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Abstract: Vital signs such as heart rate and respiration rate are among the most important physio-
logical signals for health monitoring and medical applications. Impulse radio (IR) ultra-wideband
(UWB) radar becomes one of the essential sensors in non-contact vital signs detection. The heart
pulse wave is easily corrupted by noise and respiration activity since the heartbeat signal has less
power compared with the breathing signal and its harmonics. In this paper, a signal processing
technique for a UWB radar system was developed to detect the heart rate and respiration rate. There
are four main stages of signal processing: (1) clutter removal to reduce the static random noise
from the environment; (2) independent component analysis (ICA) to do dimension reduction and
remove noise; (3) using low-pass and high-pass filters to eliminate the out of band noise; (4) modified
covariance method for spectrum estimation. Furthermore, higher harmonics of heart rate were used
to estimate heart rate and minimize respiration interference. The experiments in this article contain
different scenarios including bed angle, body position, as well as interference from the visitor near
the bed and away from the bed. The results were compared with the ECG sensor and respiration belt.
The average mean absolute error (MAE) of heart rate results is 1.32 for the proposed algorithm.

Keywords: blind source separation (BBS); heart rate estimation; independent component analysis
(ICA); ultra-wideband (UWB) radar

1. Introduction

Heart rate and respiration rate are two important factors of human’s body health.
Resting heart rate can be a prognostic factor for coronary heart disease [1], and it highly
relates to stroke, sudden death, and other non-cardiovascular diseases [2]. The traditional
method to monitor heart rate is performed by using electrocardiography (ECG). However,
it is not appropriate for long-time monitoring due to its limit of mobility and inconvenience.
In addition, some people develop dermatitis after using ECG electrodes [3]. There is a
demand for non-contact heart rate and respiration rate monitoring systems in hospitals.
Camera-based heart rate monitoring technology is one of the popular research areas. L.
Shan and M. Yu proposed an independent component analysis (ICA) and head tracking
method to obtain the heart rate of subjects [4]. They used a face detector to determine
a region of interest on the head. Then, applied band-pass filter (BPF) for both the x-axis
and the y-axis. The heart rate result was displayed in fast Fourier transform (FFT) form
after signal extraction through ICA. Patients may feel uncomfortable with the video-based
monitoring systems because of the privacy problem. In [5], the authors used a light source
and photodetector to obtain the chest movement and heartbeat signals. However, the
results were affected by ambient light. A vibration-sensor-based monitoring system has
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been developed in [6,7] for sleep monitoring. In [7], they obtain the heart rate by using the
autocorrelation function since the heart rate is a period signal, compared with the motion
artifact. Researchers achieve multi-people heartbeat and respiration rate detection using
the amplitude demodulation technique[7].

There is also another non-contact vital signs monitoring technique using radar sen-
sors [8–26]. The advantage of radar-based heart rate monitoring is that patients do not need
to take off clothes and put on electrodes, which is convenient, and patients do not need to
worry about privacy issues. Moreover, it can be used for both on-bed and off-bed situations,
which is suitable for hospital application and 24 h monitoring. Figure 1 shows an overview
of a radar-based heart rate monitoring system. Heart rate detection using a non-contact
radar sensor is challenging because of the lower signal-to-noise ratio (SNR), compared with
a contact-based heart rate monitor devices, especially when the range increases. Because
radio frequency (RF) wave will experience path loss when it travels in the air, and it will
lose power when RF wave penetrates through the body. This will cause low received signal
power and low SNR. Moreover, the energy of the heart rate signal is lower, compared
with energy in the respiration signal, and the respiration harmonics will cause interference
to the heartbeat signal. Thus, it is a fundamental problem to detect signals in low SNR
scenarios [27,28]. Self-motion and random body motion are other challenges in vital sign
radar detection. Researchers in [29] use autocorrelation for phase and cross correlation
for range bin to distinguish between stationary objects and a human to extract respiration
rate. A phase average method for multiple frequencies is proposed in [30] to track the
body motion of the test subject. In [11], Mostafanezhad et al. applied empirical mode
decomposition (EMD) to remove the motion from a continuous wave (CW) radar signal
and increase the accuracy of heart rate measurement. A least mean squares (LMS) adaptive
filter was applied to the CW radar signal to do the respiration harmonics cancellation
in [12]. Researchers in [13] used an artificial neural network (ANN) to extract a heart rate
signal and detect heartbeat events with low latency and low computational complexity.

CW doppler radars are commonly used in vital signs detection [9,10]. Frequency
modulated continuous wave (FMCW) radar is also employed in heart rate and respiration
rate monitoring [14]. Moreover, biomedical multiple-input–multiple-output (MIMO) radars
have been used for vital signs detection and human localization [26]. Compared with CW
radar, FMCW radar can provide more information such as range, velocity, and even angle
estimation [31]. Since FMCW radar has a range profile, detection of multiple subjects or
people is possible [15,16]. Another common radar for vital sign monitoring is IR-UWB.
It can also provide a range of information. The study in [18] used IR-UWB radar to
monitor the respiration of people with dementia. IR-UWB radar has also been used in
car applications [19]. Study [17] has shown that IR-UWB radar has higher SNR, simpler
hardware structure, and better accuracy ratio for most scenarios, compared with FMCW
radar. IR-UWB radar was used in this research as it provides higher SNR and accuracy.

Figure 1. An overview of heart rate radar monitoring system.

There are different signal processing algorithms in radar-based heart rate detection.
The blind source separation (BSS) method can extract and recover the signals from a
mixture of noise and wanted signals. It has been used as a dimension reduction and
signals separation technique in a vital signs radar system. In [20], M. Le proposed an
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eigenvalue-based method to extract and reconstruct respiration and heartbeat signals.
Principal component analysis (PCA) was applied in [21] to remove the static noise and
recover vital signals [22]. Two CW radars systems in [23] apply ICA to attenuate the
breathing effect for heartbeat signal recovering. In [32] ICA-JADE and direction of arrival
techniques were used to obtain the respiration rate of multiple people. The main signal
processing techniques in the literature such as PCA, ICA, and eigenvalue-based methods
belong to the BSS method.

Considering the advantages of IR-UWB radar in providing range information and
higher SNR, compared with FMCW or CW radars, this study developed a signal process-
ing approach for heart rate and respiration rate detection based on IR-UWB technology.
ICA was applied as a BSS method in signal processing for dimension reduction, noise
cancellation, and signal separation. In addition, a new method of signal processing based
on higher-order harmonics peak selection was applied to successfully achieve a highly
accurate heart rate. Comparing with the existing studies, this work provides a less compli-
cated computation for signal separation, accurate heart rate detection, and it avoids the
respiration harmonics interference from heart rate detection. The structure of this paper
is as follows: Section 2 derives vital signal modelling. Section 3 discusses the signal pro-
cessing algorithm in this paper. Section 4 presents the results of the experiments. Section 5
presents the conclusions.

2. Radar Signal Modelling

The content of this section is about modelling the IR-UWB radar signal for vital signs
detection. In [8,24], the authors derived mathematical equations for the IR-UWB radar
signal in detail. To model the equation of vital signs in IR-UWB radar, the authors assumed
that the chest movement and heartbeat are periodic sinusoidal. The UWB radar transmits
pulses in a short time. The received pulses represent signals in different distances according
to the time of arrival (TOA). Then, the received signal for one channel can be written as

d(t) = d0 + drsin(2π frt) + dhsin(2π fht), (1)

where t is slow time along the measurement interval; d0 is the distance from the radar to
the person; dh and dr are the amplitudes of heartbeat and respiration, respectively. The fh
and fr parameters are the frequencies of heartbeat and respiration, respectively, [24].

The received pulse signal can be expressed as multipath components plus the reflected
signal from the body as follows:

r(t, τ) = ∑
i

Ai p(τ − τi) + Ap(τ − τd(t)), (2)

where Ap is the amplitude of pulse at the target distance, τ is the time of arrival related
to d(t), p(t) is received pulse in pass-band frequency, Ai is the amplitude of multipath
components and τi is the delay of a multipath signal. The time τ along to the range is fast
time, and the time between each sample frame for all ranges is slow time. Since TOA is the
time that a pulse transmits and receives, TOA from the person can be written as (3) [24]

τd(t) =
2d(t)

c
= τ0 + τrsin(2π frt) + τhsin(2π fht), (3)

where τ0 is the delay from the person, and τr and τh are the displacement of chest movement
and heartbeat, respectively [24].

In (3), two terms of the radar signal model are corresponding to multipath components
and vital signals. The multipath components derive from a static environment, which
causes DC to offset in the received signal. To extract heartbeat and respiration signals
and compensate DC offset, the received signal is subtracted by the average of fast–time
channels, as (4) [8]

y(t, τ) = Ap(τ − τd(t)). (4)
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3. Signal Processing

Figure 2 shows the block diagram of the suggested signal processing approach in
this study for heart rate and respiration rate detection using the IR-UWB radar. The input
signal in the algorithm is a fast-time–slow-time matrix, which is the raw signal from the
IR-UWB radar.

Figure 2. The block diagram of the signal processing algorithm.

3.1. Clutter Reduction

A clutter reduction technique was applied to the raw signal to remove background
noise [33]. Assuming a person is keeping still, clutter would be a stationary noise; therefore,
it could be removed by the background subtraction method. Suppose that r(n) is the
received signal of one range index; then, the clutter removal method can be written
as (5) [33]:

y(n) = r(n)− b(n− 1), (5)

where b(n− 1) is the background clutter estimator. The stationary background clutter is
defined as the average of previous samples (6) [33]

b(n− 1) =
1
M

n−1

∑
j−n−M

r(j). (6)

3.2. Range Selection

The next step was to select the distance range in which the target is located. Assume
that there is only one person in the radar detection range, and the person keeps still. Hence,
the respiratory motion will have the largest energy in the received signals. The range
selection can be conducted by choosing the maximum variance along with the slow-time
of the range samplers, which contains a respiration signal. It is important to keep the
nearby range samplers to cover cardiac activity since the breathing signal may not contain
a heartbeat signal. In this experiment, the range bin of interest for the radar sensor was set
to 60 cm to cover from the chest to the back of the body.

3.3. Independent Component Analysis

The purpose of this step was to recover the heart rate and respiration signals from a
mixed signal and reduce the noise using the BSS method. The observation (received signal)
for each range can be considered as the linear combination of various signals, e.g., cardiac
signal, chest motion, and noise signal. Thus, the observation for each range can be written
as follows:
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x1(t) = a11s1(t) + a12s2(t) + . . . + a1nsn(t),

x2(t) = a21s1(t) + a22s2(t) + . . . + a2nsn(t),

x3(t) = a31s1(t) + a32s2(t) + . . . + a3nsn(t),
...

xn(t) = an1s1(t) + an2s2(t) + . . . + annsn(t),

(7)

where x1, x2 . . . xn are the observation signals in each range sampler index; s1, s2. . . sn
are the original unknown signals, and aij are the constant coefficients (weights) of each
unknown signals. Equation (7) can be written in a matrix form as (8), [34].

x = As, (8)

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

, x =


x1(t)
x2(t)
. . .

xn(t)

s =


s1(t)
s2(t)
. . .

sn(t)

. (9)

It is assumed that the signals si are statistically independent and have non-Gaussian
distributions, and the observation is a random vector x. To recover vital signals si, matrix A
should be estimated first. If W is defined as the inverse matrix of A, then the independent
components (IC) s can be computed as (10) [35].

s = Wx. (10)

Defining y as an IC, where column vector w is a row of the inverse of A, y can be
calculated as (11) [34].

y = wTx = ∑
i

wixi. (11)

Denote z = ATw, then (11) can be written as (12) [34],

y = wTx = zTs. (12)

From (12), it is clear that y is the linear transformation of si, where the weights are
vector z. Since the central limit theorem tells that the summation of independent random
variables will become more Gaussian than any one of the original variables, the least
Gaussianity will happen when zTs is equal to the one of IC si, and there is only one nonzero
in weight z. Hence, w can be estimated by maximizing the non-Gaussianity of wTx [34].

There are different algorithms for ICA. The algorithm used in this paper was FastICA
since it has low computation and uses a nonlinear algorithm that is robust [35]. The first
step of ICA is centring data, which is x subtract the mean of itself. This can simplify the
further process in the ICA algorithm.

x̂ = x− E{x}. (13)

After centring data, the next step is the whitening process, which reduces the computa-
tional complexity of FastICA. This process is to uncorrelate signals and normalise variance.
The covariance matrix will become an identity matrix after whitening. The whitening
process is performed through eigenvalue decomposition (EVD). EVD of the covariance
matrix of x̂ is calculated as

E
{

x̂x̂T
}
= EDET , (14)

where E is the matrix of eigenvector, and D is eigenvalues in a diagonal matrix. The data
after whitening becomes

x̃ = ED−1/2ET x̂ = ED−1/2ETAs = Ãs, (15)
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where Ã is the whitening transformation matrix.
The FastICA algorithm is using fixed-point arithmetic to solve the multi-dimension

signals problem. The process of FastICA is described as Algorithm 1 [34].

Algorithm 1 FastICA

1: Choose the initial value of w.
2: w+ = E{xg(wTx)} − E{g′(wTx)}w
3: w = w+/‖w+‖
4: if w is not converged then
5: go to 2
6: end if

where function g is

g1 = tanh(a1y),

g2 = yexp(−yT

2
),

g3 = y3.

(16)

a1 is a constant 1 < a1 < 2

3.4. Modified Covariance Method

All ICs have the same energy because the variances of ICs are unit. To obtain the
respiration rate, ICs were filtered using a low-pass filter (LPF). Since the respiration rate
at rest for healthy people is between 12 bpm to 20 bpm [36], the cutoff frequency of the
LPF was chosen as 0.8 Hz (48 bpm). Considering that the respiration signal has less zero-
crossing, compared to the heart rate signal, the ICs after LPF were compared, and the one
with the least zero-crossing was chosen for respiration detection. The FFT was applied to
the selected IC, and the frequency component with the maximum power was considered
as respiration rate.

For the heart rate estimation, the ICs were passed through a high-pass filter (HPF)
separately, as shown in Figure 2. The cutoff frequency of the HPF was chosen as 1.66 Hz
to eliminate the frequency components related to respiration and its strongest harmonics.
The energy of heart rate harmonics is more than the energy of respiration harmonics in
the heart rate harmonics related frequency ranges [8]; therefore, a comparison was made
between the energy of ICs after HPF, and the maximum energy IC was selected as the heart
rate signal.

The measured breathing rate was used as a parameter for a notched comb filter to
reduce the respiration harmonics’ effect on heart rate estimation. After notched filter, the
modified covariance method was used as the spectrum estimation. The modified covari-
ance is an autoregressive (AR) spectrum estimation method. The benefit of the modified
covariance method is that it results in stable spectrum estimation with minimised forward
and backward prediction errors. The AR coefficients can be calculated by solving (17) [37].

rx(1, 1) rx(2, 1) . . . rx(p, 1)
rx(1, 2) rx(2, 2) . . . rx(n, 2)

. . . . . . . . . . . .
rx(1, p) rx(2, p) . . . rx(p, p)




ap(1)
ap(2)

. . .
ap(p)

 = −


rx(0, 1)
rx(0, 2)

. . .
rx(0, p)

, (17)

where

rx(k, l) =
N−1

∑
n=p

[x(n− l)x∗(n− k)

+ x(n− p + l)x∗(n− p + k)].

(18)
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In (17) and (18), rx is autocorrelation sequence of x and ap is coefficient of the poles.
The power spectrum density (PSD) estimation of the AR process is as (19) [37].

P̂AR(ejω) =
|b̂(0)|2

|1 + ∑
p
k=1 âp(k)e−jωk|2

, (19)

where

|b(0)|2 = rx(0, 0) +
p

∑
k=1

ap(k)r∗x(0, k). (20)

In (19), b is the coefficient of zero in AR model.

3.5. Peak Selection Algorithm

Because the heart rate in the frequency domain is easily contaminated by respiration
and its harmonics, it is hard to obtain an accurate heart rate using the modified covariance
method. Therefore, this study proposed a peak selection method based on high harmonics
of heart rate.

First, denote that array P has the elements p1, p2. . . pn, which are all peaks above
100 bpm.

Then, the algorithm finds all peaks pi between 100 bpm and 400 bpm, and puts all
their related frequencies in a vector, as (21).

P =
[
p1 p2 . . . pn

]
. (21)

The next step is finding two initial values for heart rate, as (22).

HRguess =
[
hrguess1 hrguess2

]
. (22)

If the difference between p1 and p2 is less than 100 bpm, p1 and p2 are considered as
the first two harmonics of the heart rate and divided by 2 and 3, respectively, as the heart
rate initial assumptions hrguess1 and hrguess2. If the difference between p1 and p2 is greater
than or equal to 100 bpm, p1 is considered as the initial fundamental value for the heart
rate hrguess1, and p2 is assumed as the second harmonic and divided by 2 to obtain the
hrguess2.

Next, vector P is divided by hrguess1 and hrguess2 separately and rounded to obtain the
integer multiple arrays Int1mul and Int2mul , as (23) and (24).

Intmul = round

(
[PT PT ]×

[ 1
hrguess1

0

0 1
hrguess2

])
=
[
int1mul int2mul

]
, (23)

where
int1mul =

[
int1mul1 int1mul2 . . . int1muln

]T ,

int2mul =
[
int2mul1 int2mul2 . . . int2muln

]T .
(24)

After that, P is element-wise divided by Int1mul and Int2mul separately to obtain the
heart rate estimation array hr1est and hr2est, as (25) and (26).

hrest =
[
PT PT]./[int1mul int2mul

]
=
[
hr1est hr2est

]
, (25)

where
hr1est =

[
hr1est1 hr1est2 . . . hr1estn

]
,

hr2est =
[
hr2est1 hr2est2 . . . hr2estn

]
.

(26)

Later, the error arrays error1 and error2 are calculated by subtracting hrguess1 and
hrguess2 from hr1est and hr2est, respectively, as (27) and (28).
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Error = abs(
[
hr1est hr2est

]
−
[
hrguess1 hrguess2

]
) =

[
error1 error2

]
, (27)

where
error1 =

[
error11 error12 . . . error1n

]
,

error2 =
[
error21 error22 . . . error2n

]
.

(28)

If the calculated errors are above a threshold (6 bpm), consider the corresponding
high-frequency peak as a noise. Remove estimated heart rates and errors according to its
index in the heart rate estimation array.

Finally, the averages of the remaining errors for error1 and error2 are calculated, and
the corresponding estimated heart rate array to the minimum average value is selected,
hrslt. The final heart rate hrest will be calculated as the average of the hrslt, as (29).

hrest = mean(hrslt), (29)

where

hrslt =

{
hr1est, if mean(error1) ≤ mean(error2)

hr2est, otherwise.
(30)

3.6. Outliers Removal in Real-Time Measurement

The proposed algorithm can be implemented for a real-time application. The window
length for each reading is considered 35 s, and the readings are repeated every 5 s. Hence,
the program waits for 35 s after the sensor starts for the first reading. Algorithm 2 shows
the process of outliers removal. The first five estimations for heart rate are stored in a
first-in-first-out (FIFO) buffer. Starting from the sixth measurement, the program compares
the new heart rate estimation with the FIFO buffer’s median value.

Algorithm 2 Outliers removal

1: Put the first five results into FIFO buffer
2: if hrest—median(FIFO) < threshold then
3: go to line 17
4: error_count = 0;
5: else
6: if is last IC then
7: error_count = error_count + 1;
8: discard result
9: else

10: select another IC to do peak selection
11: go to line 2
12: end if
13: end if
14: if error_count = 5 then
15: reset FIFO and go to 1
16: end if
17: returns result.

Suppose the difference between the FIFO buffer’s median value and the latest reading
is less than the threshold (10% of median value). In that case, the new result will be
considered as the estimated heart rate and updated to the FIFO buffer. Otherwise, the
program takes another IC to repeat the peak selection algorithm and achieve the results. It
will continue changing the IC until the last estimated heart rate is within the threshold. If
none of the ICs gives the correct estimation, the program discards the estimated value.
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4. Experiment Results and Discussion
4.1. Experiment Setup

The UWB radar used in this paper was Xethru X4M200 [38,39]. It can operate in the
low-frequency band and high-frequency band. The detection range is also configurable
from 0.4 m to 5 m with a resolution of 0.0514 m [38,39]. Table 1 illustrates the configuration
of the Xethru radar set for this study. The radar sensor was connected to the laptop with a
MATLAB API interface to collect raw data. Meanwhile, an ECG sensor and a respiration
belt were connected to another laptop as reference signals.

To evaluate the reliability of the algorithm for heart rate and respiration rate detection,
a data collection was performed which covers different scenarios of a person on a bed. The
details of the suggested protocols for the experiments are explained in Table 2. The data
from five healthy participants were collected. None of them reported any cardiovascular or
respiratory system disorders. Figure 3 shows the setup of devices during the experiment.
Xethru was mounted 1 m above the bed pointing to the chest of the subject.

Table 1. UWB radar parameters.

Parameters Values

Centre frequency 7.29 GHz

Bandwidth 1.4 GHz

ADC sampling rate 23.328 GS/s

Frame rate 24 fps

Detection range 0.4–5 m

Range resolution 0.0514 m

Figure 3. The setup of devices: the radar is mounted 1 m above the bed. Two laptops are used for
radar sensor data and reference signals recording.
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Table 2. Data collection protocol.

Scenarios Time

body position

Supine 3 min

Right lateral recumbent 3 min

Left lateral recumbent 3 min

Prone 3 min

Baby position (curled up) right 3 min

Baby position (curled up) left 3 min

Different bed angle

Fowler’s position 1 (20 degree) 3 min

Fowler’s position 2 (40 degree) 3 min

Fowler’s position 3 (55 degree) 3 min

Sitting on the bed (90 degree) 3 min

Visitor near bed

Visitor standing near head 3 min

Visitor sitting near head 3 min

Visitor sitting and talking near head 3 min

Visitor standing near leg 3 min

Visitor sitting near leg 3 min

Visitor sitting and talking near leg 3 min

Visitor far from bed

Visitor 0.5 m near head of bed 3 min

Visitor 1 m near head of bed 3 min

Visitor 0.5 m near leg 3 min

Visitor 1 m near leg 3 min

Visitor 0.5 m near tail of bed 3 min

Visitor 1 m near tail of bed 3 min

4.2. Results and Discussion

Figure 4a shows the fast time and slow time of the raw signal, and Figure 4b illustrates
the result after clutter reduction based on the background subtraction method. In Figure 4b,
the maximum energy is around 80 cm.

Figure 5 indicates a fast-time–slow-time matrix after ICA and reference signals. It is
clear that after vital signals extraction, IC1 is the heartbeat signal, whereas IC2 is the chest
cavity motion during breathing. Figure 6 illustrates the FFT result of IC2 in Figure 5 for
respiration rate detection. The peak of FFT is represented as the respiration rate value with
high accuracy.

Figure 7 clearly shows that after heartbeat signal extraction by ICA, the peak of PSD
is closer to the reference heart rate, compared with the derived heart rate after high-pass
filtering. Using ICA and a simple peak detection algorithm to find the accurate peak of
a signal corresponding to the correct heart rate is not practical most of the time. Figure 8
illustrates an example of a situation where the fundamental heart rate is corrupted by
respiration harmonics. It shows that all ICs have the highest peak around 60 bpm, whilst
the reference heart rate value is around 79 bpm. Moreover, the harmonics of heart rate are
almost aligned with the integer multiple of reference. This is the reason the proposed peak
selection algorithm always works with the higher harmonics for heart rate extraction.

Figure 9 indicates the extracted heart rate using different algorithms and the reference
heart rate values from ECG. The window length for each radar and ECG signals’ reading is
35 s, and the readings are repeated every 5 s. The figure shows that the FFT and modified
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covariance method are affected by respiration harmonics and can not achieve an accurate
result. The proposed peak detection algorithm has higher accuracy and stability, compared
with other methods.

(a) Before clutter reduction

(b) After clutter reduction

Figure 4. Fast–time–slow–time matrix.

Table 3 presents the estimated heart rates and respiration rates of one subject’s data for
the previously mentioned scenarios. The error in this table is calculated using the absolute
value of the difference between the reference ground truth and the measurement. It shows
that the average error is 0.82 bpm for the respiration signal, and the maximum error is
2 bpm. In contrast, for heart rate estimation, the average error is 1.45 bpm. The maximum
error is 4 bpm for Fowler’s position 2 and the visitor sitting near the head of the subject.
Table 3 also indicates that different body positions and a visitor away 0.5 m or 1 m from the
subject will give more accurate results for both heart rate and respiration rate estimation.
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Figure 5. ECG, respiration signals, and ICs.

Figure 6. Result of FFT on extracted breathing signal.

Figure 7. Results of modified covariance method before ICA vital signs extraction and after vital
signs extraction.
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Figure 8. Results of modified covariance method for all ICs. The reference heart rate is 79 bpm. The
red dash lines are the integer multiple of reference heart rate.

Figure 9. Heart rate estimation with different methods with a window length of 35 s. The red star
is the reference heart rate, the pink cross is FFT after the high-pass filter, the black triangle is the
modified covariance method after the high-pass filter, and the blue circle is the proposed method.

The results of the heart rates and respiration rates are displayed in Table 4. The
mean absolute error (MAE) and root mean square error (RMSE) for all five subjects who
participated in the experiments are compared with their related reference signals. It is clear
that the average MAE is 0.65 for respiration rate and 1.32 for heart rate estimation in Table 4.
The maximum MAE for heart rate happens in the scenarios of left lateral recumbent and
the visitor sitting and talking near the leg of the subject. It is because the received signal
will be weak when the radar signal penetrates from the right arm to the heart of the subject,
and the visitor talking interferes with the heartbeat signal received from the radar sensor.
Moreover, the heart rate detection will be accurate when a visitor is 0.5 m and 1 m away
from the subject on the bed. Table 5 shows a comparison between the devices and signal
processing approaches from different studies and the proposed method in this work.



Sensors 2022, 22, 83 14 of 17

Table 3. Results of heart rate and respiration rate in different scenarios. The data length is 35 s in this
table for each experiment.

Scenarios
Respiration Rate Heart Rate

Reference Radar Error Reference Radar Error

Supine 21 20 1 74 75 1
Right lateral recumbent 18 18 0 76 76 0
Left lateral recumbent 19 19 0 71 72 1
Prone 18 18 0 71 70 1
Baby position right 18 19 1 68 67 1
Baby position left 18 19 1 68 67 1

Fowler’s position 1 21 20 1 71 70 1
Fowler’s position 2 18 20 2 70 66 4
Fowler’s position 3 20 20 0 72 75 3
Sitting on the bed 19 18 1 78 77 1

Visitor standing near head 18 19 1 70 68 2
Visitor sitting near head 19 21 2 69 65 4
Visitor sitting and talking near head 22 21 1 72 72 0
Visitor standing near leg 16 17 1 67 66 1
Visitor sitting near leg 17 18 1 65 63 2
Visitor sitting and talking near leg 18 20 2 65 65 2

Visitor 0.5 m near head of bed 20 20 0 77 78 1
Visitor 1 m near head of bed 18 19 1 71 74 3
Visitor 0.5 m near leg 19 19 0 68 68 0
Visitor 1 m near leg 18 18 0 67 66 1
Visitor 0.5 m near tail of bed 19 20 1 67 66 1
Visitor 1 m near tail of bed 19 18 1 67 66 1

Average error 0.82 1.45

MAE =

n
∑

i=1
|yi − xi|

n
=

n
∑

i=1
ei

n
, (31)

RMSE =

√
1
n

n

∑
i=1

(yi − xi)2. (32)

In the Equations yi is the measurement and xi is the ground truth of reference signals.

Table 4. Results of different errors.

Scenarios Respiration Rate Heart Rate

MAE RMSE MAE RMSE

Supine 1 1.18 1 2.1
Right lateral recumbent 0.2 0.45 1.4 1.95
Left lateral recumbent 0 0 2.6 4.171
Prone 0.2 0.45 2 2.61
Baby position right 0.8 1.1 1.4 1.95
Baby position left 0.6 1 2 2.61
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Table 4. Cont.

Scenarios Respiration Rate Heart Rate

MAE RMSE MAE RMSE

Fowler’s position 1 1 1.18 1 1
Fowler’s position 2 0.8 1.1 2.2 2.49
Fowler’s position 3 0.4 0.632 1.2 1.67
Sitting on the bed 0.6 0.77 1.4 1.48

Visitor standing near head 0.4 0.63 1.6 1.79
Visitor sitting near head 0.6 0.77 0.8 1.1
Visitor sitting and talking near head 0.8 1.1 0.6 0.77
Visitor standing near leg 1 1.61 1 1.34
Visitor sitting near leg 1.2 1.26 0.8 1.1
Visitor sitting and talking near leg 1 1.34 2.6 2.93

Visitor 0.5 m near head of bed 0.6 0.77 2 2.68
Visitor 1 m near head of bed 0.4 0.89 0.6 0.77
Visitor 0.5 m near leg 1.4 1.48 0.6 1
Visitor 1 m near leg 0.6 0.77 0.8 1.41
Visitor 0.5 m near tail of bed 0 0 0.8 1.1
Visitor 1 m near tail of bed 0.8 1.1 0.6 0.77

Average error 0.65 0.89 1.32 1.76

Table 5. Comparison related work with the proposed method.

Radar System Radar Frequency
(GHz)

Distance
(m) Position Method

[9] CW radar 24 0.75 Sitting
Estimate the coarse HR first,
then use narrow BPF ac-
cording to coarse HR.

[17] UWB radar,
FMCW radar 8.7 0.5–2.5 Front, left, right, back MTI and FFT

[20] UWB radar 4.6 0.5–3 Front, 45 degree, lateral
side, backside SVD and CZT

[23] Two CW radars 10.587 and 10.525 0.5 Sitting ICA and HPF

[25] CW radar 26.4 0.6 Sitting Filter only

Proposed
method UWB radar 7.29 1 Different bed angle and

different body position
ICA, modified covariance
method and peak selection

5. Conclusions

In this paper, we proposed a novel signal processing algorithm for heart rate and
respiration rate estimation based on the ICA and harmonics peak selection method for
an IR-UWB radar sensor. The suggested algorithm used ICA to extract clear pulse waves
and respiratory signals. Then, the modified covariance method was used to obtain the
frequency domain PSD after filtering. Since the fundamental heartbeat signal is easily
corrupted by the respiratory signal and its harmonics, a peak selection based on higher
harmonics of the heart waveform was introduced to estimate the heart rate. The outliers
detection algorithm was applied to improve the accuracy of the results further in the
real-time application because of its capability to consider other ICs if there is an outlier
in the detected heart rates. The results were measured with five subjects with different
situations in this experiment. The result gives an MAE of 0.65 in respiration and 1.32 in
heart rate detection.
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There are some limitations to the proposed algorithm. The signal is easily interfered
with by vibration noise from the environment with a frequency close to the heart rate
because the energy of heart rate harmonics is low. In the future, our work will focus
on multiple people detection, localization, heart rate, respiration rate detection in noisy
environments such as body movement, talking, and walking scenarios.
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