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Abstract: The risk of low-back pain in manual material handling could potentially be reduced by back-
support exoskeletons. Preferably, the level of exoskeleton support relates to the required muscular
effort, and therefore should be proportional to the moment generated by trunk muscle activities. To
this end, a regression-based prediction model of this moment could be implemented in exoskeleton
control. Such a model must be calibrated to each user according to subject-specific musculoskeletal
properties and lifting technique variability through several calibration tasks. Given that an extensive
calibration limits the practical feasibility of implementing this approach in the workspace, we aimed
to optimize the calibration for obtaining appropriate predictive accuracy during work-related tasks,
i.e., symmetric lifting from the ground, box stacking, lifting from a shelf, and pulling/pushing. The
root-mean-square error (RMSE) of prediction for the extensive calibration was 21.9 nm (9% of peak
moment) and increased up to 35.0 nm for limited calibrations. The results suggest that a set of three
optimally selected calibration trials suffice to approach the extensive calibration accuracy. An optimal
calibration set should cover each extreme of the relevant lifting characteristics, i.e., mass lifted, lifting
technique, and lifting velocity. The RMSEs for the optimal calibration sets were below 24.8 nm (10%
of peak moment), and not substantially different than that of the extensive calibration.

Keywords: back-support exoskeletons; exoskeleton control; load prediction model; optimal calibration

1. Introduction

Low back loading during manual material handling in the workplace is a risk factor
for low back pain [1,2]. To reduce low back loading during manual material handling,
spring-based or actuated back-support exoskeletons can be used to provide support [3].
In actuated exoskeletons, the magnitude of the support is determined by the exoskeleton
control strategy and generated by actuated components. Hereto, developers need to decide
on the optimal level of desirable support that is required in manual material handling
activities [4].

The desirable support can be derived from the biomechanical load on the human
body [5,6]. For the low back, a commonly used load parameter is the spinal compression
force, which is strongly correlated with the moment imposed on the lumbosacral joint,
MHuman [7]. Consequently, for back-support exoskeleton control, the desirable support
could be determined based on an estimate of MHuman. These moments are produced
by active forces through muscle activation [7], together with passive forces generated
through strain of tissues such as muscles, tendons, ligaments, and fascia [8]. Substantial
passive forces develop when dorsal tissues are lengthened during forward flexion [8]. If
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the exoskeleton does not constrain body motion, the passive forces are not affected by the
exoskeleton. Consequently, in large flexion angles, the passively generated moment reaches
high values [9]. Supporting the full moment (passive + active) would require the user to
counteract the exoskeleton to stay in the same posture. Therefore, the desirable support
should be derived from the actively generated part of MHuman only and the moments
generated by passive forces should be excluded.

The active MHuman can be predicted with EMG-based trunk muscle models [7,10–13].
These models must be fitted to each individual through a calibration procedure. The
calibration procedure consists of performance of calibration trials during which EMG,
kinematics, and external force data are collected. After calibration, these models predict
the active MHuman using EMG and trunk kinematics data.

The use of multiple surface EMG electrodes will increase preparation time, may be
limited by interference with the exoskeleton, and may cause discomfort and thus limit
the practical feasibility of EMG-based trunk muscle models in exoskeleton control. To
reduce the number of required EMG channels, an additional calibration step has been
suggested [14]. This step follows the calibration of the EMG-based trunk muscle model by
fitting a regression model on data from the same set of calibration trials. The regression
model attempts to find a relation between data from a reduced number of EMG channels
together with the kinematic data obtained by sensors embedded in the exoskeleton as
predictor variables and the active MHuman predicted by an EMG-based trunk muscle model
as the response variable. After the calibration and during operation, the regression model
provides a real time estimation of the response variable, i.e., active MHuman, using current
values of the predictor variables as input.

A challenge of this approach is to design an optimal calibration procedure. Previously,
EMG-based trunk muscle models and the regression model were calibrated for each user
using data obtained during several lifting trials with a range of characteristics, i.e., mass
lifted, technique, and velocity [14,15]. However, the time and cost involved with performing
an extensive calibration procedure limits practical feasibility as well. In addition, the
calibration procedure requires equipment that is not easily implemented in the workplace,
such as a motion capture system and force plate.

This study aimed to determine to what extent the calibration procedure and the
number of sensors can be limited while the active Mhuman prediction accuracy remains
comparable to that obtained from an extensive calibration procedure. To this end, dif-
ferent sets of calibration trials were employed to calibrate an EMG-based trunk muscle
model [7,10] and the regression model. Subsequently, low-back load during symmetric box
lifting from the ground and box stacking were predicted using a small number of sensors
and the calibrated regression model. Outcomes were compared with a reference. The
predictive accuracy was used as a measure of the quality of the regression models achieved
by different calibration sets. In addition, the predictive accuracy during lifting from a shelf
and pulling and pushing were evaluated, to examine generalizability of the models. In
addition, the predictive accuracy obtained when calibrating with quasi static trials, which
would allow further simplification of the calibration procedure, was evaluated.

2. Materials and Methods

Ten healthy male participants (age: 27.3 ± 2.7 years, weight: 73.8 ± 7.6 kg, height:
1.82 ± 0.09 m) with no history of low-back pain participated in the experiment.

2.1. Informed Consent Statement

The experimental protocol was approved by the scientific and ethical review board of
the faculty of behavioural and movement sciences, Vrije Universiteit Amsterdam (VCWE-
2019-086). Participants were informed about the protocol prior to and on the day of the
experiment and signed an informed consent.
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2.2. Data Acquisition
2.2.1. Body Kinematics, Ground Reaction Force, and Exoskeleton Support

A total of 10 LED cluster markers were attached to the lower legs, upper legs, lower
arms, upper arms, pelvis, and trunk (T10 level), as shown in Figure 1a. Feet, hands, and
head were considered rigidly attached to the lower legs, lower arms, and trunk, respectively.
Using pointer measurements [16], markers were related to anatomical landmarks to con-
struct a 3D linked segment model [17]. Marker positions were collected at a sample rate of
50 Hz using an 3D motion capture camera system (Certus, Optotrak, Northern Digital Inc.,
Waterloo, ON, Canada, Figure 1b). Moreover, ground reaction forces and moments were
measured using two strain gauge based custom-made 1.0 × 1.0 m force plates (Figure 1b)
at 200 Hz and resampled to 50 Hz using the “resample” function (MATLAB R2020, The
MathWorks Inc., Natick, MA, USA), which applies an FIR antialiasing lowpass filter to
the signal and compensates for the delay introduced by the filter. Subsequently, marker
positions and force-plate data were low-pass filtered with a 5 Hz cutoff frequency using
a second-order Butterworth filter to avoid noise amplification in further data processing
stages and synchronized using a trigger signal generated by the motion capture system.
In addition, during the trials with the exoskeleton, the assistive moment generated by the
exoskeleton was measured by embedded torque sensors and stored as MExo. Exoskeleton
data were synchronized with the positional marker data using the time delay between the
trunk rotation angle calculated from the marker positions and the trunk rotation angle
measured by the exoskeleton embedded sensor. The time delay was determined based on
the cross-correlation analysis between these two signals.
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rup, Denmark) with inter-electrode distance of approximately 20 mm were attached to the 
shaved and cleaned skin (Figure 1c,d). The electrodes were bilaterally placed over rectus 
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ament), external oblique (mid-axillary line, halfway between the iliac crest and the lowest 
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lumborum (3 cm lateral to L1), and pars thoracis (4 cm lateral to T9), as described by [18]. 

Figure 1. Experimental setup. (a) Ten LED cluster markers were attached to lower legs, upper legs,
lower arms, upper arms, pelvis, and trunk (T10 level). The cluster markers on the pelvis and trunk
were attached using rigid structures for better visibility. The cluster markers attached to the left lower
leg, left upper leg, left lower arm, and left upper arm are not visible due to the camera’s position.
(b) Three-dimensional motion capture cameras around the experimental setup collected marker
positions and force plates measured ground reaction forces and moments. One out of four cameras is
visible. (c,d) Twelve pairs of EMG electrodes on the back (c) and abdominal (d) trunk muscles.

2.2.2. Muscle Activity

Twelve pairs of Ag/AgCl surface EMG electrodes (BlueSensor N, Ambu A/S, Ballerup,
Denmark) with inter-electrode distance of approximately 20 mm were attached to the
shaved and cleaned skin (Figure 1c,d). The electrodes were bilaterally placed over rectus
abdominis (ventrally at the umbilicus level), internal oblique (superior to the inguinal
ligament), external oblique (mid-axillary line, halfway between the iliac crest and the
lowest edge of the ribcage), Iliocostalis lumborum (6 cm lateral to L2), longissimus thoracis
pars lumborum (3 cm lateral to L1), and pars thoracis (4 cm lateral to T9), as described
by [18]. EMG signals were amplified (Porti-17TM, TMSi, Enschede, The Netherlands)
and stored at 2000 Hz. Off line, EMG signals were band-pass filtered (10–400 Hz) with
a second-order Butterworth filter, filtered to remove the electrical noise [19], high-pass
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filtered (30 Hz) to remove ECG artifacts [20], full-wave rectified, and low-pass filtered with
a cut-off frequency of 2.5 Hz [21] to determine the linear envelope of the signal [22]. The
signals were normalized to the maximal voluntary contractions (MVC), synchronized with
kinematics data and resampled to 50 Hz.

2.3. Experimental Design and Procedure

Initially, participants performed maximum exertion tasks to obtain MVC of the trunk
muscles as described by [23]. In short, they activated their back and abdominal muscles
with a maximum effort. The peak values of the linear envelope of the EMG signals were
defined as the MVC for each muscle. Then, they carried out different work-related tasks,
namely, (A) lifting from the ground without an exoskeleton, (B) lifting from the ground
with an exoskeleton, (C) box stacking, (D) lifting from a shelf, and (E) pulling and pushing
(Figure 2). All trials were performed with two repetitions.
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Figure 2. Participants performed different work-related tasks: (A) lifting from the ground without
an exoskeleton, (B) lifting from the ground with an exoskeleton, (C) box stacking, (D) lifting from a
shelf, and (E) pulling and pushing.

During A, participants lifted a box from the ground to the upright posture, followed by
placing it back on the ground. Data obtained from these lifts were used for the calibration
as explained in the next section and will be referred to as calibration trials. These lifts were
performed in 14 (2 × 2 × 2 + 2 × 1 × 3) conditions with different lifting characteristics, i.e.,
mass lifted (7.5 and 15 kg), lifting technique (stoop (keeping knees extended and reaching
the box with trunk flexion) and squat (keeping trunk extended and reaching the box with
knee flexion), Figure 3), and lifting velocity (normal and slow). In addition, they lifted the
same boxes using a free lifting technique (a self-selected combination of knee and trunk
flexion) at very slow, normal and fast velocities.
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Figure 3. Participants lifted the box with different techniques: (Stoop), keeping knees extended and
reaching the box with trunk flexion; (Free), a self-selected combination of knee and trunk flexion;
(Squat), keeping trunk extended and reaching the box with knee flexion.

During B, participants performed the box lifting task as (A). They lifted 7.5 kg and 15 kg
boxes in a free lifting technique and with normal and fast velocity while wearing an actuated
back-support exoskeleton, XoTrunk (INAIL/Italian Institute of Technology (IIT)) [24]. The
lifts were repeated with different control strategies governing the exoskeleton support,
namely, INCLINATION (assistive torque adjusted proportional to trunk inclination angle),
DYNAMIC (assistive torque adjusted proportional to trunk inclination angle and angular
acceleration), VELOCITY (assistive torque adjusted proportional to trunk inclination angle
and angular velocity), HYBRID (assistive torque adjusted proportional to trunk inclination
angle and forearm muscle activity), and TRANSPARENT (assistive torque compensates the
friction and inertia of the motors, so that the user perceives the exoskeleton support as in
zero-torque mode).

During C, participants unstacked and re-stacked a pile of three boxes. Participants
lifted one box at a time, carried it for approximately two meters and stacked it onto a
new pile from the ground up. Next, they unstacked the two top boxes from the new
pile by lifting the second box from the top (so they carried two boxes at a time), carried
them for approximately two meters and placed them on the ground. Each box weighed
7.5 kg. These trials were performed while wearing the exoskeleton controlled by the
INCLINATION strategy.

During D, participants held a box at hip level in the upright posture, then placed it
on the top of a surface at 1.5 m height, followed by lowering it back to hip level in the
upright posture. They performed these trials without the exoskeleton and with 7.5 kg and
15 kg boxes.

During E, participants performed isometric pulls and pushes against a handle that was
attached to a rope. The rope passed over a pulley and was tensioned by a hanging mass of
10 kg. These trials were performed without the exoskeleton. The choice of performing D
and E without the exoskeleton was based on the fact that they were performed in largely
upright posture, while the exoskeleton’s support was based on trunk inclination angle.

Data obtained during B, C, D, and E (all together referred to as the test trials) were
used to evaluate the predictive accuracy of the models.

2.4. Calibration Sets

Different calibration sets were used to calibrate the EMG-based muscle model (EMG-
Mod) and subsequently, train the regression model (RegMod). One calibration set (referred
to as the Full set) included all calibration trials (the ones performed during A, i.e., lifting
from the ground without the exoskeleton in 14 conditions with different mass lifted, lifting
technique, and velocity, number of trials n = 14). The predictive accuracy achieved by
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the Full set was considered as the reference predictive accuracy and was used as the first
calibration set for our final analysis.

Additionally, any subsets of Full set, with n (n ∈ {1, 2, 3, . . . }) number of calibration
trials included in the set, were generated and used for the calibration. The value of n was
increased until the predictive accuracy of RegMod approached that of the Full set. Therefore,
the final n value, defined as R, represents the minimum number of calibration trials required
to obtain the reference quality. Given that increasing the variability of data in the calibration
set may improve the performance of the models [25], R-element calibration sets, which
include trials that cover both extremes of the three lifting characteristics, i.e., mass lifted,
lifting technique, and lifting speed, were defined as Selected family of calibration sets.

Among the Selected family, the calibration set with the poorest accuracy was defined
as the Worst-selected, which was used as our second calibration set for our final analysis.
The predictive accuracy obtained with this set helped us determine whether the selec-
tion criterion is sufficient to achieve a comparable predictive accuracy as the reference
predictive accuracy.

Finally, as a third calibration set for our final analysis, a set of only the trials with the
free lifting technique at a very slow speed and with 7.5 kg and 15 kg boxes was defined.
This set is denoted as the Quasi-static set. During these trials, dynamically-induced loads
are limited; therefore, calibration can be conducted in practice with a limited motion capture
system and force gauges.

2.5. Data Processing
2.5.1. Pipeline

The predictive accuracy of each calibration set was determined following the data
processing pipeline shown in Figure 4 for each calibration set. In the pipeline, three
models—inverse dynamics (ID), EMGMod, and RegMod—were used, each described
in detail in the next section. First, ID was implemented to predict the moment around
the lumbar spine, MID

Human, for all trials. The superscript denotes the model used for the
estimation. As ID provides accurate prediction, MID

Human was considered the reference
for MHuman. Second, the calibration procedure was performed for each individual using
calibration set data. More specifically, initially the EMGMod was calibrated using data
from 12 EMG channels together with ID outcomes to differentiate between active and
passive components of MHuman. Next, the RegMod was trained using data from four
EMG channels (bilateral longissimus thoracis pars lumborum and pars thoracis) together
with pelvic and trunk kinematics as predictor variables and the active moment, predicted
using the calibrated EMGMod, as the response variable. The selection of these specific
EMG channels was shown to provide the best performance of the regression model [14].
Third, the calibrated EMGMod and RegMod were applied on the test trials to predict the
active moment, i.e., MEMGMod

Active and MRegMod
Active , respectively. In this step, i.e., implementing

calibrated models, EMGMod required data from 12 EMG channels whereas RegMod
required four EMG channels.

The active moment is the intended factor for exoskeleton control, but an appropriate
reference value is unavailable. Therefore, the accuracy of MHuman prediction was used to
determine model quality. To evaluate the accuracy of MHuman prediction corresponding
to each calibration set, the moment that was generated by passive forces and predicted
with EMGMod, MEMGMod

Passive , was added to MEMGMod
Active and MRegMod

Active to predict MEMGMod
Human and

MRegMod
Human , respectively. Note that MEMGMod

Passive was used for evaluation purposes only and it
is not needed for the operation phase. Finally, root mean square errors (RMSE) between
MID

Human and MEMGMod
Human and between MID

Human and MRegMod
Human were determined and used as a

measure of predictive accuracy for EMGMod and RegMod, respectively. It should be noted
that, as RegMod is calibrated on the basis of EMGMod outcomes, RegMod outcomes are
subject to the errors of EMGMod. Therefore, RegMod is expected to perform worse than
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EMGMod. However, given the smaller number of required EMG sensors, implementing
RegMod is practically desired.

Sensors 2022, 22, 87 7 of 14 
 

 

 
Figure 4. Data processing and evaluation pipeline for a calibration set. Inverse dynamics (ID) was 
implemented to determine the moment around the lumbar spine (MHuman) for all trials. Next, the 
dataset collected during a set of calibration trials was used to calibrate the EMG-driven muscle 
model (EMGMod) and the regression model (RegMod), successively. Calibrated models were used 
to predict the active MHuman during a set of test trials. To evaluate the predictive accuracy achieved 
by the calibration set, the total MHuman, determined by ID, was compared with that predicted by 
the EMGMod and that predicted by the RegMod. 

2.5.2. Evaluation and Statistical Analysis 
To evaluate the influence of calibration sets on the performance, RMSEs of all test 

trials were calculated, averaged across participants, and assigned to the corresponding 
calibration set. 

In addition, to assess the impact of different calibration sets on the models’ perfor-
mance for tasks specifically, test trials were grouped in task groups, i.e., lifting from the 
ground, box stacking (carrying and lifting phase separately), lifting from a shelf, and pull-
ing and pushing, and RMSEs were calculated. Repeated measures ANOVA followed by 
a post-hoc Bonferroni test were performed on RMSEs to determine the main effects and 
interactions of task group (5 levels: B, carrying phase of C, lifting phase of C, D, and E) 
and calibration set (3 levels: Full, Worst-selected, and Quasi-static). A significance level of 
0.05 was used for all tests. 

2.6. Models 
2.6.1. Inverse Dynamics 

Using lower body kinematics and force plate data, the net L5/S1 joint moment, MNet
ID , 

was calculated using a bottom-up inverse dynamics model [17]. In the trials without the 
exoskeleton, MNet

ID  equals the MHuman
ID . In the trials with the exoskeleton, MNet

ID
 is carried 

by the human and the exoskeleton (MHuman
ID =  MNet

ID − MExo). 

2.6.2. EMG-Driven Muscle Model (EMGMod) 
Using the EMGMod, MActive

EMGMod and MPassive
EMGMod were predicted using trunk muscle 

EMG signals, lumbar kinematics, and seven parameters (P), which represent trunk-mus-
cle contractile properties [7,10]. The parameters (P) were calibrated to each individual to 
create a subject-specific model.  

The parameters (P) include a scaling factor between EMG signal amplitude and mus-
cle stress, a position of the passive length-tension curve relative to the optimum muscle 
length, a scaling factor for the passive length-tension curve in the model, two scaling fac-
tors for the eccentric part and the concentric part of the active tension-velocity curve, and 
the optimum angle, defined as the flexion angle at which trunk muscles are at the opti-
mum length [7]. During EMGMod calibration, the objective function J (as described in 

Figure 4. Data processing and evaluation pipeline for a calibration set. Inverse dynamics (ID) was
implemented to determine the moment around the lumbar spine (MHuman) for all trials. Next, the
dataset collected during a set of calibration trials was used to calibrate the EMG-driven muscle
model (EMGMod) and the regression model (RegMod), successively. Calibrated models were used to
predict the active MHuman during a set of test trials. To evaluate the predictive accuracy achieved by
the calibration set, the total MHuman, determined by ID, was compared with that predicted by the
EMGMod and that predicted by the RegMod.

2.5.2. Evaluation and Statistical Analysis

To evaluate the influence of calibration sets on the performance, RMSEs of all test
trials were calculated, averaged across participants, and assigned to the corresponding
calibration set.

In addition, to assess the impact of different calibration sets on the models’ perfor-
mance for tasks specifically, test trials were grouped in task groups, i.e., lifting from the
ground, box stacking (carrying and lifting phase separately), lifting from a shelf, and
pulling and pushing, and RMSEs were calculated. Repeated measures ANOVA followed
by a post-hoc Bonferroni test were performed on RMSEs to determine the main effects and
interactions of task group (5 levels: B, carrying phase of C, lifting phase of C, D, and E) and
calibration set (3 levels: Full, Worst-selected, and Quasi-static). A significance level of 0.05
was used for all tests.

2.6. Models
2.6.1. Inverse Dynamics

Using lower body kinematics and force plate data, the net L5/S1 joint moment, MID
Net,

was calculated using a bottom-up inverse dynamics model [17]. In the trials without the
exoskeleton, MID

Net equals the MID
Human. In the trials with the exoskeleton, MID

Net is carried by
the human and the exoskeleton (MID

Human = MID
Net −MExo).

2.6.2. EMG-Driven Muscle Model (EMGMod)

Using the EMGMod, MEMGMod
Active and MEMGMod

Passive were predicted using trunk muscle
EMG signals, lumbar kinematics, and seven parameters (P), which represent trunk-muscle
contractile properties [7,10]. The parameters (P) were calibrated to each individual to create
a subject-specific model.

The parameters (P) include a scaling factor between EMG signal amplitude and muscle
stress, a position of the passive length-tension curve relative to the optimum muscle length,
a scaling factor for the passive length-tension curve in the model, two scaling factors for the
eccentric part and the concentric part of the active tension-velocity curve, and the optimum
angle, defined as the flexion angle at which trunk muscles are at the optimum length [7].
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During EMGMod calibration, the objective function J (as described in Equation (1)) was
minimized using the interior-point method of the nonlinear programming solver “fmincon”
(MATLAB R2020, The MathWorks Inc., Natick, MA, USA) to determine the appropriate P
for each individual.

J =
∫ T

0

(
MID

Human − MEMGMod
Active (P)−MEMGMod

Passive (P)
)2

dt (1)

2.6.3. Regression Model (RegMod)

RegMod predicted MRegMod
Active using EMG data from two bilateral back muscles,

i.e., longissimus thoracis pars lumborum and pars thoracis, together with kinematic data,
which can be obtained from the sensors embedded in the exoskeleton, i.e., trunk inclination
angle, angular velocity and angular acceleration (the rotation of thorax with respect to the
global z-axis), trunk flexion angle (the angle of the thorax relative to the thigh), and hip
angle (the angle of the pelvis relative to the thigh) [14].

Different types of regression models were used from the Regression Learner App
(MATLAB R2020, The MathWorks, Natick, MA, USA). The Coarse Gaussian SVM model
yielded the highest accuracy and was therefore used in this study. Moreover, 10-fold
cross-validation was used to prevent overfitting [26]. The regression model was trained
for each participant using the calibration set data and subsequently implemented to
predict MRegMod

Active .

3. Results

The predictive accuracy for EMGMod and RegMod varied for different subjects, trials,
and calibration sets. Examples of MHuman prediction for a lifting trial with good, average,
and poor predictive accuracy are shown in Figure 5.

Averaged-across-participants RMSEs of EMGMod over all test trials ranged between
20.3 and 25.9 nm and those of RegMod ranged between 21.8 and 34.8 nm for any combi-
nation of one to three calibration trials. RMSEs depended on the number of lifting trials
included in the calibration sets and on the characteristics of the included trials, as shown in
Figure 6.

For EMGMod, the Full calibration accuracy level was nearly achieved using a calibra-
tion set including only one trial. In contrast, for RegMod, the Full calibration accuracy level
was achieved by the best set of calibration sets with three trials included. Therefore, the
Selected sets were chosen from calibration sets with n = 3 trials included. For Selected sets,
i.e., the sets maximizing variation in lifting characteristics, the RMSEs of EMGMod ranged
between 20.3 and 22.0 nm and those of RegMod ranged between 21.8 and 24.8 nm. From
the Selected sets, the one with the largest RMSE deviation from the Full calibration level
was defined as the Worst-selected set.

Averaged over all tasks, the RMSEs for Quasi-static, Worst-selected, and Full calibra-
tion sets were, respectively, 22.4 nm, 22.0 nm, and 20.7 nm for EMGMod and 29.7 nm,
24.8 nm, and 21.9 nm for RegMod.

Surprisingly, the effects of calibration set (p = 0.39) and interaction between task group
and calibration set (p = 0.30) were not significant for EMGMod (Figure 7). However, a
significant effect of task group (p = 0.01) was found for EMGMod. Pairwise comparison
Bonferroni tests showed that RMSEs for pulling/pushing tasks were lower than those for
lifting from the ground (p = 0.01), lifting phase of the stacking task (p = 0.01), and lifting
from a shelf (p = 0.04). Moreover, for the stacking task, the RMSEs of the carrying phase
were smaller than those of the lifting phase (p = 0.03).
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Figure 5. Examples of lumbar spine moment prediction during symmetric box lifting task. The
reference values were determined by inverse dynamics, and the predictions were made by EMGMod
and RegMod. The predictive accuracy for EMGMod and RegMod varied for different subjects, trials,
and calibration sets. These examples were selected to illustrate the inverse relationship between the
predictive quality and the RMSE of the models.

For RegMod (Figure 7), the main effect of task group (p < 0.01) was significant but
that of calibration set (p = 0.18) was not significant. However, in contrast to EMGMod, a
significant interaction was found between task and calibration set (p = 0.01). Within each
task group, a univariate repeated measures ANOVA followed by a post-hoc Bonferroni
testing were performed. These tests indicated that the RMSEs of the Worst-selected set were
not significantly different from those of the Full set for all task groups. In contrast, RMSEs
of the Quasi-static set were larger than those of the Full set for lifting from the ground
(p < 0.01) and for the lifting phase of the stacking task (p = 0.04). For the carrying phase
of the stacking task, lifting from a shelf, and pulling and pushing tasks, the differences
between Quasi-static and Full were not significant.
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Figure 6. Averaged across participants RMSEs of EMGMod and RegMod for different calibration
sets. RMSEs depended on the number of lifting trials included in the calibration sets and on the
characteristics of the included trials. The dashed line represents the reference RMSE that was attained
by Full calibration. The number of trials included in the calibration sets was increased until the RMSE
of RegMod approached the reference RMSE. The family of Selected sets, which was chosen based
on the selection criterion, resulted in RMSEs within a close range of the reference RMSE. The Quasi
static set resulted in larger RMSE than Full set.
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Figure 7. Task-specific RMSEs of EMGMod and RegMod for Quasi-static, Worst-selected, and Full
calibration sets. RMSEs of Worst-selected calibration set were not significantly different from those of
Full set for all task groups. Quasi-static set resulted in larger RMSEs than Full set for lifting from the
ground and the lifting phase of the stacking task.

4. Discussion

This study aimed to assess the effects of using different sets of model calibration
trials on the accuracy of predicting the moment generated actively by the human, active
MHuman. To predict the active MHuman, three models, i.e., an inverse dynamic model (ID),
an EMG-based trunk muscle model (EMGMod), and a regression model (RegMod), were
used in two phases of the data analysis, i.e., calibration and operation. In the calibration
phase, the biomechanical data obtained during each set of calibration trials was used to
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solve the ID, calibrate the EMGMod, and train the RegMod, successively. In the operation
phase, the RegMod was used to predict the active MHuman during a set of test trials. The
predictive accuracy of each set of calibration trials was calculated by comparing MHuman
predicted with RegMod with MHuman predicted with the ID during the test trials.

RMSEs were used to quantify prediction errors [27] and to assess the accuracy achieved
by different calibration sets. In addition, calibration sets were compared using the coefficient
of determination (R2). The results of R2-based comparison agreed with the results based
on the RMSEs. Given that RMSE is an absolute measure of the fit whereas R2 is a relative
measure of the fit, RMSE suits the aim of implementing the model in exoskeleton control
better. Therefore, it was selected for the evaluation and statistical analysis.

The results suggest that the predictive accuracy of the RegMod depends not only
on the goodness of fit during the calibration procedure, but also on the accuracy of the
response variable, i.e., active MHuman predicted with EMGMod. Given that using different
sets of calibration trials affect the outcome of EMGMod, MHuman predicted with EMGMod
was compared with MHuman predicted with the ID, in order investigate the sources of errors
in further detail.

The results indicated that the overall RMSEs attained by an extensive calibration
procedure, the Full calibration set, were 20.3 nm for the EMGMod and 21.8 nm for RegMod.
The relatively small difference between RMSEs of EMGMod and RegMod suggests that
using the Full calibration set leads to minor errors caused by RegMod fitting.

4.1. Calibration Sets

From these results, it is clear that both models can obtain close to maximal predictive
accuracy when a properly limited set of calibration trials was employed.

The results suggest that for EMGMod, using one calibration trial may suffice to adjust
the subject-specific parameters. This may be because, unlike the RegMod, the EMGMod
is established based on biomechanical principles of the musculoskeletal system and the
calibration is required for adjusting subject-specific parameters of the model. Consequently,
very few calibration trials may provide enough information to approach the maximal
accuracy. However, calibration through three trials based on the Selected Sets would
provide more robust accuracy.

For RegMod, the results indicate that a set of three calibration trials are required
to approach maximal predictive accuracy. The RMSEs of the Selected sets (ranged from
21.8 and 24.8 nm) were all within a close range or equal to the Full calibration RMSE of
RegMod (21.8 nm). In addition, no significant difference was found between the results of
the Worst-selected set and the Full calibration. This suggests that the selection criterion,
i.e., using each extreme of the lifting characteristic, ensures a calibration set that leads to
a close to maximal predictive accuracy. The reason might be that the selection criterion
results in a combination of trials together covering a sufficient range of input variables of
the RegMod.

4.2. Model Performance for Different Task Groups

For EMGMod, employing the Quasi-static, Worst-selected, or Full calibration set did
not significantly affect the RMSEs. This is in line with a few calibration trials being sufficient
for EMGMod calibration (as described above). Regarding the significantly lower RMSEs
of pulling/pushing compared to lifting tasks, it should be noted that pulling/pushing
tasks were performed quasi-static and in the mid-range of trunk muscle length. There-
fore, these tasks are less affected by errors in the modeling of muscle force-velocity and
force-length relationships. In addition, the lumbar spine moments are usually lower dur-
ing pulling/pushing than lifting tasks [17,28,29]. Therefore, relatively lower RMSEs are
expected during pulling/pushing, given that the model prediction errors are expected to
be proportional to the absolute moment values. The same reasoning holds true for lower
RMSEs of the carrying phase compared to the lifting phase of the stacking task, which is
quasi-static for trunk muscles and causes relatively lower lumbar spine moments.
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For RegMod, RMSEs of lifting from the ground and the lifting phase of the stacking
task were significantly lower when calibrating with the Worst-selected or the Full sets
compared to the Quasi-static set. In contrast, RMSEs of the other task groups were not
affected by calibration set. Clearly, the Quasi-static set insufficiently covered dynamics for
RegMod calibration, and this mainly deteriorated predictions in dynamic lifting tasks.

4.3. Limitations

One major limitation of the current study is the errors generated by the EMGMod. The
results indicate that the accuracy of the RegMod is limited by the performance of the EMG-
Mod, as errors were comparable between RegMod and EMGMod. Therefore, enhancing
EMGMod performance would help to improve the accuracy of RegMod. In such a case, the
proposed selection criterion for the calibration set may not ensure reaching the maximal
accuracy. Another limitation is that the reported predictive accuracies corresponding to
different calibration sets were calculated based on the total MHuman prediction, whereas the
actively generated part of MHuman is the intended outcome for exoskeleton control. This
was due to the unavailability of an appropriate reference value for the active moment. The
reported RMSEs might differ from the error in active MHuman prediction. Nevertheless, an
optimal prediction of active MHuman depends on an adequate prediction of total MHuman.

Another limitation of this study is the repeatability of the results. The results of
the statistical analysis indicate that the conclusions hold true for the young healthy male
population. In addition, given two repetitions of each experimental trial, minor kinematic
variations in performing the same task were incorporated in the dataset. RegMod fit and
parameters may change over time considering the changes in predictor variables that
may occur, for instance due to replacement of EMG electrodes, or due to fatigue-related
changes in EMG signals. Note that EMG signal normalization will limit the electrode
replacement effects as the normalized EMG activity is less prone to changes caused by
electrode replacement. It should be considered that to implement the model in exoskeleton
control, the predictive accuracy should be sufficiently robust, and re-calibration procedures
may be needed. The predictive accuracy for prolonged working hours, its consistency over
days, and its changes due to fatigue should be investigated in future research.

Finally, participants in this study were all males, with similar age, weight, and height
and with no specific manual material handling experience. The reason was that the size
of the available exoskeleton constrained the height and weight of the participants. So
only males with similar body dimensions were recruited. In addition, older adults and
experienced workers were excluded in view of limited availability. Results may differ for
the excluded groups due to anatomical differences and differences in lifting behavior. More
diverse subject groups should be included in future research to examine the generalizability
of the conclusions.

4.4. Implications for Practice

Given the objective to implement the model in exoskeleton control, the required
sensors for the calibration phase and for the operation phase should be considered. For
calibration, the results indicated that the maximal predictive accuracy was approached with
either of the Selected sets. These sets were obtained with high-end motion capture systems
and force gauges, which typically are available in the laboratory settings. This may limit
the practical feasibility of implementing this approach. To prevent this, the Quasi-static
calibration set, which potentially can be obtained with a limited motion capture systems
and force gauges, was introduced. However, this set was not sufficient to obtain close to
maximal predictive accuracy. Alternatively, ambulatory measurement systems [30] may be
used for calibration to solve this issue.

For the operation phase, the number of sensors was already reduced by using the
RegMod approach. However, this approach still requires four EMG signals that can be
obtained by ambulatory devices for EMG monitoring. Note that during the operation phase,
the (close to) real-time processed EMG signals together with kinematics data captured with
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sensors embedded in the exoskeleton should be used as the input of RegMod to predict the
current active MHuman and control the exoskeleton accordingly.

5. Conclusions

The present study shows that in order to train a regression-based prediction model
of active MHuman, limited sets of calibration trials are sufficient to obtain close to maximal
predictive accuracy for symmetric lifting from the ground. The results suggest a criterion
to optimally design a limited set; it should consist of three lifting trials such that each
extreme of three relevant lifting characteristics, i.e., mass lifted, lifting technique, and lifting
velocity, are covered. An optimal calibration procedure reduces time and effort required
and, consequently, improves the practical feasibility of implementing this regression-based
prediction model in applications such as active exoskeleton control.
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