors are well estimated by fine Doppler localization.
In the second stage, radar operates in STAP mode, in order to solve the model mismatch
problem caused by array errors, we directly use these spatial steering vectors obtained in
the first stage to construct the space-time dictionary, and then, the constructed dictionary
and MSBL algorithm are combined for STAP. The main contributions of this paper are
summarized as follows.

(1) A new two-stage SR-STAP method is proposed, in the presence of arbitrary array
errors, the proposed two-stage SR-STAP method can obtain superior clutter suppression
performance and target detection performance with limited training samples.

(2) Steering vector estimation for arbitrary array errors is developed, which is based
on the spatial-temporal coupling property of the ground clutter. Relative to many existing
array calibration methods which are only suitable for individual perturbation, the devel-
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oped method can handle arbitrary array errors. Since it is free of the array model and based
on clutter data, the developed method also avoids the model mismatch problem and has
adaptability to the changing scenes.

(3) The developed method for estimating steering vectors is still effective when intrinsic
clutter motion (ICM) is present, spatial steering vectors with array errors can also be well
estimated when the pulse-to-pulse fluctuations are small.

The rest of the paper is organized as follows. In Section 2, the signal model with array
errors is introduced. In Section 3, the proposed two-stage SR-STAP method is introduced.
In Section 4, simulation results are provided to demonstrate the clutter suppression per-
formance and target detection performance of the proposed method. Final conclusion is
discussed in Section 5.

Notation: Boldface small letters denote vectors and boldface capital letters denote
matrices. (·)T and (·)H represent the transpose and Hermitian transpose, respectively.
R , R+ and C represent the real filed, nonnegative real filed and complex filed, respec-
tively. The expectation operator is represented by E(·). The symbols ⊗ and � denote the
Kronecker product and Hadamard product, respectively. diag(·) represents a diagonal
matrix with entries of the argument vector on the diagonal. The NK× NK identity matrix
is defined as INK. ‖·‖F denotes the Frobenius norm. ‖·‖2,0 denotes a mixed norm defined
as the number of non-zero elements of l2-norms of the row vectors.

2. Signal Model

Consider an airborne pulsed Doppler radar system that employs a side-looking uni-
form linear array (ULA) consisting of N elements with an inter-element spacing d and K
coherent pulses in a CPI at a constant pulse repetition frequency (PRF) fPRF . Ignoring
the influence of range ambiguity, the clutter plus noise echoes collected over all pulses, all
elements and all range bins can be represented by

Y = [y1, y2, . . . , yL] (1)

where yl is clutter plus noise data snapshot with array errors of the lth range bin, given by

yl = [y11l , y21l , . . . , yN1l , . . . , y1Kl , y2Kl , . . . , yNKl ]
T

=
Nc

∑
i=1

ςc,isc,i + nl

=
Nc

∑
i=1

ςc,i(b( fdi)⊗ a( fsi)) + nl

(2)

where Nc is the number of independent clutter sources, ςc,i is the random complex am-
plitude, sc,i = b( fdi)⊗ a( fsi) is the spatial-temporal steering vector with array errors of
the ith clutter patch, a( fsi) = Gc,i ā( fsi) is the spatial steering vector with array errors of
the ith clutter patch, Gc,i is the array error matrix of the ith clutter patch, nl is a Gaussian
noise vector with zero mean and covariance matrix σ2I, σ2 is the noise power, I is the
identity matrix, b( fdi) and ā( fsi) are the corresponding temporal steering vector and the
ideal spatial steering vector without array errors, and

b( fdi) = [1, exp(j2π fdi), . . . , exp(j2π(K− 1) fdi)]
T (3)

ā( fsi) = [1, exp(j2π fsi), . . . , exp(j2π(N − 1) fsi)]
T (4)

where fsi = d cos φi/λ and fdi = 2vp cos φi/(λ fPRF) are the normalized spatial fre-quency
and the normalized Doppler frequency of the ith clutter patch, φi is the corre-sponding
spatial cone angle, λ is the wavelength, vp is the velocity of the platform.
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In practice, the gain and delay of each sensor are usually not identical due to different
aging rates or imperfect manufacturing, which causes gain and phase errors. The errors
can be represented by a N × N complex diagonal matrix Ggain [4]

Ggain = diag([g1, g2, · · · , gN ]) (5)

where gn = (1 + ∆αn)ej∆ϕn , ∆αn and ∆ϕn are the gain error and phase error of the nth
sensor, respectively.

Due to closed distance, the interactions among sensors generate mutual coupling. The
mutual coupling can be represented by the following N × N symmetric Toeplitz matrix
Gmutual [4]

Gmutual =



1 c1 · · · cq · · · 0

c1 1 c1 · · · . . .
...

... c1 1 c1 · · · cq

cq
. . . c1 1 c1

...
...

...
. . . c1 1 c1

0 · · · cq · · · c1 1


(6)

where ci(i = 1, 2, . . . , q) denotes the complex mutual coupling coefficient, q 6 N , which
means that the mutual coupling can be ignored when the element spacing is greater than q
inter-element spacing.

In order to obtain a certain geometry of array, each sensor must be in the precise
location. However, in practice, this requirement is sometimes difficult to satisfy, which
causes the sensor location errors. The error vector of the ith clutter patch caused by sensor
location errors can be written as [4]

epi =
[
1, ej2π∆1 cos φi/λ, · · · , ej2π∆N−1 cos φi/λ

]T
(7)

where ∆0 = 0 , ∆j(j = 1, 2, . . . , N − 1) are the random numbers represent the location errors
for each sensor.

Let Gothersi ∈ CN×N denotes other array perturbations encountered at the ith clutter
patch, the array error matrix Gc,i can be formulated as

Gc,i = GgainGmutualdiag
(
epi
)
Gothersi (8)

3. Proposed Method

In this section, we propose a two-stage SR-STAP method for suppressing nonhomo-
geneous clutter in the presence of arbitrary array errors.

3.1. Steering Vector Estimation

In the first stage, radar operates in measurement mode, assuming that the number of
pulses in a CPI is K1 , to promise sufficient Doppler resolution, K1 should be a large value.
From (2), we get the clutter plus noise data snapshot of the lth range bin.

yl =
Nc

∑
i=1

ςc,i(b( fdi)⊗ a( fsi)) + nl (9)

Without consideration of the ICM, the relationship of spatial frequency fsi and tempo-
ral frequency fdi is represented by

fsi =
d fPRF

2vp
fdi , i = 1, 2, · · · , Nc (10)
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It means that clutter patches can be localized either by a spatial filter or by a Doppler
filter. Generally, the number of pulses in a CPI is larger than the number of elements in the
array, so, it is easier to create a narrow Doppler filter. Moreover, the ultra-low sidelobe of
a Doppler filter is more reasonable than that of a spatial filter. Thus, clutter localization
is preferred to be realized by fine Doppler localization. The kth Doppler filter output is
given by

X kl = TH
k yl = (fk ⊗ IN)

Hyl

=
Nc

∑
i=1

ςc,i(fk ⊗ IN)
H(b( fdi)⊗ a( fsi)) + (fk ⊗ IN)

Hnl

=
Nc

∑
i=1

ςc,i

(
fH

k b( fdi)
)
⊗ (INa( fsi)) + (fk ⊗ IN)

Hnl

=
Nc

∑
i=1

ςc,i

(
fH

k b( fdi)
)

a( fsi) + ñl

(11)

where Tk = (fk ⊗ IN) is the transformation matrix, fk = t f �uk is the Doppler filter coefficient
vector of the kth Doppler filter, t f is a ultra-low sidelobe taper, uk = [1, exp(j2πk/K1), · · · ,
exp(j2πk(K1 − 1)/K1)]

T , ñl = (uk ⊗ IN)
Hnl is the additive Gaussian noise, and

pbr( fdk − fdi) = fH
k b( fdi) (12)

is the low-pass filter response with the passband of

| fdi − fdk| 6
Dw

2
(13)

where fdk is the center frequency of the kth Doppler filter, Dw is the Doppler frequency
passband width (DFPW). Then, (11) can be recast as

X kl =
Nc

∑
i=1

ςc,i pbr( fdk − fdi)a( fsi) + ñl (14)

According to the Doppler frequency passband of the kth Doppler filter, we can get
the associated spatial frequency passband of the clutter component by substituting (10)
into (13)

d fPRF
2vp

fdk −
d fPRF
4vp

Dw 6 fsi 6
d fPRF

2vp
fdk +

d fPRF
4vp

Dw (15)

The width of the spatial frequency passband is

∆ =
d fPRF

2vp
Dw (16)

For a Doppler filter with ultra-low sidelobes, the gain of the stopband is negligible
relative to the passband. Without consideration of the components in the stopband of the
Doppler filter, (14) can be written as

X kl =
Nqk

∑
i=Npk

ξc,ia( fsi) + ñl (17)

where ξc,i = ςc,i pbr
(

fdk − fdi
)
, Npk and Nqk are the bounded indexes of the spatial fre-

quency passband corresponding to the kth Doppler filter.
Similar to the Doppler beam sharpening (DBS) radar, we define a sharpening ratio as

κ =
θmainlobe

∆
=

2vp

Nd fPRFDw
(18)
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where θmainlobe is the mainlobe beamwidth.
For an untapered Doppler filter, the distance between its two first nulls is 2/K1,

which is larger than its DFPW. Therefore, when K1 is large, a narrow Doppler filter with
a small DFPW can be obtained. However, its sidelobe level is high (the first sidelobe is
at −13.4 dB); thus, the sidelobe gain of an untapered Doppler filter cannot be ignored.
A heavy tapered Doppler filter can obtain ultra-low sidelobes, but the obtainment is at
the cost of a broadening mainlobe, and thereby resulting a larger DFPW. We define the
DFPW to be the width of the Doppler frequency range where the drop of the power gain of
a Doppler filter is less than 40 dB. For a Doppler filter with ultra-low sidelobes, the power
gain is negligible outside this range. It is difficult to get the analytical DFPW of a tapered
Doppler filter, but we can give a reasonable value based on our experience. For example,
when a Chebyshev taper with sidelobe level of −80 dB is used, by experience, we know
that 5/K1 is a reasonable DFPW value, i.e., Dw = 5/K1. Substituting Dw = 5/K1 into (16),
we get the spatial frequency passband width corresponding to the DFPW of a Doppler
filter with a 80 dB Chebyshev taper.

∆ =
5d fPRF
2vpK1

(19)

Substituting (19) into (18) yields

κ =
θmainlobe

∆
=

2vpK1

5Nd fPRF
(20)

Define the correlation coefficient of a
(

fsi
)

and a( fsi + ∆/2) as

cc =

∣∣∣aH
(

fsi + ∆
2

)
a( fsi)

∣∣∣√
aH
(

fsi + ∆
2

)
a
(

fsi + ∆
2

)√
aH( fsi)a( fsi)

(21)

Thus, as the number of pulses K1 increases, the sharpening ratio κ becomes larger
and ∆ becomes smaller, as a result, the correlation coefficient of a

(
fsi
)

and a( fsi + ∆/2)
becomes larger. Figure 1 depicts the correlation coefficient of a

(
fsi
)

and a( fsi + ∆/2) versus
the sharpening ratio κ, where vp = 150 m/s, N = 8, d = 0.15 m, fPRF = 2000 Hz and K1
changes from 40 to 520 at intervals of 40.

Figure 1. Correlation coefficient of a
(

fsi
)

and a( fsi + ∆/2) versus the sharpening ratio.

In Figure 1, the dotted line with symbol ∗ shows the correlation coefficient of a
(

fsi
)

and a
(

fsi+∆/2
)

versus the sharpening ratio κ and the dotted line with symbol ◦ denotes a
threshold value. From Figure 1, we can observe that when the sharpening ratio κ is larger
than 6.4, the correlation coefficient of a

(
fsi
)

and a
(

fsi+∆/2
)

is greater than 0.99, i.e., in this
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case, if κ is larger than 6.4 (the number of pulses in a CPI is larger than 256), a
(

fsi+∆/2
)

can be well approximated by a
(

fsi
)
.

When the sharpening ratio κ is large, a
(

fsk ± ∆/2
)
≈ a

(
fsk
)
, (17) can be simplified as

X kl = µkla( fsk) + ñl (22)

where µkl =
Nqk

∑
i=Npk

ξc,i , fsk is the normalized spatial frequency corresponding to the center

Doppler frequency of the kth Doppler filter, a
(

fsk
)

is the corresponding spatial steering vector.
To alleviate the bad influence of ñl , multiple range gates are utilized to estimate a

(
fsk
)
,

according to (22), the covariance matrix of X kl can be written as

Rkl = E
(
X klX H

kl

)
= γ2

kla( fsk)a
H( fsk) + σ̃2IN (23)

where γ2
kl = E

(
|µkl |2

)
, E
(
ñl ñH

l
)
= σ̃2IN , σ̃2 is the additive noise power. In practice, Rkl is

unknown and can be substituted by the sample covariance matrix, i.e.,

R̂kl =
1
L

L

∑
l=1

X klX H
kl (24)

Under the high clutter-to-noise ratio (CNR) case, γ2
kl/σ̃2 � 1 and it is valid to say

that the number of large eigenvalues of R̂kl is 1. Thus, we can perform singular value
decomposition (SVD) on R̂kl and a

(
fsk
)

is estimated by the eigenvector associated with the
largest eigenvalue.

When ICM is present, the pulse-to-pulse fluctuations will cause a broadening of the
Doppler spectrum of a single clutter return and the relation in (10) does not hold. In this
case, for a single clutter echo, its Doppler frequency range can be written as

fdi −
Db
2

6 fd 6 fdi +
Db
2

(25)

where Db = 2σv
/

λ fPRF is the width of the Doppler spectrum, σv is the velocity standard
deviation caused by ICM [1].

By substituting (10) into (25), we get the associated spatial frequency range

d fPRF
2vp

fdi −
d fPRF
4vp

Db 6 fs 6
d fPRF

2vp
fdi +

d fPRF
4vp

Db (26)

And the width of the spatial frequency range is

∆b =
d fPRF

2vp
Db (27)

When the Doppler spectrum broadening caused by ICM is much smaller than the
DFPW of the heavy tapered Doppler filter, i.e., Db � Dw, the inequality ∆b � ∆ holds. As
a result, the correlation coefficient of a

(
fsi
)

and a( fsi+∆b/2) is approximately 1 when the
sharpening ratio κ is large, and in this case, we can say that the Doppler frequency range
given in (25) corrsponds to a single spatial frequency fsi. Thus, when the velocity standard
deviation σv caused by ICM is small, the broadening of the Doppler spectrum has little
effect on estimating the spatial steering vectors and the proposed method for estimating
spatial steering vector still works well.

In practice, clutter from the sidelobes and the nulls of the array pattern is much weaker
than that from the mainlobe. Besides, the reflection coefficients are small in some unknown
clutter areas. In addition, the adjacent range gates used to estimate Rkl may include
strong moving targets and other unwanted components. In these cases, the estimation



Sensors 2022, 22, 77 8 of 25

accuracy of Rkl or the condition γ2
kl/σ̃2 � 1 cannot be well guaranteed, which causes

an inaccurate estimate of a( fsk). Thus, beam scanning and secondary data selection are
necessary. Figure 2 describes the process of beam scanning and fine Doppler localization.
Firstly, to guarantee the gain of the array in all clutter regions, multiple beams, such as a
group of N orthogonal Fourier beams, are used to cover all the azimuth angles; thus, we
can get the ground clutter data of all range gates under each spatial beam. Then, for the
reason that the angle resolution in the spatial domain is low while the Doppler resolution
in the temporal domain is high, a group of K1 Doppler filters are used for better localization
of the ground clutter. Thus, we can obtain the output data of all range gates under each
heavy tapered Doppler filter by the fine Doppler localization of the ground clutter data.
Each spatial beam will cover several Doppler filters and N spatial beams will cover all
K1 Doppler filters, and the gain of the array in these clutter areas corresponding to the
DFPW of each Doppler filter can be well guaranteed. Thus, by processing the output data
of each heavy tapered Doppler filter in turn, a set of K1 spatial steering vectors can be
well estimated.

ε l =
∣∣∣âH

0 ( fsk)X kl

∣∣∣2 (28)

and an angle selection parameter ρl

ρl =

∣∣âH
0
(

fsk
)
X kl

∣∣√
âH

0
(

fsk
)
â0
(

fsk
)√

X kl
HX kl

(29)

where â0
(

fsk
)

is the initial estimated spatial steering vector by utilizing all range gates.
According to the definition of ε l and ρl given in (28) and (29), we find that ε l is dependent
on both the direction and amplitude of X kl and ρl is only dependent on the direction of
X kl . Thus, firstly, we use a power selection parameter ε l to pick out the range gates which
may be strong clutter or strong outliers. Then, we use an angle selection parameter ρl to
kick out the possible outliers, such as strong moving targets or strong interference, whose
directions are different from X kl . Thereafter, these range gates which may be strong clutter
can be preserved and the possible outliers can be removed.

The first beam

The second beam

The first Doppler filter 

The second Doppler filter 

The kth Doppler filter 

The K1th Doppler filter 

The Nth beam

Figure 2. Beam scanning and fine Doppler localization.

Figure 3 plots the flow chart of the first stage of the proposed two-stage SR-STAP
method. In the first stage of our two-stage SR-STAP method, our goal is to estimate a
set of spatial steering vectors with array errors. Firstly, in the beam scanning step, we
can get the ground clutter data of all range gates given in (9) under the first spatial beam.
Then, in the fine Doppler localization step, we can obtain the output data of all range gates
given in (11) under the first heavy tapered Doppler filter by the fine Doppler localization of
the ground clutter data. Then, for the secondary data selection step, we firstly obtain the
initial estimated spatial steering vector by utilizing the output data of all range gates given
in (11); then we use the power selection parameter ε l given in (28) to pick out these range
gates which may be strong clutter or strong outliers; finally, we use the angle selection
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parameter ρl given in (29) to kick out these range gates which may contain possible outliers.
Next, for the steering vector estimation step, we calculate the R̂kl by (24) utilizing these
selected range gates and perform SVD on R̂kl to find the eigenvector â( fsk) associated with
the largest eigenvalue, which is considered as the estimate of a( fsk). Here we can get the
spatial steering vector with array errors corresponding to the first heavy tapered Doppler
filter. Then, we need to judge whether all the Doppler channel contained in the current
beam have been processed. If it has not been finished, we should assume k = k + 1 and
back to the beam scanning step. If the answer is Yes, we need to judge whether the beam
scanning has been finished and if has not, we should assume n = n + 1 and back to the
fine Doppler localization step. When the beam scanning ends and all K1 Doppler bins are
processed, a set of K1 spatial steering vectors with array errors are well estimated by fine
Doppler localization.

Whether all Doppler channels in

current beam have been processed?

Whether the beam scanning is over?

No

Yes

No

Yes

k = k + 1

n = n + 1

k = k + 1

Measurement mode

Obtain the ground clutter data                          given in (9) under 

the nth spatial beam

 1,...,l l Ly

Perform fine Doppler filter to get the kth Doppler filter output          

given in (11) 1,2,..,kl l Lχ

 Obtain the initial estimated spatial steering vector             by 

utilizing all range gates
 0

ˆ
skfa

Use the power selection parameter     given in (28)  to pick out 

these range gates which may be strong clutter or strong outliers
l
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Figure 3. The flow chart of the first stage of the proposed two-stage SR-STAP method.

The procedures of the first stage of the proposed method are summarized as follows:
Step 1: Obtain the initial estimated spatial steering vector â0

(
fsk
)

corresponding to
the kth Doppler filter.

Step 2: Compute the values of power selection parameter ε l and angle selection
parameter ρl for all range gates according to (28) and (29).

Step 3: Find p range gates corresponding to p maximal values of ε l among all L range
gates, i.e.,

{
l1, l2, · · · , lp

}
= arg max

l
{ε l}, l = 1, 2, . . . , L.

Step 4: Find q range gates corresponding to q maximal values of ρl among all p range
gates selected in step 3, i.e.,

{
l̇1, l̇2, · · · , l̇q

}
= arg max

l
{ρl}, l = l1, l2, · · · , lp.
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Step 5: Calculate the R̂kl given in (24) utilizing q range gates selected in step 4. Perform
SVD on R̂kl to find the eigenvector â( fsk) associated with the largest eigenvalue, which is
considered as the estimate of a( fsk).

Step 6: Go back to step 1 until the beam scanning ends and all K1 Doppler bins
are processed.

3.2. SR-STAP Method

In the second stage of our two-stage SR-STAP method, we firstly use these spatial
steering vectors obtained in the first stage to construct the space-time dictionary, and then,
since the MSBL algorithm has been demonstrated a robust, sparse enough, parameter-
independent algorithm in the presence of noise, the existing multiple measurement vector
sparse Bayesian learning based space-time adaptive processing (MSBL-STAP) [45] method
is adopted.

In the second stage, radar operates in STAP mode, since we have already measured a
set of spatial steering vectors with array errors in the first stage; thus, in this mode, high
Doppler resolution is not needed, assuming that the pulse number in a CPI is K2, in general,
K2 < K1. To solve the model mismatch problem caused by array errors, we need to select
Ns spatial steering vectors from the K1 spatial steering vectors obtained in the first stage
and use these selected steering vectors to construct the space-time dictionary. Then, the
received data snapshot of L range bins can be expressed by

Y = DΨ + N (30)

where Ψ =
[

β(1), β(2), · · · , β(L)
]
∈ RNs Nd×L is the solution matrix with each row represent-

ing a possible clutter source, N =
[
n(1), n(2), · · · , n(L)

]
∈ CNK×L is a noise matrix whose

entries are Gaussian with zero mean and variance σ2, D = [s1, s2, . . . , sM] is the space-time
dictionary, M = NsNd is the number of the grid points of the whole angle-Doppler plane,
Ns = ρsN ≤ K1(ρs > 1) is the number of angle bins, Nd = ρdK2(ρd > 1) is the number
of Doppler bins, sm = b( fdm)⊗ â( fsm) is the spatial-temporal steering vector with array
errors of the mth grid point, â( fsm) is the estimated spatial steering vector with array errors
of the mth grid point, b( fdm) is the temporal steering vector of the mth grid point.

The angle-Doppler profile Ψ is obtained by solving the following optimization problem

min
Ψ
‖Y−DΨ‖2

F s.t.‖Ψ‖2,0 ≤ rs (31)

where rs ∈ R+ is the degrees of the clutter sparsity (DOSs). A convex relaxation of (31) is

min
λ̄,Ψ
‖Y−DΨ‖2

F +
M

∑
m=1

λ̄‖Ψi·‖2 (32)

From a Bayesian perspective, (32) is equivalent to maximum a posterior probability

(MAP) with the prior probability density function (PDF) p ∼ exp
(
−

M
∑

i=1
‖Ψi·‖2

)
[43].

According to the measurement model in (30), we get the Gaussian likelihood function

p
(

Y|Ψ; σ2
)
=
(

πσ2
)−NKL

exp
(
−σ−2‖Y−DΨ‖2

F

)
(33)

Assuming that each column in Ψ obeys a complex Gaussian prior

β(l) ∼ N(0, Γ) (34)

where 0 is a zero vector, Γ = diag(ζ), ζ = [ζ1, ζ2, . . . , ζM] are the hyperparameters con-
trolling the prior covariance of β(l) and its values can be viewed as the power of the clutter
sources. Then the prior PDF of Ψ can be represented as
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p(Ψ; Γ) = π−MLΓ−L exp

(
−

L

∑
l=1

β(l)H
Γ−1β(l)

)
(35)

Combining the prior and likelihood, we get the posterior PDF of Ψ

p
(

Ψ|Y; Γ, σ2
)
=

p
(
Y|Ψ; σ2)p(Ψ; Γ)∫

p(Y|Ψ; σ2)p(Ψ; Γ)dΨ
(36)

Actually, the sparsity profile Ψ is estimated by the posterior mean µ, whose value is
modulated by the hyperparameter vector ζ and σ2. Thus, the task to estimate Ψ is shifted
to estimate the hyperparameter vector ζ and σ2. The latter can be effectively accomplished
by an expectation maximization (EM) algorithm. The procedures of the EM algorithm are
described as follows.

E step: According to (33) and (35), the joint PDF of (Y, Ψ) at j + 1 step is given by

p
(

Y, Ψj+1; Γj, σ2
j

)
= p

(
Y|Ψj+1; σ2

j

)
p
(

Ψj+1; Γj

)
= π−(NK+M)LΓ−L

j σ−2NKL
j

· exp

{
L

∑
l=1

[
−σ−2

j

(
yl −Dβ

(l)

j+1

)H(
yl −Dβ

(l)

j+1

)
− β

(l)

j+1
H

Γ−1
j β

(l)

j+1

]} (37)

Then, the marginal PDF of Y at j + 1 step is represented as

p
(

Y; Γj, σ2
j

)
=
∫

p
(

Y, Ψj+1; Γj, σ2
j

)
dΨj+1

= π−NKL
∣∣∣σ2

j I + DΓjDH
∣∣∣−L

· exp

(
L

∑
l=1

yH
l

(
σ2

j I + DΓjDH
)−1

yl

) (38)

By combining (37) and (38), we get the posterior PDF of Ψ at j + 1 step

p
(

Ψj + 1|Y; Γj, σ2
j

)
=

p
(

Y, Ψj+1; Γj, σ2
j

)
p
(

Y; Γj, σ2
j

)
= π−ML∣∣Σj+1

∣∣−L

. exp

[
L

∑
l=1
−
(

β
(l)

j+1 − µ
(l)

j+1

)H
Σ−1

j+1

(
β
(l)

j+1 − µ
(l)

j+1

)]
(39)

where µj+1 is the mean matrix and Σj+1 is the covariance matrix, given by

µj+1 = ΓjDH
(

σ2
j I + DΓjDH

)−1
Y (40)

Σj+1 = Γj − ΓjDH
(

σ2
j I + DΓjDH

)−1
DΓj (41)

M step: At M-step, we estimate ζ j+1 and σ2
j+1 by using a Type-II maximum likeli-

hood [42], i.e., [
ζ j+1, σ2

j + 1

]
= arg max

Γ,σ2

[
E
(

ln p
(

Y, Ψj+1; Γj, σ2
j

))]
(42)

Because of decoupling [43], (42) can be divided into two optimization problems

ζ j+1 = arg max
Γ

[
E
(
ln
(

p
(
Ψj+1; Γj

)))]
(43)
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σ2
j+1 = arg max

σ2

[
E
(

ln
(

p
(

Y|Ψj+1; σ2
j

)))]
(44)

Substituting (35) into (43) yields

ζm,j+1 =

L
∑

l=1
µ
(l)
m,j+1

2

L
+ Σm,j+1 (45)

where µ
(l)
m,j+1 is the mth component of µ

(l)
j+1, Σm,j+1 is the mth component of the main

diagonal of Σj+1.
Substituting (33) into (44) yields

σ2
j+1 =

(1/L)
∥∥∥Y−Dµj+1

∥∥∥2

F
+ σ2

j

M
∑

m=1

(
1−

(
Σm,j+1/ζm,j

))
NK

(46)

The iteration for updating ζ and σ2 ends when a predetermined criteria is satisfied.
Such as,

∥∥∥ζ j+1 − ζ j

∥∥∥/
∥∥∥ζ j

∥∥∥ 6 δ, where δ is a small enough positive threshold. Then, the
CCM can be calculated by

Rc+n =
1
L

L

∑
l=1

M

∑
m=1

∣∣∣β(l)
m

∣∣∣2smsH
m + ασ2INK (47)

where α is a real constant. Based on the minimum variance distortionless response (MVDR)
principle, we get the optimal STAP weight vector

w =
R−1

c+nst

sH
t R−1

c+nst
(48)

where st = b( fdt)⊗ ā( fst) is the target spatial-temporal steering vector with the normalized
Doppler frequency of fdt and the normalized spatial frequency of fst .

The procedures of the second stage of the proposed method are summarized as follows:
Step 1: Construct the dictionary D using these spatial steering vectors obtained in the

first stage, give the initial values ζ0 = 1, σ2
0 = 0.1.

Step 2: Compute the mean matrix µj+1 and the covariance matrix Σj+1 using (40)
and (41).

Step 3: Update ζ j+1 and σ2
j+1 using (45) and (46).

Step 4: Continue step 2 and step 3 until the predetermined criteria is satisfied.
Step 5: Calculate the CCM Rc+n using (47), where Ψ ≈ µ.
Step 6: Compute the optimal STAP weight w using (48).

4. Numerical Experiments

In this section, numerical experiments are conducted to assess the performance of
proposed method. The radar system parameters are given in Table 1. In the first stage,
a Chebyshev taper with sidelobe level of −80 dB is used and the sharpening ratio κ is equal
to 6.4. In the second stage, the discretized grids are set to be Ns = 32 and Nd = 32, i.e.,
ρs = ρd = 4, the number of used training samples and the iteration termination threshold
of MSBL-STAP algorithm are set to be 10 and δ = 0.001, respectively. We use the signal to
interference plus noise ratio (SINR) loss as a measure of clutter suppression performance,
which is calculated by the ratio of output SINR and the signal to noise ratio (SNR) obtained
by a match filter in a noise-only environment, i.e.,

LSINR =
σ2

NK

∣∣wHst
∣∣2

wHRw
(49)
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where w is the STAP weight vector, R is the known CCM. We also evaluate the target
detection performance by the probability of detection (PD) versus SNR curves, which are
achieved by utilizing the adaptive matched filter (AMF) detector [51], and the probability
of false alarm rate (PFA) is set as 10−3, the target is assumed in the main beam direction
with the normalized Doppler frequency 0.1, the threshold and probability of detection
estimates are based on 104 samples. Besides, all the simulation results of SINR loss are
acquired through 100 Monte Carlo runs and all the PD to SNR curves are averaged over
1000 Monte Carlo trials.

Table 1. Radar system parameters.

Parameter Value

Bandwidth 2.5 M
Wavelength 0.3 m

Pulse repetition frequency 2000 Hz
Platform velocity 150 m/s
Platform height 9 km
Element number 8

Pulse number in the first stage 256
Pulse number in the second stage 8

CNR 40 dB

To demonstrate the performance of proposed two-stage SR-STAP method in the
presence of array errors, each perturbation is first considered separately, and then, their
combined effects are demonstrated, finally, we also measure the effect of the presence of
ICM on our two-stage SR-STAP method. We consider four cases in the simulation, (1) use
the true spatial steering vectors with array errors to construct the space-time dictionary
and perform MSBL-STAP, which is called TSV-MSBL, (2) use the estimated spatial steering
vectors which are obtained by utilizing single range gate to construct the space-time
dictionary and perform MSBL-STAP, which is called SESV-MSBL, (3) use the estimated
spatial steering vectors which are obtained by utilizing multiple range gates to construct
the space-time dictionary and perform MSBL-STAP, which is called MESV-MSBL, (4) use
the ideal spatial steering vectors without array errors to construct the space-time dictionary
and perform MSBL-STAP, which is called ISV-MSBL.

4.1. Gain and Phase Errors

In this experiment, we verify the performance of the proposed two-stage SR-STAP
method in the presence of gain and phase errors. Ggain = diag([g1, g2, · · · , gN ]) is the
error matrix, g1 = 1, gi = (1 + ∆αi)ej∆ϕi (i = 2, · · · , N) is the gain and phase error of the ith
element, where ∆αi and ∆ϕi follow a uniform distribution within [−0.1, 0.1] and [−10◦, 10◦],
respectively [47]. Then, we can get the following equation

Â = ĜgainA (50)

where Â =
[
â
(

fs1
)
, â( fs2), . . . , â

(
fsK1

)]
is the matrix whose columns are the K1 estimated

spatial steering vectors with array errors in the first stage, A =
[
ā
(

fs1
)
, ā( fs2), . . . , ā

(
fsK1

)]
is the matrix whose columns are the K1 ideal spatial steering vectors without array errors,
Ĝgain is the estimate of Ggain. The least square (LS) solution of Ĝgain is given by

Ĝgain = ÂAH
(

AAH
)−1

(51)

To show the performance loss of the proposed method where there are varying levels of
amplitude and phase errors, twenty-one different levels of the amplitude and phase errors
are defined as “level1”, “level2”, “level3”, . . . , “level20” and “level21”, which are subject
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to uniform distribution as (0,0)/(0◦,0◦), (−0.01,0.01)/(−1◦,1◦), (−0.02,0.02)/(−2◦,2◦), . . . ,
(−0.19,0.19)/(−19◦,19◦) and (−0.2,0.2)/(−20◦,20◦), respectively. Figure 4 plots the average
SINR loss versus the amplitude and phase errors level, as shown in Figure 4, the higher the
amplitude and phase errors level, the severer performance loss of the proposed method.
In general, it is acceptable when the performance loss of the algorithm is less than 3 dB.
In Figure 4, the black dotted line with a square mark denotes a threshold value, which
means that the average SINR loss is decreased by 3 dB compared with the OPT. From
Figure 4, we can observe that the slight amplitude and phase errors will cause a severe
performance loss of the proposed method, specifically, the performance loss of the proposed
two-stage method is greater than 3 dB when the amplitude and phase errors level is greater
than 2. Thus, we can say that when the phase errors level is greater than 2, the performance
of the proposed method is significantly deteriorated.

Figure 4. Average SINR loss versus the amplitude and phase errors level.

The gain and phase errors estimated by the proposed method are presented in Table 2,
from this table, it is observed that the estimated values are very close to the true ones.

Table 2. Gain and phase errors estimation.

True Estimated

g1 1 1
g2 0.9178 + j0.0642 0.9183 + j0.0644
g3 1.1288 + j0.0461 1.1298 + j0.0466
g4 0.8951 + j0.0941 0.8965 + j0.0944
g5 0.9277 + j0.0649 0.9291 + j0.0651
g6 0.8888 + j0.0466 0.8898 + j0.0469
g7 1.0946 + j0.0951 1.0955 + j0.0956
g8 0.8988 + j0.0471 0.8985 + j0.0471

The SINR loss curves in the presence of gain and phase errors are given in Figure 5a.
As shown in Figure 5a, due to the steering vector mismatch between the dictionary and
clutter data, the clutter suppression performance of the ISV-MSBL method is much poorer
than that of the TSV-MSBL method. By comparing the SINR loss curves of ISV-MSBL, SESV-
MSBL, MESV-MSBL and the OPT, it is observed that the MESV-MSBL method achieves the
comparable performance as the OPT, which is better than that of the SESV-MSBL method
and much better than that of the ISV-MSBL method. The results demonstrate that the gain
and phase errors can be well calibrated by the developed steering vector estimation method.
In the sidelobe region ( fd = 0.4), compared with the ISV-MSBL method, the output SINRs
of proposed SESV-MSBL method and MESV-MSBL method are increased by about 14.1 dB
and 16.3 dB, respectively. In the mainlobe region ( fd = 0.1), compared with the ISV-MSBL
method, the output SINRs of proposed SESV-MSBL method and MESV-MSBL method
are increased by about 8.5 dB and 15.8 dB, respectively. Whether in the mainlobe region
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or in the sidelobe region, the clutter suppression performance of the proposed method
is significantly improved. The PD versus SNR curves in the presence of gain and phase
errors are given in Figure 5b. As depicted in Figure 5b, the target detection performance of
the MESV-MSBL method is close to the optimal performance, which is better than that of
the SESV-MSBL method and much better than that of the ISV-MSBL method. Compared
with the ISV-MSBL method, the slow-moving target detection performance of proposed
SESV-MSBL method and MESV-MSBL method are significantly improved.

(a) (b)

Figure 5. SINR loss curves and PD versus SNR curves in the presence of gain and phase errors.
(a) SINR loss versus the normalized Doppler frequency in the presence of gain and phase errors;
(b) PD versus SNR ( fst = 0.1) in the presence of gain and phase errors.

4.2. Mutual Coupling

In this experiment, we verify the performance of the proposed two-stage SR-STAP
method in the presence of mutual coupling. Assuming that mutual coupling coeffi-
cient can be ignored when the element spacing is greater than 1.5 wavelength, which
means that q = 3. We set the non-zero mutual coupling coefficients as 1, 0.1250 + 0.2165j,
0.0866− 0.0500j, respectively [49]. The same principle as the estimation of Ggain, we can
also get the estimate of mutual coupling matrix Gmutual by Equation (51).

The mutual coupling coefficients estimated by the proposed method are presented
in Table 3, from this table, we find that the estimated values are also very close to the
true ones.

Table 3. Mutual coupling estimation.

True Estimated

c1 1 1
c2 0.1250 + j0.2165 0.1253 + j0.2169
c3 0.0866 + j0.0500 0.0869 + j0.0498

The SINR loss curves in the presence of mutual coupling are depicted in Figure 6a, the
PD versus SNR curves in the presence of mutual coupling are depicted in Figure 6b. The
superior clutter suppression performance and target detection performance of the proposed
method are demonstrated. In the sidelobe region ( fd = 0.4), compared with the ISV-MSBL
method, the output SINRs of proposed SESV-MSBL method and MESV-MSBL method
are increased by about 19.3 dB and 21.7 dB, respectively. In the mainlobe region ( fd = 0.1),
compared with the ISV-MSBL method, the output SINRs of proposed SESV-MSBL method
and MESV-MSBL method are increased by about 17.2 dB and 27.6 dB, respectively.
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(a) (b)

Figure 6. SINR loss curves and PD versus SNR curves in the presence of mutual coupling. (a) SINR
loss versus the normalized Doppler frequency in the presence of mutual coupling; (b) PD versus SNR
( fst = 0.1) in the presence of mutual coupling.

4.3. Sensor Location Errors

In this experiment, we verify the performance of the proposed two-stage SR-STAP
method in the presence of sensor location errors. ∆PE = diag([∆0, ∆1, . . . , ∆N−1]) is the
position errors matrix, ∆0 = 0, ∆i−1(i = 2, · · · , N) is the position error value of the ith
element, where ∆i−1 follows a uniform distribution within [−0.1d, 0.1d] [52]. We can also
utilize the K1 estimated spatial steering vectors

[
â
(

fs1
)
, â( fs2), . . . , â

(
fsK1

)]
and the K1

ideal spatial steering vectors
[
ā
(

fs1
)
, ā( fs2), . . . , ā

(
fsK1

)]
to estimate ∆i−1, given by

∆̂i−1 =
1

K1

K1

∑
k=1

λangle
[
âi
(

fsk
)/

āi
(

fsk
)]

2π cos φk
(52)

where âi
(

fsk
)

and āi
(

fsk
)

are the ith element of â
(

fsk
)

and ā
(

fsk
)
, respectively. φk is the is

the spatial cone angle corresponding to the center frequency of the kth Doppler filter.
The sensor location errors estimated by the proposed method are presented in Table 4,

from this table, we find that the estimated ones match true ones pretty well.

Table 4. Sensor location errors estimation.

True (m) Estimated (m)

∆0 0 0
∆1 −0.0041 −0.0042
∆2 0.004 0.0041
∆3 0.0003 0.0002
∆4 −0.014 −0.0139
∆5 0.0123 0.0122
∆6 −0.0021 −0.0022
∆7 −0.0135 −0.0135

The SINR loss curves in the presence of sensor location errors are depicted in Figure 7a,
the PD versus SNR curves in the presence of sensor location errors are depicted in Figure 7b.
It is observed that the clutter suppression performance and the target detection performance
of the proposed method are significantly improved when sensor location errors are present.
In the sidelobe region ( fst = 0.4), compared with the ISV-MSBL method, the output SINRs
of proposed SESV-MSBL method and MESV-MSBL method are increased by about 15.5 dB
and 18.2 dB, respectively. In the mainlobe region ( fst = 0.1), compared with the ISV-MSBL
method, the output SINRs of proposed SESV-MSBL method and MESV-MSBL method are
increased by about 15.9 dB and 26.2 dB, respectively.
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(a) (b)

Figure 7. SINR loss curves and PD versus SNR curves in the presence of sensor location errors.
(a) SINR loss versus the normalized Doppler frequency in the presence of sensor location errors;
(b) PD versus SNR ( fst = 0.1) in the presence of sensor location errors.

4.4. Arbtrary Array Errors

In this experiment, we model the arbitrary array errors as the combined effects of gain
and phase errors, mutual coupling and sensor location errors, then, the performance of
proposed method in the presence of arbitrary array errors is demonstrated. The specific
values of array errors are the same as those in Sections 4.1–4.3.

The amplitudes and interferometry phases of all K1 estimated spatial steering vectors
with array errors in the first stage are given in Figure 8a,c, respectively. The amplitudes
and interferometry phases of K1 true spatial steering vectors with array errors are given
in Figure 8b,d, respectively. From Figure 8a,c, we can observe that the amplitudes of the
estimated spatial steering vectors with array errors are close to that of the true spatial
steering vectors. From Figure 8b,d, we can also observe that the interferometry phases of
the estimated spatial steering vectors with array errors are very close to that of the true
spatial steering vectors. Thus, we can say that the amplitudes differences and the phase
differences between the estimated spatial steering vectors and true spatial steering vectors of
all Doppler bins are very small, i.e., a set of K1 spatial steering vectors can be well estimated
in the first stage of our two-stage SR-STAP method in the presence of arbitrary array errors.

(a) (b)

(c) (d)

Figure 8. Steering vector estimation results of all Doppler bins. (a) Amplitudes of estimated steering
vectors; (b) Amplitudes of true steering vectors; (c) Interferometry phases of estimated steering
vectors; (d) Interferometry phases of true steering vectors.
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Figure 9a,b show the amplitudes differences and the phase differences between the
estimated spatial steering vectors and true spatial steering vectors of all Doppler bins,
respectively. As depicted in Figure 9, the amplitude differences and the phase differences
between the estimated spatial steering vectors and true spatial steering vectors of all
Doppler bins are very small, i.e., the estimated spatial steering vectors are very close to
these true spatial steering vectors. Thus, when the arbitrary array errors are present, a set of
spatial steering vectors can be well estimated in the first stage of our two-stage method. The
results intuitively demonstrate the superior steering vector estimation performance of the
proposed method. For clarify, in Figure 10, the amplitudes and phases of the ideal steering
vector, the true steering vector and the estimated steering vector of the 75th Doppler bin
are demonstrated, the results indicate that the estimated steering vector is much closer to
the true steering vector than the ideal steer vector, and the true steering vector can be well
approximated by the estimated steering vector in the presence of arbitrary array errors.

(a) (b)

Figure 9. The amplitude differences and phase differences between the estimated spatial steering
vectors and true spatial steering vectors (all Doppler bins). (a) Amplitude differences; (b) Phase
differences.

(a) (b)

Figure 10. Performance comparison on steering vector estimation. (a) Amplitude; (b) Phase. TSV
denotes the true steering vector with array errors, ESV denotes the estimated steering vector with
array errors, and ISV denotes the ideal steering vector without array errors.

The SINR loss curves and the PD versus SNR curves in the presence of arbitrary
array errors are depicted in Figure 11a,b, respectively. From Figure 11, it is observed that
the ISV-MSBL method has a severe performance degradation when arbitrary array errors
are present. However, compared with the ISV-MSBL method, the clutter suppression
performance and the target detection performance of the proposed SESV-MSBL method
and MESV-MSBL method are significantly improved and the MESV-MSBL method can
obtain the comparable performance as the OPT. The reason is that the array errors are well
calibrated by the developed steering vector estimation method and thereby the mismath
problem between the clutter data and the space-time dictionary are well solved. The results
further validate the superior performance of the proposed method. In the sidelobe region
( fd = 0.4), compared with the ISV-MSBL method, the output SINRs of proposed SESV-MSBL
method and MESV-MSBL method are increased by about 20.5 dB and 23.8 dB, respectively.
In the mainlobe region ( fd = 0.1), compared with the ISV-MSBL method, the output SINRs
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of proposed SESV-MSBL method and MESV-MSBL method are increased by about 23.6 dB
and 30.7 dB, respectively.

(a) (b)

Figure 11. SINR loss curves and PD versus SNR curves in the presence of arbitrary array errors.
(a) SINR loss versus the normalized Doppler frequency in the presence of arbitrary array errors;
(b) PD versus SNR ( fst = 0.1) in the presence of arbitrary array errors.

To better illustrate the advantage of the proposed method, Figure 12a–d plot the
clutter capon spectra of different STAP methods. From Figure 12a–c, we can observe
that the spectra of the MESV-MSBL method is the closest to the optimal spectra with few
clutter power leakage, and the spectra of the SEMV-MSBL method is close to the optimal
spectra with some clutter power leakage and a slight spectrum expansion. However, from
Figure 12d, we can observed that the spectra of the ISV-MSBL method has severe clutter
power leakage and spectrum expansion, the reason is that if the array calibration is not
performed, the steering vector mismatch between the clutter data and the space-time
dictionary will cause that the clutter spectrum cannot be well estimated; thus, the clutter
suppression performance and the slow moving target detection performance of the SR-
STAP methods will significantly degrade for the reason that the adaptive pattern cannot to
suppress clutter and protect the target well because of the widened notches or the incorrect
notches. That is the reason why we must perform array calibration when we apply sparse
recovery technique to STAP.

(a) (b)

(c) (d)

Figure 12. Clutter capon spectra of different methods. (a) OPT-STAP; (b) MESV-MSBL; (c) SESV-
MSBL; (d) ISV-MSBL.
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Figure 13 plots the average SINR loss versus the number of training samples used in
the first stage. From Figure 13, we can know that when the number of training samples
used in the first stage is larger than 100, the spatial steering vectors with array errors can be
well estimated and the MESV-MSBL method can acquire comparable performance as the
TSV-MSBL method and the OPT.

Figure 13. Average SINR loss versus the number of training samples used in the first stage.

In Figure 14, we compare the clutter suppression performance of the proposed SESV-
MSBL method and the MESV-MSBL method with that of the AGPE-SR-STAP method [47],
the MSB-SR-STAP method [49] and the IAD-SR-STAP method [48]. From Figure 14, we can
observe that the SESV-MSBL method and the MESV-MSBL method have narrower notches
than other STAP methods. The reason is that AGPE-SR-STAP method and IAD-SR-STAP
method are only suitable for gain/phase calibration and MSB-SR-STAP method is only
suitable for mutual coupling calibration. Thus, in the presence of arbitrary array errors,
these methods are not effective any more.

Figure 14. SINR loss comparison of different methods in the presence of arbitrary array errors.

Finally, we give two experiments to show that how much variation in values of the
system parameters in Table 1 affect the performance of the proposed method. Figure 15a
plots the SINR loss curves of the MESV-MSBL method under different pulse numbers in
a CPI in the first stage of the proposed two-stage SR-STAP method. From Figure 15a, we
can observe that the more pulses in a CPI, the better clutter suppression performance of
the proposed MESV-MSBL method. The reason is that when the number of pulses K1 in
a CPI increases, the sharpening ratio κ given in (20) will become larger and the width
of the spatial frequency passband ∆ given in (19) will become smaller, as a result, the
correlation coefficient of a

(
fsi
)

and a( fsi + ∆/2) given in (21) will become larger. In other
word, as the number of pulses K1 increases, the spatial steering vectors can be estimated
more and more accurately in the first stage of our two-stage SR-STAP method, as a result,
the clutter suppression performance of the proposed MESV-MSBL method is getting better
and better. Thus, we can conclude that the system parameters determine the value of the
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sharpening ratio κ and the value of the sharpening ratio κ determines the clutter suppression
performance of the proposed two-stage SR-STAP method. The greater the sharpening ratio
κ, the better the clutter suppression performance of the proposed method. In general, as
long as these system parameters can guarantee that the correlation coefficient of a

(
fsi
)

and
a( fsi + ∆/2) given in (21) is greater than 0.95, the proposed two-stage SR-STAP method
can obtain superior clutter suppression performance. To further confirm our conclusion,
Figure 15b plots the SINR loss curves of the MESV-MSBL method under different platform
velocities and pulse repetition frequencies. From Figure 15b, we can observe that when
vp = 150 and fPRF = 2000, the proposed MESV-MSBL method can achieve superior clutter
suppression performance for the reason that the sharpening ratio κ is high in this case. In
addition, when vp = 120 and fPRF = 1600, although the system parameters have changed,
the sharpening ratio κ has not changed; thus, the proposed MESV-MSBL method can still
achieve superior clutter suppression performance. However, when vp = 120, fPRF = 2000
and vp = 20, fPRF = 2000, the clutter suppression performance of the proposed MESV-
MSBL method is getting worse and worse because that the sharpening ratio κ becomes
smaller and smaller.

(a) (b)

Figure 15. SINR loss curves of the MESV-MSBL method under different system parameters. (a) SINR
loss curves of the MESV-MSBL method under different pulse numbers in a CPI in the first stage of
the proposed two-stage SR-STAP method; (b) SINR loss curves of the MESV-MSBL method under
different platform velocities and pulse repetition frequencies.

4.5. Arbitrary Array Errors and Intrinsic Clutter Motion

In this experiment, we verify the performance of the proposed two-stage SR-STAP
method in the presence of arbitrary array errors and ICM. The same to Section 4.4, we
model the arbitrary array errors as the combined effects of gain and phase errors, mutual
coupling and sensor location errors. In this experiment, we only consider the ICM in the
first stage of our two-stage method, i.e., we only measure the effect of the presence of ICM
on estimating the spatial steering vectors in the first stage, without considering the clutter
spectrum expansion problem caused by ICM in the second stage. In fact, this problem
can be effectively handled by the covariance matrix taper (CMT) approach, the interested
reader is referred to the literature [53,54] for further details. The ICM model is given by [1].
The temporal autocorrelation of the fluctuations is Gaussian in shape

γ(k) = exp
{
−8π2σ2

v T2
r

λ2 k2
}

(53)

where σv is the velocity standard deviation, Tr = 1
/

fPRF is the pulse repetition interval.
The SINR loss curves of different methods in the presence of arbitrary array errors

and ICM are depicted in Figure 16. As shown in Figure 16a, when σv = 0.5 m/s, due
to the broadening of the Doppler spectrum caused by ICM is much smaller than the
DFPW of the heavy tapered Doppler filter, the proposed two-stage method still achieves
superior performance. Specifically, in this experiment, when σv = 0.5 m/s, the width of the
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Doppler spectrum is Db= 2σv
/

λ fPRF = 1
/

300, and a reasonable DFPW value is 5/K1, i.e.,
Dw = 5/256; thus, the inequality Db � Dw holds and we can say that the broadening of
the Doppler spectrum has little effect on estimating the spatial steering vectors. However,
when σv = 3 m/s, the width of the Doppler spectrum is Db = 2σv

/
λ fPRF = 6

/
300 and the

inequality Db � Dw no longer holds; thus, the broadening of the Doppler spectrum will
have some adverse effect on estimating spatial steering vectors. As depicted in Figure 16b,
when σv = 3 m/s, due to severe temporal fluctuations, the notches of the proposed SESV-
MSBL method and MESV-MSBL method are spreading. However, compared with other
SR-STAP methods, the proposed two-stage method still achieves better performance.

(a) (b)

Figure 16. SINR loss comparison of different methods in the presence of arbitrary array errors and
intrinsic clutter motion. (a) σv = 0.5 m/s; (b) σv = 3 m/s.

The existence of intrinsic clutter motion will deteriorate the performance of the pro-
posed two-stage SR-STAP method. The more serious the intrinsic clutter motion, the
less accurate the estimation of the spatial steering vectors at the first stage our two-stage
method, thereby the worse the algorithm performance. In general, it is acceptable when the
performance loss of the algorithm is less than 3 dB. Figure 17 plots the average SINR loss
versus the velocity standard deviation. As shown in Figure 17, when the velocity standard
deviation is small, the proposed two-stage method still obtains the near-optimal perfor-
mance, however, when the velocity standard deviation becomes larger, the performance of
the proposed method degrades due to the severer pulse-to-pulse fluctuations. In Figure 17,
the black dotted line with a square mark denotes a threshold value, which means that the
average SINR loss is decreased by 3 dB compared with the OPT. From Figure 17, we can
observe that the performance loss of the proposed two-stage method is less than 3 dB when
the velocity standard deviation is less than 3.1 m/s. For land clutter, in some areas, such
as rural and urban, its velocity standard deviation is usually a very small value, even in
wooded terrain, its velocity standard deviation is generally less than 1 m/s [55]. From
Figure 17, we can observe that the performance loss of the proposed two-stage method
is less than 1 dB when the velocity standard deviation is less than 1 m/s. Therefore, we
can say that the performance of the proposed two-stage method is satisfactory when the
velocity standard deviation is less than 1 m/s. Thus, the proposed method is still effective
for ground clutter suppression and ground moving target detection in the presence of
arbitrary array errors and small ICM.
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Figure 17. Average SINR loss versus the velocity standard deviation.

5. Conclusions

The model mismatch caused by array errors drastically degrade the clutter suppression
performance and the target detection performance of SR-STAP methods. To solve this
problem, a new two-stage SR-STAP method is proposed in this paper. In our two-stage
SR-STAP method, firstly, based on the spatial-temporal coupling property of ground clutter
data, we obtain a set of spatial steering vectors with array errors by fine Doppler localization,
then, in order to solve the model mismatch problem caused by array errors, we directly
use these obtained spatial steering vectors with array errors to construct the space-time
dictionary, finally, the constructed space-time dictionary and MSBL algorithm are combined
for space-time adaptive processing. The simulation results demonstrate that the variation
in system parameters will affect the performance of the proposed two-stage SR-STAP
method, the system parameters determine the value of the sharpening ratio κ and the
value of the sharpening ratio κ determines the performance of the proposed two-stage
SR-STAP method. The greater the sharpening ratio κ, the better the clutter suppression
performance and the target detection performance of the proposed method. In general, as
long as these system parameters can guarantee that the correlation coefficient of a

(
fsi
)

and
a( fsi + ∆/2) given in (21) is greater than 0.95, the proposed two-stage SR-STAP method
can obtain favorable performance. In addition, this simulation results which are obtained
based on some reasonable system parameters which are listed in Table 1 demonstrate that
the spatial steering vectors with array errors can be well estimated in the first stage of our
two-stage SR-STAP method when the arbitrary array errors and small ICM are present,
and also demonstrate that the proposed method can achieve superior clutter suppression
performance and target detection performance in the presence of arbitrary array errors.
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