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Abstract: Aperture-level simultaneous transmit and receive (ALSTAR) attempts to utilize adaptive
digital transmit and receive beamforming and digital self-interference cancellation methods to
establish isolation between the transmit and receive apertures of the single-phase array. However,
the existing methods only discuss the isolation of ALSTAR and ignore the radiation efficiency of the
transmitter and the sensitivity of the receiver. The ALSTAR array design lacks perfect theoretical
support and simplified engineering implementation. This paper proposes an adaptive random
group quantum brainstorming optimization (ARGQBSO) algorithm to simplify the array design
and improve the overall performance. ARGQBSO is derived from BSO and has been ameliorated
in four aspects of the ALSTAR array, including random grouping, initial value presets, dynamic
probability functions, and quantum computing. The transmit and receive beamforming carried
out by ARGQBSO is robust to all elevation angles, which reduces complexity and is conducive
to engineering applications. The simulated results indicate that the ARGQBSO algorithm has an
excellent performance, and achieves 166.8 dB of peak EII, 47.1 dBW of peak EIRP, and −94.6 dBm of
peak EIS with 1000 W of transmit power in the scenario of an 8-element array.

Keywords: aperture-level simultaneous transmit and receive (ALSTAR); adaptive beamforming;
adaptive random group quantum brainstorming (ARGQBSO); digital phased array; robust design

1. Introduction

The discussions about 5G, mm-wave, and MIMO technologies have never slowed their
pace, which implies that existing wireless communication system throughput is still far
from meeting the actual demands. Fortunately, simultaneous transmit and receive (STAR)
technology (i.e., transmitting and receiving at the same time in the same frequency band)
has been considered a reliable way to overcome this trouble, which is the performance of
potentially doubling the capacity or spectral efficiency compared to traditional TDD and
FDD [1]. In fact, STAR was originally used in frequency modulated continuous wave radar
to achieve stealth by continuously illuminating the target with a low-power waveform.
With the active exploration of STAR by researchers, its superiority and competitiveness are
recognized by scientists in other fields. It has been considered in electronic warfare systems
as a means to continually detect weak signals in strong interference [2]. Furthermore, STAR
is also widely used in multifunctional vehicle systems and military and civilian airports to
achieve communication, sensing, and surveillance [3] simultaneously.

However, the implementation of STAR technology must depend on its sufficient isola-
tion between the transmitter and the receiver. Limited by the compact space between the
transmitter and the receiver, self-interference signals will inevitably be generated when
the transmitter is running, which causes the receiver to be blocked or saturated. Thus,
how to cancel the self-interference is urgent for the STAR system. Until now, many meth-
ods are best classified by the domain in which they operate, such as the propagation
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domain, analog domain, and digital domain [4]. Yet the methods in the propagation do-
main normally achieved only 30~40 dB of isolation in a narrow bandwidth [5] by antenna
separation, antenna orientation, and placing absorptive shielding. Due to the use of ac-
tive attenuators, phase shifters, and delayers, the analog-domain cancellation methods
introduced inestimable non-linear distortion and they are often power-intensive, expen-
sive, and physically large [6]. Digital-domain methods include digital self-interference
cancellation, transmitting and receiving beamforming, channel estimation, and fingerprint
signals. These approaches will be flexible, efficient, and reliable if the signal of interest
is effectively received within the dynamic range of ADCs and DACs. Ahmed et al. pro-
posed an all-digital nonlinear estimation and self-interference cancellation technology to
improve the isolation above 20 dB in a single-receiving and single-transmitting full-duplex
system [7]. Qiu et al. verified that adaptive beamforming provides a high isolation between
the transmitter and the receiver [8]. They optimized the beamformers using the linear
constrained minimum variance algorithm to provide at least 110 dB of isolation, without
affecting target detection. Liang et al. proposed a method to realize adaptive transmit
beamforming together with digital SIC [9], which provides positive inspiration for the
advancement of digital cancellation.

Aperture-level simultaneous transmit and receive (ALSTAR) based on a digital phased
array was proposed by the MIT Lincoln Laboratory in 2016 [10]. ALSTAR integrates digital
cancellation and transmit and receive beamforming technologies to achieve extremely high
isolation, termed effective isotropic isolation (EII). Since the theory is immature, a lot of
work is still needed to extend the method to practice. For instance, effective isotropic
radiated power (EIRP) and effective isotropic sensitivity (EIS) of the system should be taken
into account to ensure a high emission efficiency and receiver performance. The increase of
target parameters complicates the design of the STAR array. In this case, the designers wish
to make a trade between EII, EIRP, and EIS to meet the requirements of different scenarios.
The authors in [11] used an alternate optimization (AO) to design the EII of the ALSTAR
array and then loaded a weight diagonally in the noise covariance matrix to reveal the
relationship between EII and the gain. Yet this approach only analyzes the connection
between them, and does not study how to trade EII, EIRP, and EIS. Furthermore, the AO
algorithm needs to construct identities of two objective functions for alternate iteration
updates in two directions, and perform a beamformer optimization at every elevation
angle, which increases the computational complexity and hardware cost. This may limit
the further promotion and application of ALSTAR.

This paper is dedicated to the improvement of the overall performance of the ALSTAR
array and the reduction of complexity. We trade EII, EIRP, and EIS by proposing the weight
w f to enhance the overall performance and optimize a set of transmitting and receiving
beamformers independent of the elevation angle in order to reduce complexity. We found
that the swarm intelligence optimization methods have the potential to achieve these goals.
They have been successful in the fields such as beamforming-based pattern synthesis [12],
array optimization [13,14], DC brushless motor efficiency problems [15], Loney’s solenoid
problem [16], and stock index forecasting [17]. Extensive literature reveals that compared
to traditional particle swarm optimization (PSO), genetic algorithm (GA), and differential
evolution (DE), the brainstorm optimization (BSO) algorithm [18] has the characteristics of
fast convergence, excellent robustness, and a strong global optimization ability in solving
non-convex, multi-objective, and multi-modal optimization problems. This algorithm is
quite suitable for the design of the ALSTAR array, but there is still space for improvement
in the BSO algorithm [19].

In the classic BSO algorithm, each individual in the population may become a po-
tential solution, which corresponds to a new idea in the process of human brainstorming.
The process can be summarized in three steps. First of all, a blocking method similar to
k-means is used to group individuals in the population, and the individual with the best
fitness value will be the center of each block. Next, a new individual will be obtained
by interacting information between individuals in one or more blocks. At last, the log-
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arithmic sigmoid function with Gaussian random is used as the step size to update the
individual. Correspondingly, the drawbacks of the classic BSO algorithm include k-means
grouping with complex calculations, poor individual creation methods, and suboptimal
update mechanisms.

In view of these shortcomings of BSO, we propose the adaptive random grouping
quantum BSO (ARGQBSO) algorithm and apply it to design the ALSTAR array. The im-
provements of ARGQBSO are made by presetting initial value, random grouping, dynamic
probability function, and quantum computing. Experimental results show that the preset
initial value shortens the search range and speeds up the convergence of the algorithm.
Random grouping reduces the complexity of the algorithm. The dynamic probability
function and quantum update improve the accuracy of the algorithm. In terms of algorithm
architecture, our innovations are mainly manifested in two aspects.

(1) According to the demands of the ALSTAR array, the weight w f is put forward to trade
EII, EIRP, and EIS. Its significance is to enable the performance of the ALSTAR array
to meet the needs of EII, EIRP, and EIS in various scenarios.

(2) The proposed ARGQBSO algorithm aims to achieve digital self-interference cancella-
tion and adaptive beamforming. By proposing preset initial values and improving
random grouping, dynamic probability functions, and quantum updates, the algo-
rithm is a better balance in solving accuracy, solution time, and robustness.

(3) The beamformer optimized by ARGQBSO is independent of an angle and can be
applied to any scanning angle. Its advantage is that the resources of the digital chip
are greatly saved.

The remainder of this paper is organized as follows. In Section 2, the signal model
and optimization model of the ALSTAR array are given. Section 3 introduces the origin
of the ARGQBSO algorithm and detailed improvement measures. Section 4 discusses
and analyzes the results of the six algorithms in the ALSTAR application, and verifies the
competitiveness of the proposed algorithm. Finally, the conclusion and future work are
provided in Section 5.

2. System Model
2.1. Signal Model

The ALSTAR architecture is shown in Figure 1, the symbol t ∈ QJ × 1 means the
transmit signal vector and r ∈ QK × 1 denotes the received signal vector. The parameters
wt ∈ QJ × 1, wr ∈ QK × 1, and wc ∈ QJ × 1 are the weights of transmit beamforming,
receive beamforming, and adaptive cancellation filters, respectively. Hm ∈ QK × J and
Ho ∈ QJ × J are the characteristic matrix of the coupled channel and the observation
channel, respectively. J and K are the number of transmitting channels and receiving
channels, respectively. The signal x at time index n can be written as follows:

x(n) = wt · t(n) + nt(n) (1)

where t(n) is the expected signal to be transmitted and E
[
|t(n)|2

]
= 1. nt ∈ QJ × 1 is the

complex additive white gaussian noise with zero-mean. The signal y is mainly composed
of two parts, one is the self-interference signal coupled by the transmit signal through the
coupling channel, and the other is the signal of interest s.

y(n) = Hm · x(n) + s(n) (2)
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Figure 1. Block diagram of the ALSTAR array cancellation architecture.

The receiving noise nr ∈ QK × 1 is mixed with the received signal y. After being
processed by the receiving beamformer, they are accepted by the receiver. Therefore, the
received signal can be shown as follows:

r2(n) = wH
r · (nr(n) + y(n)) (3)

In the case of the ALSTAR architecture, the final received signal r(n) after the cancella-
tion can be expressed as follows:

r(n) = r2(n) − r1(n) (4)

where r1(n) is the reference signal after passing through the observation channel, and its
expression can be noted as follows:

r1(n) = wH
c [Ho(x(n) + no(n))] (5)

Assuming wc
H = wH

r · Hm · H−1
o and combining the Equations (4) and (5), we can get

r(n) = wH
r [nr(n) + s(n) − Hm · no(n)] (6)

where r(n) is composed of three parts: receiving noise nr(n), the signal of interest s(n), and
observation noise no(n). The signal no ∈ QJ × 1 is additive white gaussian noise, which
obeys the normal distribution, i.e.,

no(n) ∼ N(0, No) (7)

where No is equal to diag(wt · wH
t )/ρr and ρr denotes the receive dynamic range. Appar-

ently, mitigation of the observation noise and emission noise can be achieved by optimizing
the transmitting beamforming weight wt and receiving the beamforming weight wr.

2.2. Metrics and Optimization Problems

This article optimizes the ALSTAR array design from the perspective of selecting the
three best parameters, wt, wr, and w f , to improve the overall performance and simplify the
design. For the directional system, the isolation between the transmitter and the receiver
changes with each position in the three-dimensional space, so EII is used to accurately
measure the isolation between the directional systems, which is defined as follows:

EII = EIRP/EIS (8)
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where EIRP and EIS describe the performance of transmitters and receivers, respectively,
and their expressions are shown:

EIRP = Pt · Gt_total = Pt ·
J

∑
i = 1

wti gti (θ, ϕ)uti (θ, ϕ) (9)

EIS = Pr/Gr_total = (Pnr + Pno )/
K

∑
i = 1

wri gri (θ, ϕ)uri (θ, ϕ) (10)

where ut and ur are the manifold vectors of the transmitting and receiving array, respec-
tively, and gti and gri are gain of the transmitting and receiving elements, respectively. θ
and ϕ represent the elevation angle and azimuth angle, respectively. The scalars of Pnr and
Pno are the receiver and observation noise, respectively.

Pnr = (Hmdiag(wtwH
t )HH

m )/ρr (11)

Pno = wH
r ·
{
[diag(HmwtwH

t HH
m )]/ρr + [diag(Hmdiag(wtwH

t )HH
m )]/ρrρt + ϑ2 · eye(J)

}
· wr (12)

where the symbol ϑ2 is the noise floor. From Equations (8)–(10), it can be seen that the EII,
EIRP, and EIS of the array are closely related to the transmit beamforming weight wt and
receive beamforming weight wr. Thus, we optimize the transmit and receive beamformers
to obtain the desired EII, EIRP, and EIS. In frequency-modulated continuous-wave radars,
it is possible to lower EII to achieve higher EIRP and gain. To achieve this, the weight
w f =

[
w f EII

, w f EIRP
, w f EIS

]
is proposed to trade between the EII, EIRP, and EIS in this

paper. Therefore, the ALSTAR array can be designed via optimizing three parameters
(i.e., wt, wr, and w f ) to achieve a higher EII with the premise of relatively high radiation
efficiency and better receiving gain. The value ranges of them are as follows:

0 ≤| wt |≤ 1; 0 ≤ ∠ wt ≤ 2π
0 ≤| wr |≤ 1; 0 ≤ ∠ wr ≤ 2π∣∣∣∣∣∣w f

∣∣∣∣∣∣1 = 1
(13)

as the EII, EIRP, and EIS of the ALSTAR array have a theoretical upper bound, their
optimization results must be smaller than it. The scope of EII, EIRP, and EIS is given
as follows: 

EII ≤ Pt ·Gt_total ·Gr_total
ϑ2

EIRP ≤ Pt · Gt_total

EIS ≤ ϑ2

Gr_total

(14)

thus, the objective function or fitness function complying with the above conditions can be
provided as follows:

Fitness = min(w f × f itnessT) ± ζ (15)

where f itness signifies the total objective function value, which consists of three parts, as
shown in Equation (16). The coefficient w f indicates the weight of each part. The interaction
of the three goals can be achieved by modifying their weights. As the fault tolerance value,
ζ is used to promote the iterative process of the algorithm.

f itness = abs(EII − Pt ·Gt_total ·Gr_total
ϑ2 )

+ abs(EIRP − Pt · Gt_total)

+ abs(EIS − ϑ2

Gr_total
)

(16)
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3. Our Proposed Algorithm

In response to the problems of traditional BSO algorithms, we consider amending
the BSO from the presetting initial value, grouping strategy, individual creation, and indi-
vidual update to enhance the convergence speed, global search capability, and reduce the
operating overhead. We call the improved algorithm the adaptive random grouping quan-
tum brainstorming optimization (ARGQBSO), which is a hybrid algorithm that combines
quantum computing and classical BSO. Its performance-improvement is mainly reflected
in four aspects.

3.1. Preset Initial Value

The initial value of the transmitting and receiving beamformer is directly related to
the convergence speed of the algorithm. We reduce the search space of the algorithm
without reducing the performance by setting an appropriate initial value. In the original
BSO algorithm, the initial range of each idea (individual) is a random number of [0, 1].
According to the principle of maximum entropy, the maximum EIRP value can be obtained
when the wt is uniformly distributed. When wt = 0, the vintage EIS can be obtained. In
order to find a result that meets the actual needs among EII, EIRP, and EII, the optimal
solution range of wt must appear in (0, 1

h̄ ). h̄ is the number of transmitting elements.
Obviously, by setting the initial value in this way, the search space has been reduced 1 − 1

h̄ .
In addition, the initial value of the transmit and receive beamforming weights should be
related to the number of array elements and the array manifold vector. Its expression is
as follows:

Population = [
1
h̄

ut;
1

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18 
 

 

where fitness  signifies the total objective function value, which consists of three parts, as 

shown in Equation (16). The coefficient 
f

w  indicates the weight of each part. The inter-

action of the three goals can be achieved by modifying their weights. As the fault tolerance 

value,   is used to promote the iterative process of the algorithm. 





 
 

  

 

_ _

2

_

2

_

(EII )

           (EIRP )

           (EIS )

t t total r total

t t total

r total

P G G
fitness abs

abs P G

abs
G

 (16)

3. Our Proposed Algorithm 

In response to the problems of traditional BSO algorithms, we consider amending the 

BSO from the presetting initial value, grouping strategy, individual creation, and 

individual update to enhance the convergence speed, global search capability, and reduce 

the operating overhead. We call the improved algorithm the adaptive random grouping 

quantum brainstorming optimization (ARGQBSO), which is a hybrid algorithm that 

combines quantum computing and classical BSO. Its performance-improvement is mainly 

reflected in four aspects. 

3.1. Preset Initial Value 

The initial value of the transmitting and receiving beamformer is directly related to 

the convergence speed of the algorithm. We reduce the search space of the algorithm with-

out reducing the performance by setting an appropriate initial value. In the original BSO 

algorithm, the initial range of each idea (individual) is a random number of [0,1]. Accord-

ing to the principle of maximum entropy, the maximum EIRP value can be obtained when 

the tw  is uniformly distributed. When 0tw  , the vintage EIS can be obtained. In order 

to find a result that meets the actual needs among EII, EIRP, and EII, the optimal solution 

range of tw  must appear in 
1

(0, )


.   is the number of transmitting elements. Obvi-

ously, by setting the initial value in this way, the search space has been reduced 
1

1


. In 

addition, the initial value of the transmit and receive beamforming weights should be re-

lated to the number of array elements and the array manifold vector. Its expression is as 

follows: 

   
  min max min

1 1
[ ; ]  ( ). * ( , )

t r
Population u u X X X rand D N  (17)

where the symbol   and   represent the number of transmitting and receiving ele-

ments. 
axm

X  and 
min

X  imply the upper boundary and lower boundary of the popula-

tion, respectively, D  implies the dimension of the population, and N  denotes the size 

of the population. 

3.2. Random Grouping 

Random grouping is used to replace the original k-means, which avoids calculating 

the distance between different individuals and reduces the calculation. The population 

random grouping process is shown in Figure 2. 

ur] ∗ Xmin + (Xmax − Xmin). ∗ rand(D, N) (17)

where the symbol h̄ and

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18 
 

 

where fitness  signifies the total objective function value, which consists of three parts, as 

shown in Equation (16). The coefficient 
f

w  indicates the weight of each part. The inter-

action of the three goals can be achieved by modifying their weights. As the fault tolerance 

value,   is used to promote the iterative process of the algorithm. 





 
 

  

 

_ _

2

_

2

_

(EII )

           (EIRP )

           (EIS )

t t total r total

t t total

r total

P G G
fitness abs

abs P G

abs
G

 (16)

3. Our Proposed Algorithm 

In response to the problems of traditional BSO algorithms, we consider amending the 

BSO from the presetting initial value, grouping strategy, individual creation, and 

individual update to enhance the convergence speed, global search capability, and reduce 

the operating overhead. We call the improved algorithm the adaptive random grouping 

quantum brainstorming optimization (ARGQBSO), which is a hybrid algorithm that 

combines quantum computing and classical BSO. Its performance-improvement is mainly 

reflected in four aspects. 

3.1. Preset Initial Value 

The initial value of the transmitting and receiving beamformer is directly related to 

the convergence speed of the algorithm. We reduce the search space of the algorithm with-

out reducing the performance by setting an appropriate initial value. In the original BSO 

algorithm, the initial range of each idea (individual) is a random number of [0,1]. Accord-

ing to the principle of maximum entropy, the maximum EIRP value can be obtained when 

the tw  is uniformly distributed. When 0tw  , the vintage EIS can be obtained. In order 

to find a result that meets the actual needs among EII, EIRP, and EII, the optimal solution 

range of tw  must appear in 
1

(0, )


.   is the number of transmitting elements. Obvi-

ously, by setting the initial value in this way, the search space has been reduced 
1

1


. In 

addition, the initial value of the transmit and receive beamforming weights should be re-

lated to the number of array elements and the array manifold vector. Its expression is as 

follows: 

   
  min max min

1 1
[ ; ]  ( ). * ( , )

t r
Population u u X X X rand D N  (17)

where the symbol   and   represent the number of transmitting and receiving ele-

ments. 
axm

X  and 
min

X  imply the upper boundary and lower boundary of the popula-

tion, respectively, D  implies the dimension of the population, and N  denotes the size 

of the population. 

3.2. Random Grouping 

Random grouping is used to replace the original k-means, which avoids calculating 

the distance between different individuals and reduces the calculation. The population 

random grouping process is shown in Figure 2. 

represent the number of transmitting and receiving elements.
Xmax and Xmin imply the upper boundary and lower boundary of the population, respec-
tively, D implies the dimension of the population, and N denotes the size of the population.

3.2. Random Grouping

Random grouping is used to replace the original k-means, which avoids calculating
the distance between different individuals and reduces the calculation. The population
random grouping process is shown in Figure 2.

Figure 2. Schematic diagram of random grouping.

D depends on the number of elements. The cluster represents the same kind of
individual population. The specific process is as follows: `1 individuals are randomly
selected from populations N, and recorded as cluster1. Similarly, randomly select `2
individuals from the remaining (N − `1) individual species and record them as cluster2,
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and so on. It should be noted that there ` is a 1 × nc vector, and ‖`‖1 = nc,nc represents
the number of clusters.

3.3. Dynamic Probability Function

In the original BSO, there are four ways of individual creation [20], two of which create
individuals based on a single cluster center, and the others create individuals based on
two cluster centers. The individuals created by the former surround their clusters and
have strong local search characteristics, while the individuals created by the latter may
appear in the entire space and means the global search. The dynamic probability function
p0 improves the local and global search performance of ARGQBSO, making the algorithm
focus on the global search in the early stage and the local search in the later stage to enhance
the convergence speed. The dynamic probability function p3 is used in the later stage of
the algorithm to avoid missing the global best solution. Their expressions are as follows:{

p0,t + 1 = exp(−γ(t/tmax)
k) × p0,t

p3,t + 1 = exp(γ(t/tmax)
k) × p3,t

(18)

The meaning of t is the current number of iterations; tmax is the maximum number
of iterations; p0,t, p3,t, and p0,t + 1, p3,t + 1 are the probabilities of the present and next
generations, respectively. γ and κ are positive integers.

3.4. Quantum Update

The quantum behavior mechanism is introduced into all individuals so that ev-
ery individual is transformed from the original classical state to the quantum state. At
this time, individuals in the quantum state pass through the quantum revolving gate to
update iteratively.

Different from [16], in this paper, the individual’s quantum behavior only takes effect
in the later stage of the algorithm, and the quantum state is transformed through a dynamic
quantum spin gate. As the value of the dynamic probability function is already quite small
in the later stage of the algorithm, the individuals created at this time are distributed almost
in the center of a cluster, and diversity is completely lost. This is highly unfavorable for
solving infinite domain and multi-extreme problems like ALSTAR. In particular, the noise,
channel, and transmit power may change with the environment, if the ALSTAR system
is running. To automatically adapt to these accidents, a dynamic quantum revolving gate
is introduced in the later stage of the algorithm to enhance the global convergence ability
in the later stage to avoid missing the best solution. The individuals in the quantum state
follow the Equation (19) to update.

R_nt + 1,D = Rt,D + sign(Rt,D − globet,D) × ∆Θ
∆Θ = exp(−ε × It

Imax
) × Θ0

(19)

where Rt,D and Rt + 1,D represent contemporary and next-generation individuals, respec-
tively; globet,D is the current global optimal individual; ∆Θ is the dynamic revolving gate;
and Θ0 represents the initial rotation angle. The flowchart of the ARGQBSO algorithm is
shown in Figure 3. The scalars p1 and p2 are random numbers of [0, 1]. The variables p0
and p3 are dynamic probability functions, respectively.
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Figure 3. The flowchart of the ARGQBSO algorithm.

4. Simulation Results

The performance of the ALSTAR array is measured by the three objectives of EII, EIRP,
and EIS. We minimize the fitness function to obtain the best transmit beamforming weight
wt and receive beamforming weigh wr. The optimization model is given in the second
part. As the characteristics of the coupling matrix and antenna gain are directly linked
to EII, EIRP, and EIS of the ALSTAR from Equations (8)–(12), it is necessary to design
a phased array with high isolation and high gain. Subsequently, based on the coupling
matrix of the designed phased array and the pattern data of each element, the effects of
the preset initial value, random grouping, dynamic probability function, and quantum
update on the proposed algorithm are analyzed in detail. In addition, by comparing the
performance of six commonly used optimization algorithms on the ALSTAR array design,
the competitiveness of the ARGQBSO algorithm is verified. Finally, we explore the EII,
EIRP, and EIS under extreme differences w f using ARGQBSO.
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4.1. Phased Array with High Isolation

The array element adopts the microstrip antenna fed by slot coupling, and its struc-
tures are shown in Figure 4. The microstrip patch is divided into several small pieces in the
horizontal and vertical directions to form the series capacitor periodic array loaded with
metamaterial patch elements [21]. In addition, loading a reflector on the bottom of the an-
tenna enhances the directivity and front-to-back ratio, without deteriorating the matching
performance. The proposed antenna is simulated in ANSYS HFSS, and its optimized param-
eters are L = 34.2 mm; Lp = 22.5 mm; Lp0 = 5.8 mm; Lp1 = 4.6 mm; Lf = 16.8 mm
Ls0 = 8.8 mm; Ls1 = 14 mm; W = 34.2 mm; Wp0 = 3.2 mm; Wp1 = 23.2 mm;
Wf = 2.1 mm; Ws = 1.6 mm; H = 5.235 mm; g = 0.83 mm.

Figure 4. Broadband antenna model: (a) 3D view; (b) gap structure; (c) feed-network; (d) metal reflector.

The STAR array is shown in Figure 5. It is composed of eight designed broadband
antenna elements evenly arranged at a pitch of 0.55 λ0. λ0 is the wavelength in free space.
The simulation results of the phased array are shown in Figure 6. Part of the simulation
data is shown in Appendix A. The impedance bandwidth of this antenna is 6.92~13.45 GHz
under the condition that the port reflection coefficient is less than −10 dB, and the isolation
between the adjacent antennas is about 25 dB in the whole X-band.

Figure 5. Schematic diagram of the broadband digital phased array structure.

Figure 6. Cont.
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Figure 6. (a) The port reflection parameters of the array. (b) Port isolation parameters of the array.
(c) E-plane pattern of the first element. (d) H-plane pattern of the first element.

In the ALSTAR array, we assume that the 1~4 elements on the left of the phased array
are transmitting antennas and the 5~8 are receiving antennas. The coupling matrix Hm is
used to describe the state of electromagnetic waves from the transmitter to the receiver and
it is a K × J matrix. K and J represent the number of receiving and transmitting antennas,
respectively. Hm is written as follows:

Hm =


S51 S52 S53 S54
S61 S62 S63 S64
S71 S72 S73 S74
S81 S82 S83 S84

 (20)

In practice, adaptive beamforming and digital cancellation requires a great estimate
of the mutual coupling channel in the ALSTAR array in order to consider the coupling
caused by the time-varying environment or external interference. Yet it can be considered
that the coupling matrix varies slowly in most scenarios. For example, there are not many
fast-varying scenes in communications. In the radar, we mainly focus on specific targets,
and may not be scene varies. In this case, the slow vary of the coupling matrix can be
ignored for the time being.

4.2. Algorithm Performance Analysis
4.2.1. Analysis of the Role of Improved Operations

In order to expose the effects of preset initial values, random grouping, dynamic
probability functions, and quantum updates on the AGRQBSO algorithm, we separately
analyzed the benefits of each operation. Before that, we incorporated the algorithm into
the metrics and optimization model of the ALSTAR array established in Section 2.2. The
ALSTAR antenna adopts the phased array designed above, and the system’s dynamic
range of transmitting and receiving channels is ρt = 40 dB and ρr = 80 dB, respectively.
The noise floor of the receiving channel is −81 dB, which is obtained by the 1000 MHz
bandwidth channel with a 3 dB noise figure. The objective function and the boundary
range of the parameters are given in Section 2. The experiments were executed in MATLAB
software (Version: R2021a) and all comparative experiments were executed on a desktop PC
with an Intel Core i7-8700 CPU processor @ 3.20 GHz, 16GB RAM, under the Windows10
64-bit OS.

We first analyzed the contribution of the preset initial value operation to the ARGQBSO
algorithm. As mentioned earlier, the preset initial value reduces the search space of the
algorithm and can speed up the convergence of the algorithm. Figure 7a shows the average
result of the convergence curve with or without preset initial value operation by repeating
the experiment 200 times. It can be seen that since the search space is compressed 1 − 1

h̄ ,
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the algorithm using preset initial values only takes 132 iterations to the state of convergence.
Compared with the original scheme, the number of iterations is reduced by 29. In addition,
the initial fitness value of the algorithm using the preset initial value is 4.8 dB smaller than
the original algorithm. This hints that the preset the initial value places the algorithm in a
better position in the actual stage and speeds up the convergence.

Figure 7. (a) Comparison of the fitness value with/without preset initial value. (b) The influence
curve of grouping method on algorithm running time. (c) Comparison of the fitness value of fixed
probability and dynamic probability density function and quantum update.

The contribution of the random grouping to the ARGQBSO algorithm is mainly to
reduce the complexity of the clustering. In order to intuitively feel the reduction of the
algorithm complexity by the random grouping, Figure 7b shows the running time of the
algorithm using random grouping and K-means grouping in 200 experiments. The result
of the experiment implies that the time of the random grouping algorithm is reduced in the
range of 0.3145 to 1.4852 s.

The usefulness of the dynamic probability function to the algorithm is mainly reflected
in the adjustment of the individual generation mode. By controlling the proportion of
individuals participating in the global and local search, the global search is strengthened in
the early stage of the algorithm to find a better position, and the local search is strengthened
in the later stage of the algorithm to speed up the convergence speed.

The essence of the quantum update mechanism is to alter the evolution step length of
the newly generated individual, but it is different from the individual update step length of
the original BSO. It is a dynamic quantum rotation update, and the generated individuals
surround the current global optimum. The contribution of dynamic probability density
function and quantum update to the algorithm is reflected in the accuracy of the solution.
Figure 7c shows the average results of 200 experiments. The algorithm using dynamic
probability density function and quantum update is 1.32 dB smaller than the fitness value
of the fixed probability, indicating that the accuracy of the former is better than the latter.

On the other hand, the number of iterations that the fixed probability algorithm uses
to reach the convergence state is 44 less than that of the dynamic probability function
and quantum update algorithm. This shows that the fixed probability algorithm has an
insufficient global convergence ability and is easy to fall into the local optimal region.

4.2.2. Comparison of ARGQBSO with Other Algorithms

We explore the comprehensive performance of ARGQBSO, BSO, PSO, AO, GA, and
DE in terms of the objective function value, convergence speed, and running time. What
is different from [8] is that the wt and wr obtained by the ARGQBSO can be applied to
all elevation angles, while there is no need for a set of wt and wr at every elevation angle.
The advantage of this scheme is to reduce the processing time of beamforming and the
calculation cost of the DSP chip.
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The parameter settings of the six algorithms is shown in Table 1. Figure 8a clearly
shows the distribution of EII, EIRP, EIS, and noise floor Pn in 100 times independent runs
with Pt = 1000 W, and the convergence process and running time of the six algorithms
are shown in Figure 8b. On the one hand, compared with the classic BSO and PSO,
ARGQBSO has advantages in robustness, global optimization capability, and convergence
speed. Although GA has great global optimization capabilities and solution accuracy, it
does not have the advantage in terms of robustness and complexity. DE can occasionally
achieve great solution accuracy, but its robustness is most poor. On the other hand, the
AO can find a better solution (smaller fitness value) because of the EII function satisfying
the generalized Rayleigh entropy. However, AO must construct EII equations in two
directions for alternating iterations, which nearly doubles the number of calculations
relative to the ARGQBSO algorithm, and its running time and calculation amount are the
most complicated. This may be the reason for limiting the application of AO in engineering.
Therefore, compared to other synthesis approaches, ARGQBSO is claimed as a better trade-
off in terms of stability, solution time, and solution accuracy. In addition, the structure
of ARGQBSO allows for many functions to be extended, for example, it can optimize the
directivity of the EII pattern, the beam width, and trade EII, EIRP, and EIS among them.
Thus, the proposed algorithm demonstrates its distinctive competitive advantages in terms
of complexity, accuracy, and reliability.

Table 1. The parameter settings of four algorithms.

Algorithm Types Parameter Setting Reference

BSO
pr00 = 0.2; pr0 = 0.8; pr01 = 0.4

[15]pr02 = 0.5; M = 10; N = 60

PSO w : 0.9–0.4.4; c1 = c2 = 2; N = 60; [22]

AO error accuracy = 0.001; Itern = 200 [11]

GA pc = 1; pm = 0.05; N = 60 [23]

DE F = 0.5; CR = 0.5; N = 60 [24]

Proposed
p0 : 0.9–0.4; p3 : 0.4–0.8;

p1 = 0.7;
p2 = 0.5; M = 10; N = 60

This work

Figure 8. Cont.
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Figure 8. (a) Box plot of the three algorithms for EII, EIRP, EIS, and noise floor Pn. (b) Iterative curve
and operation time of the four algorithms.

4.3. Design of ALSTAR Array by ARGQBSO

In order to verify the advantages of the solution in this article, we employ the proposed
ARGQBSO algorithm to design the ALSTAR array, and explore the range of values of EII,
EIRP, and EIS under different w f . In ARGQBSO, every individual in the population is
mapped to the transmitting and receiving beamforming weights as a feasible solution. The
mapping relationship between the feasible solution and the transmitting and receiving
beamforming weights are as follows, where globe is the global optimal solution with
2 × (J + K) dimensions, which contains the weights of transmitting and receiving
beamforming.

wr = ur ∗ (globe(1 : J) + j ∗ globe(J + 1, 2J))
wt = ut ∗ (globe(2J + 1 : 2J + K) + j ∗ globe(2J + K + 1, 2(J + K)))

(21)

Thus, the transmit and receive beamforming weights can be extracted by the
formula (21). We set the total transmitting power of the ALSTAR array as 1000 W and the
weight w f as [0.6, 0.15, 0.25]. The optimization results of the transmitting beamforming
weight wt and receiving beamforming weight wr by the ARGQBSO are shown in Figure 9.
Here, the signal power transmitted by the four transmit channels is 1, 2, 3, and 4, respec-
tively. The powers of the four receiving channels are 5, 6, 7, and 8, respectively. By using
the obtained transmit beamforming and receive beamforming weights, the EII, EIRP, and
EIS of the array can be calculated.

Figure 10 shows EII, EIRP, and EIS at 10 GHz with Pt from 1 W to 1000 W at
w f = [0.6, 0.15, 0.25]. In the case of a transmit power of 1000 W, EII reaches 164.9 dB,
EIRP is 44.2 dBm, and EIS is −87.3 dBm. This result verifies that the proposed ARGQBSO
algorithm can design a great ALSTAR array. From another perspective, it can be clearly
understood that the EII and EIRP of the ALSTAR system gradually grow as the transmit
power increases, while the EIS deteriorates. Moreover, accompanied by the increase in
transmit power, the step size of the EII decreases, and EII tends to the theoretical boundary.

In FMCW radar, EIS is not allowed to exceed a certain threshold, otherwise, the
receiver will not be able to operate properly. We may enhance EIS by lowering EII and
EIRP on the weight of w f . Figure 11 shows EII, EIRP, and EIS of extreme weight conditions
in 10 GHz with 1000 W of transmit power. w f = [1, 0, 0] indicates that there is only EII in
the objective function, w f = [0, 1, 0] means that there is only EIRP in the objective function,
and w f = [0, 0, 1] means that there is only EIS in the objective function. By setting three
extreme w f situations, it can be seen clearly that the EII fluctuates between 146.7~166.8 dB,
EIRP fluctuates from 40.2 to 47.1 dBW, and EIS fluctuates from −70.3 to −94.6 dBm. This
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considerable adjustment range makes it possible for ALSTAR to provide multi-scenario
applications. On this basis, we can design an ALSTAR array to realize the trade of EII, EIRP,
and EIS by changing the parameter w f for different scenarios. This is to prevent engineers
from considering only the isolation, while ignoring the performance of the transmitter and
receiver itself when they are designing the STAR array.

Figure 9. Transmit and receive beamforming vector.

Figure 10. (a) EII with different transmit power. (b) EIRP with different transmit power. (c) EIS with
different transmit power.

Figure 11. (a) EII with different w f . (b) EIRP with different w f . (c) EIS with different w f .
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5. Conclusions and Future Work

A robust design for the ALSTAR array was proposed in this paper. The transmit
and receive beamforming weights obtained by the ARGQBSO algorithm are independent
of the scanning angles, which reduces the computational complexity and maintains the
excellent overall performance of the ALSTAR array. It expands the scope of application of
transmitting and receiving beamforming weights and has a high robustness. ARGQBSO is
an improved version of the original BSO algorithm. Its improvements include four aspects:
initial value, random grouping mechanism, dynamic probability function, and quantum
computing. Experimental results show that the preset initial value shortens the search
range and speeds up the convergence Random grouping reduces the complexity of the
algorithm. Dynamic probability function and quantum update improve the accuracy of
the algorithm. In addition, the solution time, accuracy, and robustness of the proposed
algorithm are claimed as a better trade-off, compared to other synthesis approaches. The
simulated results based on an eight-element phased array indicate that the array achieves
166.8 dB of peak EII, 47.1 dBW of peak EIRP, and −94.6 dBm of peak EIS at Pt = 1000 W
with w f = [1, 0, 0], w f = [0, 1, 0], w f = [0, 0, 1], respectively. In addition, EII fluctu-
ates between 146.7~166.8 dB, EIRP fluctuates between 40.2~47.1 dBW, and EIS fluctuates
between −70.3~−94.6 dBm. The results verify that the ARGQBSO is competitive in the
ALSTAR application, and it trades among EII, EIRP, and EIS to satisfy the needs of different
scenarios. The ARGQBSO algorithm provides engineers with a concise way to design
massive transmit and receive arrays, and to achieve a superior overall performance of the
ALSTAR array.

In the future, ARGQBSO will be used to solve more optimization problems in engi-
neering design and other fields. Furthermore, some other strategies will be developed to
further optimize the performance of the proposed algorithm.
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Appendix A

The pattern of array elements 2–4 is shown in Additional Figure A1. Due to the high
isolation performance of the designed phased array, the pattern characteristics of each array
element are almost similar, which is conducive to beam forming. In addition, as the array
elements numbered 5–8 are symmetrical to the center of array elements 1–4, their pattern
data are almost the same, and they are not listed here.
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Figure A1. (a) E-Pattern of the second element. (b) H-Pattern of the second element. (c) E-Pattern of
the third element. (d) H-Pattern of the third element. (e) E-Pattern of the fourth element. (f) H-Pattern
of the fourth element.
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