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Abstract: The acquisition of physiological data are essential to efficiently predict and treat cardiac
patients before a heart attack occurs and effectively expedite motor recovery after a stroke. This
goal can be achieved by using wearable wireless sensor network platforms for real-time healthcare
monitoring. In this paper, we present a wireless physiological signal acquisition device and a
smartphone-based software platform for real-time data processing and monitor and cloud server
access for everyday ECG/EMG signal monitoring. The device is implemented in a compact size
(diameter: 30 mm, thickness: 4.5 mm) where the biopotential is measured and wirelessly transmitted
to a smartphone or a laptop for real-time monitoring, data recording and analysis. Adaptive digital
filtering is applied to eliminate any interference noise that can occur during a regular at-home
environment, while minimizing the data process time. The accuracy of ECG and EMG signal
coverage is assessed using Bland–Altman analysis by comparing with a reference physiological
signal acquisition instrument (RHS2116 Stim/Recording System, Intan). Signal coverage of R-R peak
intervals showed almost identical outcome between this proposed work and the RHS2116, showing a
mean difference in heart rate of 0.15 ± 4.65 bpm and a Wilcoxon’s p value of 0.133. A 24 h continuous
recording session of ECG and EMG is conducted to demonstrate the robustness and stability of the
device based on extended time wearability on a daily routine.

Keywords: ECG/EMG sensing; physiological monitor; smart wearable device; wireless communication;
rehabilitation training

1. Introduction

The prevention of ischemic stroke and stroke recurrence is an important public health
concern. Nearly 25% of strokes in the United States are recurrent strokes and stroke causes
approximately 1 in 20 deaths [1]. As electrocardiography is one of the most important
physiological signals for cardiovascular health and the autonomic nervous system (ANS),
cardiac monitoring has been proven to demonstrate relevance to stroke. Several ECG
studies have been reported the quantitative ECG measurements in clinical applications
to evaluate the relationship between cardiac, neurological, and functional outcomes of
ischemic stroke [2,3]. After the strike of stroke, survivors often suffer from hemiplegia
which highly affects their daily activities [4]. Hemiplegia generally reveals asymmetrical
deficits in gait and is one of the most common disabilities observed in the post-stroke phase.
Asymmetrical gait can result from muscle weakness, leading to incompetent mobility, lack
of balance, and the threat of muscular wounds to healthy limbs [5,6]. Post-stroke recovery
depends on neural adaptation and task-specific repetitive exercise according to the basics
of neuroplasticity [7]. Neurorehabilitation training has been widely adopted to reduce
the disability caused by the stroke [8] and various forms of neurorehabilitation including
EMG-based robotic or visual support have been investigated [9–11].

In order to perform ECG analysis and EMG signal-based motor recovery training,
traditional Holter monitors and wired EMG monitor devices are applied to patients upon
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clinical visits. Unfortunately, intermittent ECG abnormalities can go undetected by an
on-visit examination [12] and rehabilitation therapy in dedicated facilities for a prolonged
period increases the cost and the limited number of therapists results in the delay of
treatment, restricting the patient from taking the best advantage of the critical time-limited
opportunity [13,14]. Therefore, a wearable home-based monitoring device that is capable
of providing immediate medical feedback and relevant ambulatory action is essential.
Further, when EMG signals are used for rehabilitation training, the delay in data processing
should be minimized while wirelessly transmitting [9–11]. Hence, a real-time user-friendly
physiological monitoring device and platform that enables remote medical care and patient-
driven recovery training is necessary.

Various forms of physiological monitoring devices are commercially available but most
of them are designed for recreational purposes. Most of recently developed monitoring
devices lack the compactness [15–21] and wireless connectivity [22] which is essential for
everyday wearable application. Other monitoring devices are limited to a single ECG or
EMG channel [15,17,23,24] and a long-term stability test including the interference study
is left out [15,17,18,24]. Furthermore, smart sensor networks that utilize a cloud network
environment and machine learning have been proposed by various research groups [25–27]
but existing personal healthcare monitoring devices fail to demonstrate the wearable
monitoring platform with user-friendly personal smartphone connectivity features for
real-time monitoring [18] and cloud networking for further data processing [15–17,22–24].

In this study, a wearable continuous ECG and EMG monitoring system for real-time
detection is proposed. The developed system consists of three major sub-systems: (1) a
wearable wireless physiological (ECG and EMG) signal monitoring device, (2) a host device
(Android smartphone) with real-time monitoring and data processing software, and (3) in-
depth bio-signal analysis through a cloud network server. The analog circuit and wireless
telemetry for the ECG/EMG data collection are fabricated on a compact printed circuit
board (PCB) and encapsulated in a robust housing unit for enhanced wearability. The
physiological data are wirelessly transmitted to a smartphone or a laptop for real-time
signal monitoring, recording, and data analysis via BLE, allowing users or therapists to
access the ECG/EMG information in real-time plot. The frequency spectrum is checked
once in every minute to detect the level of interference and it is utilized to adaptively
determine the order of the digital filter, optimizing the delay noise. The accuracy of this
work is assessed using a reference precision instrument, showing an excellent match. The
stability of the developed physiological monitoring system has been demonstrated by a
24 h continuous recording session with daily activity and further biopotential data were
processed in a network server for a heartbeat per minute (BPM), heart-rate variability
(HRV) and muscle activity monitoring. The key contributions of this paper are as follows.

• The proposed surface bio-potential acquisition system is compactly devised for an
everyday wearable application with supporting long-term stability validation. The
total area of the monitoring device is just about the size of a button-shape battery
(CR2032). The overall system implementation is cost effective compared to existing
systems with a dedicated host device.

• A host node manages the role of the monitoring device and displays the signals in
a real-time plot. Furthermore, a healthcare network is established between the host
node and a cloud server where an intelligent analysis is performed, and remote clinical
support can be provided by the physicians.

• A short-term physiological signal acquisition session with a reference instrument and
series of analyses concludes that the signal quality of this work is precise. A practical
long-term ECG and EMG acquisition session verifies the feasibility and wearability of
the proposed device under a regular daily activity, including aggressive exercise.

The rest of this paper is organized as follows. Section 2 presents the design and
fabrication of the monitoring device, followed by a discussion of the role and function of
the host node. Section 3 provides the experimental results. Finally, Section 4 concludes this
paper and suggests future work as a discussion.
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2. Design of the Proposed System

For wearable monitoring applications, a small-size and light-weight data acquisition
device is desired. To further enhance the patient’s comfort and mobility, the physiological
data are wirelessly transmitted to a host smartphone for real-time monitoring. The ubiquity
of the internet and smartphones can support remote clinical participation, but home-based
physiological signal acquisition devices are vulnerable to external noise in an everyday
environment, especially the powerline interference (PLI) [28–30]. Here, we present the
problem in an everyday environment and provide methods to overcome the issue.

A software platform for an Android device is implemented for data processing and
recording where the patient can monitor their bio-signals in real time through their personal
smartphone. The software also detects the noise level of the incoming signal, and an adap-
tive digital filter is implemented to remove unwanted interference, without introducing
unnecessary process delay. The recorded data can be distributed to a therapist on a cloud
server followed by further data analysis. The block diagram of the overall system is shown
in Figure 1.

Figure 1. Block diagram of the monitoring system. The biopotentials are acquired from the electrodes
and amplified by the analog front-end (AFE). The analog signals are sampled and wirelessly trans-
mitted to the host device, where the signal is reconstructed in real-time for monitoring. This data are
saved in the local device and stored in a cloud server via Wi-Fi or cellular communication.

2.1. Monitoring Device Design and Fabrication

To ensure reliable ECG and EMG capture, the analog front-end (AFE) modifies the
analog biopotentials with an instrumentation amplifier configured to amplify the target
signals and attenuate common-mode signals. We realized the dual signal capturing system
by splitting the electrode node into two AFE channels for both ECG and EMG applications.
The input impedance of the AFE is larger than 10 GΩ and the dual-channel configuration
introduces a slight gain reduction of less than 10%. A second-order high-pass filter and an
amplified second-order low-pass filter conditions the incoming biopotential signal and a
right-leg drive circuit drives the common-mode voltage at the electrodes to further enhance
the common-mode rejection. We implemented an analog notch filter (twin-T) prior to
digital filters, since high order digital filters introduce signal distortion [31] and require
a large amount of calculation, which is not suitable for a real-time monitoring system.
An analog multiplexer controlled by the microcontroller enables channel selection. The
schematic and specifications of the AFE is shown in Figure 2 and Table 1, respectively.
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Figure 2. Schematic of the analog front-end. Amplification channel is selected from the analog
multiplexer (MUX) from the microcontroller. The 2nd-order analog notch filter eliminates the
powerline interference and the analog signal is delivered to the ADC for sampling.

Table 1. Specification of the monitoring device circuit.

Symbol Parameter Value

Sampling Frequency Sample per second 104

A/D Resolution Bit 8~12 (this work: 8)
VDD V 1.8~3.3

Bandwidth (ECG) Hz 0.34~41
Bandwidth (EMG) Hz 40.17~727

Gain V/V 1100
Communication Type - BLE

PCB Dimension mm3 15 × 10 × 0.5

The microcontroller with integrated analog-to-digital converter (ADC) then samples
the biopotential signal and processes for BLE transmission. The signal is sampled at
10 kSps for accurate signal reconstruction and the microcontroller conditions the signal for
amplitude and reference level. To reduce the power consumption, the data are stored in
a buffer and the BLE transmits in a burst mode every 24 ms. The microcontroller of the
device also optimizes power consumption by coordinating system activation, wake, sleep,
and power down. Once the system is initialized, active components awaken only when in
use and enter a low-power state otherwise. Upon initial power on, the microcontroller is
initialized, and the device waits for a mode selection. Once the device is paired with an
external host BLE device and a mode selection command is given, the ADC is initialized,
and the radio transmits the corresponding data via BLE. From the mode command, the
microcontroller drives an output pin to the multiplexer for relevant signal acquisition
(Figure 3).
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Figure 3. Flow chart of the proposed ECG monitoring system. Upon power up, the microcontroller
initializes the BLE for standby. The host device pairs with the monitor device for mode selection (ECG,
EMG). Once the measurement mode has been selected, the monitor device samples the incoming
analog signal and transmits the data to the host device. The host device performs an additional
filtering and displays a real-time plot. The data are saved in the local device and uploaded to cloud
server for further analysis.

The circuit components are populated on a 14 mm × 10 mm × 0.5 mm sized printed
circuit board (PCB) using soldering paste (TS391LT, Chip Quik, Ancaster, ON, Canada),
including the chip-scale ICs and antenna. To make the monitor device suitable for everyday
activity, the PCB is encapsulated in a 3D printed button-shape housing with a battery
(CR2032, Panasonic, Kadoma, Japan). The wires for electrode interconnection are soldered
on to the PCB and a soft layer of PDMS (Sylgard 184, Dow Corning, Midland, MI, USA) is
molded to the PCB and the wires to prevent electrical shorts and accidental wire breakage.
The battery is fixed on the cap of the button-shape housing, which is designed as a twist-lock
for an easy battery replacement. The wires are wound around the housing for an adjustable
wire length configuration for various monitoring applications (Figure 4). The overall cost
of the prototype device fabrication, including the PCB and circuit components, is estimated
around USD 40. The proposed device is compatible with a typical Bluetooth 4.0 enabled
Android device, where other existing work requires a dedicated host device [17,18].

2.2. Host Node Software Implementation

The goal of the software platform is to provide comfort and easy monitoring for the
patient and the therapist. Therefore, most of the work is implemented in an application
on an Android platform. Once the host device pairs with the monitor device, it receives
the physiological data through BLE and feeds it into a real-time infinite impulse response
(IIR) digital filter which eliminates any remaining noise signal. Once in every minute, the
software detects the magnitude of the noise signal by taking a FFT of the signal in the past
24 ms and this information is used to adaptively determine the order of the IIR filter. In this
way, the amount of computation can be reduced, and any unnecessary time delay caused by
the calculation can be optimized. The data are reconstructed and visualized into a real-time
plot for on-the-spot monitoring. The software platform then logs the ECG/EMG data into
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the local folder every 24 ms, which is synchronized to a Health Insurance Portability and
Accountability Act- (HIPAA) compliant network server every 5 min for further analysis
and remote clinical support.

Figure 4. Images of the fabricated device. (a) Top view of the populated PCB; (b) bottom view of the
PCB; (c) image of the device encapsulated in a button shaped container with the cap open; (d) the cap
of the container is closed, ready for use.

2.3. Data Analysis on Remote Server

Once the file is updated to the server, a machine-learning algorithm can further
process the ECG information for R-peak and atrial fibrillation (AF) detection. For sake of
demonstration, we present a set of data analysis based on the R-peak detection, followed
by a calculation of HRV and BPM. For the EMG data analysis, the raw real-time EMG
signal is rectified and integrated to quantify the muscle activity to model the patient’s
average activity.

3. Experimental Results
3.1. Continuous ECG and EMG Monitoring

In this study, the monitoring device is worn with a commercial Ag/AgCl (2223H, 3M,
St. Paul, MN, USA) medical-grade electrodes (Figure 5). The ECG electrodes were placed in
a lead II orientation and the EMG electrodes are placed to measure the surface EMG signals
from activation signal at the right medial gastrocnemius muscle. The device is tightly
fastened to the limb with an adjustable strap and a ring. Signal filtering is unnecessary
when the patient is outdoors or in a room with no noise source. But when the subject is
indoors with typical consumer electronics and power source nearby, significant interference
occurs (Figure 6). The second order low-pass filter (cutoff at 41 Hz) of the AFE for ECG
is not able to eliminate the power supply noise (Figure 7a) and the noise is worse for
EMG since the biopotential signal bandwidth contains the mains frequency. Therefore, a
second order twin-T notch filter centered is implemented to further reduce the power line
interference [32] (Figure 7b).
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Figure 5. The measurement setup and electrode location. (a) The ECG electrodes were placed in a
lead II orientation; (b) EMG electrodes are placed to measure the surface EMG signals from activation
signal at the right medial gastrocnemius muscle.

Figure 6. A noise comparison with the captured biopotential signals. (a) ECG acquired outdoors;
(b) ECG at 30 cm away from the wall power; (c) EMG acquired outdoors; (d) EMG at 30 cm away
from the wall power.

Figure 7. The biopotential signals with additional filtering. (a) Raw ECG acquired from the AFE
at 30 cm away from the wall power; (b) ECG filtered with an analog notch filter (twin-T); (c) ECF
filtered with an IIR digital filter; (d) ECG filtered with (b,c).

The device transmits the biopotential data in BLE (2.4 GHz) and a stable wireless
communication link is established between a personal smartphone. Before displaying the
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real-time biopotential data, the EMG signal still contains considerable noise components
which require further filtering (Figure 8b). Thus, a 12-tab IIR digital filter is implemented
on the smartphone software for additional noise reduction (Figure 8d). Along with the right
leg driving circuit and the dual analog–digital filter, most of the motion artifacts and inter-
ference noise is reduced down to a negligible level, making the proposed device suitable
for an everyday use. Figure 9 displays the effect of noise reduction in frequency domain.

Figure 8. The biopotential signals with additional filtering. (a) Raw EMG acquired from the AFE
at 30 cm away from the wall power; (b) EMG filtered with an analog notch filter (twin-T); (c) EMF
filtered with an IIR digital filter; (d) EMG filtered with (b,c).

Figure 9. The spectrum of the biopotential signal. (a) Unfiltered ECG signals; (b) filtered ECG signals
(analog notch and digital IIR filter); (c) unfiltered EMG; (d) filtered EMG signals (analog notch and
digital IIR filter).

Once the monitoring device is paired with BLE and the target physiological signal
is selected, the device starts to capture the waveform. The information is displayed in a
real-time plot on the personal Android device (Figure 10) and logged simultaneously as a
file in the internal storage and synchronized to the network server.
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Figure 10. Mode selection and real-time signal monitoring from the host device.

3.2. Accuracy of the Acquired Signal

In order to validate the signal quality of the proposed monitoring system, a reference
physiological signal acquisition instrument (RHS2116 Stim/Record System, Intan) is used
to compare the measurement. The reference instrument samples the biopotentials at 20 kSps
with 16-bit resolution. Since the reference instrument is benchtop equipment, a short 10 min
ECG recording session was analyzed for comparison. To remove interference between the
two measurement instruments, electrodes from each instrument are placed side by side
(approximately 10 mm away from each other), in alignment with each other. The transient
physiological signals measured with both this work and the reference instrument are shown
in Figure 11a. At a glance, the ECG measurement results show an almost perfect overlay of
each other. The distribution of R-R peak interval for a 10 min recording session is shown in
Figure 11b, which also show a close match. A Wilcoxon signed-rank test is performed to
obtain a p-value of 0.133. Figure 12 shows Bland–Altman analysis of the signal coverage
comparing the heart rate of both this work and the reference instrument. The signal quality
results in a very close match with the RHS2116 recording system, showing a difference of
less than 0.15 ± 4.65 bpm.

Figure 11. A comparison between this work and RHS2116 Stim/Recording System (Intan). (a) Time
domain ECG acquired from this work and reference instrument at lead II orientation. (b) The R-R
peak interval (heart rate) acquired for 10 min.

The EMG comparison analysis is performed similarly. The electrodes are placed
at the right medial gastrocnemius muscle with each electrode, for this work and the
reference instrument, placed side by side (approximately 10 mm away from each other).
The patient applies force to the muscle while standing. The transient EMG signals are
measured as shown in Figure 13a. Since the analog signal amplification gain of the two-
measurement method is different, we perform a back calculation to reconstruct the original
signal. Discrepancy between the two results can be observed because the biopotentials are
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acquired from different locations within a muscle, but the overall EMG activity remains
similar. A Bland–Altman analysis is performed from the root mean square values over an
interval of 200 ms (Figure 13b). Considering the sEMG signals are obtained from different
electrodes, the analysis shows close match with a difference of 0.031 ± 0.045 mV.

Figure 12. Bland–Altman plot of the heart rate. The overall signal coverage of this work shows an
almost perfect overlay compared to the reference instrument within a difference of 0.2 ± 4.65 bpm.

Figure 13. A comparison between this work and reference instrument. (a) Time domain EMG signals
acquired from the right medial gastrocnemius muscle; (b) the Bland–Altman plot from EMGRMS.

3.3. Long-Term Monitoring and Data Analysis

To demonstrate the feasibility of the device for daily use, the ECG and EMG waveforms
were captured from a healthy male subject for a 24 h continuous monitoring session. The
subject had a regular routine while wearing the device, including daily exercise, walk and
sleep. Other than the patch electrode had to be attached to the skin for a prolonged period,
the subject did not experience any noteworthy discomfort. The uploaded ECG data was
further processed for an R-peak detection by comparing the gradient of the waveform and
comparing it with a threshold value. A waveform smoothing process was performed to
the calculated gradient values for noise rejection. Through the R-peak detection, a 30 min
average BPM is plotted for the test session with sub-windows displaying the actual time-
domain waveform during a running and walking session (Figure 14). A HRV is plotted
during the rest session to demonstrate the fidelity of the monitoring device. The time
interval between the R-peak is shown in Figure 15a with standard deviation of normal-to-
normal interval (SDNN) and root mean square of successive differences (RMSSD) of 42.9
and 21.8, respectively. The frequency domain spectral analysis (Figure 15b) indicates a low
frequency (LF), high frequency (HF) and LF/HR ratio of 77.7, 22.3, and 3.48, respectively.
All HRV measurements indicate a normal and healthy condition. For the EMG session, the
uploaded data were rectified and the envelop of the waveform was captured to calculate
the EMG intensity. The normalized 30 min average of the intensity is plotted for the
test session with sub-windows displaying the transient waveforms during a running and
walking session (Figure 16). The feasibility test demonstrates that the physiological signal
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monitoring system is capable of capturing ECG and EMG signals during everyday activity
without any noticeable artifact or interference.

Figure 14. A continuous 30 min averaged BPM for 24 h. The actual ECG signal is displayed for
walking and running activity.

Figure 15. Heart rate variability in (a) time domain and (b) frequency domain.
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Figure 16. A continuous 30 min averaged EMG intensity for 24 h. The actual EMG signal is displayed
for running and walking activity.

3.4. Device Lifetime

The current consumption of the device at a 10 kSps sampling rate is measured as
Figure 17 with an average of 4 mA. The device can continuously operate more than 58 h
with a 235 mAh button cell battery. The cap of the resin assembly is easily removable for
convenient battery replacement. The diameter and thickness of the assembly is 30 and
4.5 mm, respectively.

Figure 17. Current consumption during continuous monitoring.

4. Conclusions

This study demonstrates a continuous ECG/EMG monitoring system for an everyday
wearable application. The signal acquisition system accurately captures the biopotential
and transmits the data to a smartphone for real-time monitoring and analysis. The appli-
cation regarding signal monitoring is established on a personal smartphone to enhance
the accessibility for elderly and handicapped patients. The connectivity between the cloud
server also enables further data analysis and remote clinical support. The feasibility study
results show that the device can effectively filter the interference signals and capture con-
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tinuous ECG/EMG data during everyday activity. By preserving wireless connectivity to
BLE-enabled devices, we anticipate our wearable physiological signal monitoring system
as a healthcare tool for post-stroke and motor rehabilitation at-home environments where
standard monitoring devices are not reachable.

5. Discussion and Future Work

In this work, we have demonstrated the capture of interference-free real-time physio-
logical signals, presentation of a visual result to the patient, and delivery of the data to a
dedicated server for further analysis. A comparison with a high precision instrument is
presented, ensuring an accurate measurement. Although we have made notable improve-
ments compared to the existing devices, there is further progress that needs to be worked
on in order to deploy the system for practical use in the clinic with high impact.

• The current monitoring device has a ring hole and an adjustable band that the patient
can tie onto their limb or neck. Although the rigid structure offers protection for
the monitoring device, it can sometimes be uncomfortable to the patient. A flexible
patch-type miniature monitoring device that be attached to the skin could be a solution.

• Feature extraction in the host device (smartphone) is necessary since it can sometimes
be very difficult to spot a past event and the file size can be large in a prolonged
recording session.

• Without a classification algorithm based on machine learning that can alert the patient
or the physician, abnormal activity can easily go undetected unless a specialist moni-
tors the data all the time. Hence, there is a need to integrate the current system with
an algorithm that can effectively detect specific features, make accurate predictions,
and alarm the patient or the physician [25,26].
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