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Abstract: Today, accurate and automated abnormality diagnosis and identification have become of
paramount importance as they are involved in many critical and life-saving scenarios. To accomplish
such frontiers, we propose three artificial intelligence models through the application of deep learning
algorithms to analyze and detect anomalies in human heartbeat signals. The three proposed models
include an attention autoencoder that maps input data to a lower-dimensional latent representation
with maximum feature retention, and a reconstruction decoder with minimum remodeling loss. The
autoencoder has an embedded attention module at the bottleneck to learn the salient activations of the
encoded distribution. Additionally, a variational autoencoder (VAE) and a long short-term memory
(LSTM) network is designed to learn the Gaussian distribution of the generative reconstruction
and time-series sequential data analysis. The three proposed models displayed outstanding ability
to detect anomalies on the evaluated five thousand electrocardiogram (ECG5000) signals with
99% accuracy and 99.3% precision score in detecting healthy heartbeats from patients with severe
congestive heart failure.

Keywords: anomaly detection; autoencoder; variational autoencoder (VAE); long short-term memory
(LSTM); attention module

1. Introduction

Intelligent fault diagnosis (IFD) has presently been upheaved into an integral area
of interest for most life sectors, including finance, military, healthcare, cybersecurity, and
the fashion industry [1]. Primarily, fault diagnosis entails the use of complex algorithms
and models to detect anomalies or abnormalities in data. For instance, in Figure 1, a
typical illustration of a normal and abnormal time-series distribution sample is displayed,
and it is the task of an effective anomaly detector to identify the differences [2]. In most
cases, anomaly detection is framed as a data-driven approach where the fault diagnosis
model applies various analytical principles to analyze and extract intricate data features for
observatory purposes. As such, data points are classified with a certain degree of deviation
as anomalies.

Due to the indispensability of error occurrence in most life applications, the automa-
tion of fault diagnosis mechanisms or design of intelligent anomaly detection models is
beginning to observe prominent attention and play a vital role in most applications. For
example, in the healthcare industry, intelligent anomaly detection systems are used for
medical diagnoses, such as in moderate traumatic brain injury (mTBI) via magnetoen-
cephalography (MEG) [3]. Furthermore, in some military applications, such as in advanced
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missile aircraft, abnormality detection models are implemented to diagnose and investigate
fault conditions [4]. Likewise, several fraud-detection models are applied in the finance
sector to instantaneously recognize deceptive transactions.

Figure 1. Temporal distribution of normal and abnormal heartbeat from the ECG5000 dataset. Left
column: Normal heartbeat; Middle column: Anomalous heartbeat; Right column: Combination of
normal and anomalous heartbeats.

In this paper, we explore the use of machine learning and deep learning algorithms
[5,6] to intelligently learn the distribution of anomalies in heartbeat signals to achieve
an automated process of heart defect detection via signal sensing from the ECG. The
application of machine learning algorithms, particularly the artificial neural network, is
employed to detect abnormal heartbeats or rhythms in electrocardiogram (ECG) data.
There are three different anomaly detectors presented in this work.

This first model which implements the autoencoder design learns the most suitable
pattern to map the latent representation of input data with the maximum amount of
information retained and the reconstruction of the features with the minimum reconstruc-
tion loss. The autoencoder model consists of an encoder and a decoder [7], whereby the
encoder’s task is to learn the encoding of the latent-space representation of input data.
Then, the decoder builds a reconstruction of the learned feature representation. Before the
decoder, an attention module is designed to selectively enhance the important features
of the latent vector, producing a context vector which would be fed to the decoder. This
allows the decoder to concentrate on the attended vector, resulting in a comparatively
small reconstruction loss compared to the original data.

The second model employs the variational autoencoder (VAE) whose decoder samples
parameterize distribution from the bottleneck for complex generative modeling. The final
model designs the recurrent neural network’s (RNN) long short-term memory (LSTM)
architecture to process the input data as a time-series sequence. Unlike the initial two



Sensors 2022, 22, 123 3 of 14

models, which serve as a reconstructive or generative model [8], the LSTM network
processes the heartbeat data as a sequence, learning the saliency activations for the direct
classification of the heartbeat as anomalous or healthy. Therefore, the ideas presented in
this work are summarized as follows:

1. This paper proposes combining a dual network of encoder and decoder into an
autoencoder to model the latent-space representation of data and its reconstruction
for abnormality detection.

2. The proposed model applies Luong’s concatenation attention [9] to the autoencoder’s
low-dimensional bottleneck, prompting extensive focus on specific complex data
points and saliency activations into a fixed-size context vector.

3. The VAE model is applied to normalize the mean and standard deviation of the
encoded Gaussian distribution for the decoder’s generative reconstruction.

Unlike other machine learning domains, such as classification or regression, where
models merely use loss or cost functions to only systematically determine the direction
of parametric values update [10], the error values in the autoencoder and variational
autoencoder designed in this work are also utilized to interpret the representational margin
where the reconstructed signals are indeed correct or anomalous. Therefore, both models
should relatively result in slight losses when the input data is good, but huge losses when
the data is abnormal. Such variation and representational margin in data distribution are
represented in Figure 2.

Overall, the remaining components of this paper are organized as follows: the back-
ground summary is discussed in Section 2, while Section 3 presents the architectural
description of the proposed models. Finally, the analyses and experimental implementa-
tion of the models are discussed in Section 4, and 5 concludes the work.

Figure 2. Spatial distribution of data points outlier and latent representation visualization.

2. Related Work
2.1. Anomaly Detection

A simple demonstration of abnormality detection is the use of an anomaly score which
measures the degree of outliers in a given dataset [11]. However, because the concept
of similarity and dissimilarity varies in applications and different contexts, the notion of
anomaly score is largely domain-specific.
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In unsupervised scenarios, anomalies are detected using algorithmic designs which
score data points based on their structural properties such as density, variance, and distance
evaluation [12]. For example, the local outlier factor algorithm (LOF) applies a degree
of outliers to data based on its density, therefore measuring the degree of isolation of
data points in comparison to neighboring points [13]. LOF achieves this by introducing a
MinDist (k) parameter representing neighboring data in a particular region of consideration.
In several other clustering algorithms such as K-means and fuzzy C-means, different
techniques such as Euclidean distance or squared Euclidean distances [14] are established
to compute the distance between data points [15].

2.2. Machine Learning Models

The support vector machine (SVM) technique, which finds a hyperplane separating
categories of data, was designed by Maimon et al. [16]. Their method applies the data
position on the hyperplane as the class category of such data point. In addition, a kernel
SVM was introduced to map data with multidimension by extending the SVM hyperplane
method to fit data with a larger feature space.

Similarly, advanced artificial neural network architecture such as convolutional neural
networks (CNN) and recurrent neural networks (RNN) are also employed to detect anoma-
lies due to their vast capability to learn useful information in data. For example, with
CNN, the spatial dependencies of such data are captured, such as in Rajpurkar et al. [17].
The long short-term memory (LSTM) network was also applied to analyze the normality
of time-series data, taking advantage of RNN’s ability to learn temporal dependencies
efficiently [18]. Additionally, the LSTM network can model a longer data sequence, apply-
ing cell states and gated outputs to retain useful information, and let go of unnecessary
ones [19]. Such application is often extended to analyze intrusion detection systems or
anomaly detection in network traffic [20].

Khorram et al. developed an end-to-end convolutional recurrent neural network
(CRNN) to detect the fault in time-domain features collected from accelerometers [21]. This
was accomplished by passing output from one architecture to another for further analysis.
Furthermore, a CRNN model where the data features are first filtered out with a CNN and
passed to a four-layer RNN for context understanding was proposed by [22].

2.3. Autoencoders

Deep learning dimensionality reduction techniques such as generative adversarial
network (GAN) [23] and variational autoencoder (VAE) [24] have become very effective in
modeling or mapping input data into lower dimensional distribution embedded with useful
latent space representation capable of being reconstructed into quality transformations. For
example, a sequence-to-sequence model named TimeNet successfully extracted sequence
features automatically from time-series data via the use of a supervised autoencoder
classifier for anomaly classification [25].

While a traditional autoencoder includes an encoder and a decoder, Jia et al. [26].
proposed a stacked autoencoder with several layers of encoders and decoders connected to
maximize the network’s capability to extract complex patterns and features. In addition,
the stacked autoencoder and stacked denoising autoencoder technique applied to the fault
diagnosis of bearings presented an improved classification performance compared to the
classical artificial neural network model, emphasizing the ability of the autoencoder to
generalize the learned latent space representation [27].

Using a deep coupling autoencoder (DCAE) model, fault diagnosis of rotating machinery
is achieved through coupling dual hidden representations from captured joint information of
several multimodal sensory data and at the higher level [28]. In addition, the effectiveness of
different activation functions and their impacts on diagnosis performance using an autoen-
coder was investigated by Shao et al. [29]. They also tested the Gaussian wavelet model as an
activation function for a wavelet autoencoder with a significant improvement [30].
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3. Attention Autoencoder Latent Representational Model
3.1. Concat Attention Autoencoder (CAT-AE)

As represented in Figure 3, the concatenation autoencoder model consists of an
encoder, an attention module [9], and a decoder based on fully connected layers of feedfor-
ward artificial neural network. The encoder encodes input representation to a latent space
and is then reconstructed by the decoder to the input dimension [31]. As such, the two
parts of the autoencoder are expressed in Equations (1) and (2) as

φ : χ→ Z (1)

ψ : Z → χ̈ (2)

where φ is the encoder, χ is the input data, Z is the obtained latent representation of the
encoder, ψ is the decoder, and χ̈ is the reconstructed output.

Figure 3. Architecture of the autoencoder model with the encoder, attention module, and the decoder.

3.1.1. Encoder

The encoder learns the input data dimension compression to encode the features’
latent representation, whereas the decoder recreates the encoded latent representation to a
reconstructed output. In the model design, the encoder is a stacked layer of three dense
networks with 32, 16, and 8 neurons, respectively. Each of the layers is activated with
a rectified linear unit (ReLU) [32], and the first layer is then represented in Equation (3),
while the last layer is represented in Equation (4).

Z1 = σ(W1 ∗ x1 + b1) (3)

Z3 = σ
(
W3 ∗

[
σ(W2 ∗ [σ(W1 ∗ x1 + b1)] + b2

]
+ b3

)
(4)

where x is the input data, W and b are learnable parameters, σ represents activation
function, and Z3 is the final latent output.

3.1.2. Attention Mechanism

The attention module applies a probability function to estimate scores from the bot-
tleneck vector representation. The estimated score is multiplied by the bottleneck vector
representation to obtain the context vector. Then, the context vector is fed to the decoder
as the input representation, which is reconstructed to the original encoder input data
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dimension. Using Luong’s concatenation multiplicative technique [9], the attention score is
obtained with a single neural network layer eij, which is calculated in Equation (5) as

eij = W ∗ Z + b (5)

where eij is the neural network output, W and b are learnable parameters, and Z is the
latent representation. With this, the score value σ is obtained from the sigmoid function
applied in Equation (6).

σij =
1

1 + exp−x (6)

The value scores σ are then multiplied with the encoder’s latent output, as computed
in Equation (7).

Ct =
n

∑
j=1

σij ∗ Zj (7)

where Ct is the final attention context vector and Zj is the encoder’s latent representation.

3.1.3. Decoder

Similarly, the decoder that reconstructs the latent representation has three dense
networks with 16, 32, and 140 neurons. The first two layers are activated using a rectified
linear unit, while the last layer has a sigmoid activation to compute probability distribution
between zero and one. The first layer is expressed in Equation (8), whereas the last layer is
expressed in Equation (9).

O1 = σ(W1 ∗ Ct + b1) (8)

O3 = σ
(
W3 ∗

[
σ(W2 ∗ [σ(W1 ∗O1 + b1)] + b2

]
+ b3

)
(9)

where Ct is the context vector, W and b are learnable parameters, σ represents activation
function, and O3 is the final decoder reconstructed output.

3.1.4. Loss Function

Having completed the model’s forward computation with the input data, the output
prediction is compared with the input label, and the difference is calculated with the mean
absolute error (MAE) [33] method. The loss allows the model, via backpropagation, to
update the model’s parameters such that the subsequent predictions head towards the
right direction and achieve improved outputs. The MAE cost function is computed as
represented in Equation (10):

MAE =
1
n

n

∑
i=1
|yi − xi| (10)

where MAE is the summation of the absolute difference of the model prediction xi and the
true value yi for all the data points n.

3.2. Variational Autoencoder (VAE)

Similar to an autoencoder, VAEs consist of an encoder and decoder but with a regular-
ized encoding distribution at the bottleneck [34]. This ensures that the model training is
confined to avoid overfitting and enable a good latent space distribution for generative
reconstruction. To achieve this, the encoded latent space is normalized to represent the
mean and covariance matrix of the encoded Gaussian distribution. This way, the encoded
distribution is enforced to the standard normal distribution of the input data. Then, the
distribution is fed to the decoder for generative reconstruction such as in the autoencoder.

3.2.1. Loss Function

Computing the loss between the input data and the reconstructed VAE output, consid-
ering the random normal distribution, is carried out using the Kullback–Leibler divergence
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(KL) function [35]. Unlike other loss functions, the KL loss function learns the distribution’s
mean and variance measure as the model is trained.

Given input data x, the encoder q with parameters θ outputs the hidden representation
z. Then, the encoding, which is a Gaussian probability density, is denoted as qθ(z|x),
resulting in the mean µ and standard deviation σ of a normal distribution.

Similarly, the decoder p with parameters φ produces the reconstructed output pφ(x|z).
Thus, the difference between the input and reconstructed output is measured as the
reconstruction log-likelihood of pφ(x|z).

As a result, the loss function of the VAE is therefore calculated as the reconstruction
loss or expected negative log-likelihood of the i− th data point in the first term and the KL
divergence in the second term, as shown in Equation (11).

li(θ, φ) = −Ez∼qθ(z|xi)[logpφ(xi|z)] + KL(qθ(z|xi)||pφ(z)) (11)

3.3. Reconstructional Anomaly Detection

First, the anomaly detector is trained on only the normal heartbeat sequence, framed
as a regression task such that the model is trained to predict continuous values rather
than discrete values. Then, the loss is computed with the MAE function. Over time, the
model can learn both the activation features of the normal heartbeat data and the saliency
features, resulting in the reduction of the prediction error. Finally, after the model has
been able to learn the right encoded latent space representation and the reconstruction
for the normal heartbeat, the mean average of the error is analyzed to set an efficient
threshold that distinguishes the loss distribution of normal data to anomalous heartbeat
data. This threshold is set to one standard deviation above the mean loss of the trained
normal data samples.

Secondly, the task is converted to a binary classification problem such that the ob-
tained threshold dictates if a data is normal or abnormal by comparing its reconstruction
error. Categorically, a particular input data is passed to the model, and afterwards, the
reconstructed error is compared to the selected threshold. If the reconstruction error of the
input data is higher than the threshold, it is classified as anomalous. For clarification, a
graphical representation of the model’s algorithmic flow is presented in Figure 4.

3.4. Long Short-Term Memory Model

The data is framed as a time-series sequence to sequentially analyze the time steps
using a gated RNN. The model is composed of two LSTM [36] layers with 100 neurons
each, followed by a dropout layer neutralizing 25 percent of the neurons. Finally, there is a
dense layer with one neuron which serves as the classifier with a sigmoid activator. Given
the time-series data of the ECG heartbeats, the model uses the input, forget, and output
gate of the LSTM to create a hidden state of the current time step, as displayed in Figure 5.
This is processed with the hidden state of the previous time steps, allowing it to reserve
relevant information from previous steps.

Therefore, given a previous hidden state ht−1, and previous cell memory ct−1 at time
step t, the current LSTM hidden state ht is expressed in Equation (16) and derived from
Equation (12)–(15) as

ft = α(Xt ∗U f + ht−1 ∗W f ) (12)

ot = α(Xt ∗Uo + ht−1 ∗Wo) (13)

It = α(Xt ∗Ui + ht−1 ∗Wi) (14)

Ct = α( ft ∗ ct−1 + It(tanh(xt ∗U f + ht−1 ∗W f ))) (15)

ht = tanh(Ct) ∗ ct (16)

where ft , It, and ot are forget, input, and output gates at time t, while x denotes the
input data. W and U are trainable parameters, α is the nonlinear activation function, ct
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is the current cell memory, and ht is the current hidden state at time t. The model loss is
computed using the binary cross-entropy function is and trained for 20 epochs.

Figure 4. Architectural procedure for training the autoencoder model.

Figure 5. LSTM framework displaying hidden state of the time steps.

4. Experimental Analysis
4.1. Dataset

The ECG5000 dataset is an extract from a 20 h long electrocardiogram (ECG) test
[37], which records both the strength and timing of the electrical signals from the heart,
mostly referred to as heartbeat. Then, the 20 h long ECG was extrapolated to an equal
length of 140 points. Therefore, all of the datasets are set to a one-dimensional time-series
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data of 140 time steps [38]. A total of 5000 records of the extrapolated ECG were then
selected to form the ECG5000 dataset, out of which 2989 are normal, and the remaining
2011 are anomalous. Therefore, the dataset has a size of 5000 × 140 dimension. The data
was split into an 80:10:10 ratio for the train, validation, and test set, respectively, to train
the proposed model.

4.2. Metrics

For the binary classifier, a true positive (TP) represents correctly predicted positive
values, while true negative (TN) represents correctly predicted negative values. In addition,
false positive (FP) denotes a positively predicted value that is negative, and false negative
(FN) denotes a negatively predicted value that is positive. Therefore, the following metrics
are implemented to evaluate the effectiveness and efficiency of all models expressed in
Table 1.

1. Accuracy: measures how correct a model prediction is to the true label, and it is mea-
sured as the ratio of all the correctly predicted observations to the total observations,
as displayed in Equation (17).

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

2. Precision: computes the ratio of correctly predicted positive observations to the sum
of all the predicted positive observations. It measures the accuracy of the positively
predicted observations shown in Equation (18).

Precision =
TP

TP + FP
(18)

3. Recall: shown in Equation (19), it computes the ratio of correctly predicted positive
observations to the sum of all observations classified in their true class.

Recall =
TP

TP + FN
(19)

4. F1 Score: considers both the recall and precision of a model by accounting for false
positives and false negatives. F1 Score is best suited for uneven class distribution and
is shown in Equation (20).

F1 Score = 2× precision× recall
precision + recall

(20)

Table 1. Comparison of results performance on the ECG5000 test dataset.

Model Accuracy Recall Precision F1-Score

Hierarchical [39] 0.955 0.946 0.958 0.946
Spectral [39] 0.958 0.951 0.947 0.947

Val-thresh [40] 0.968 - - 0.957
VRAE+Wasserstein [40] 0.951 - - 0.946
VRAE + k-Means [40] 0.959 - - 0.952

VAE 0.952 0.925 0.984 0.954
AE-Without-Attention 0.97 0.955 0.988 0.971

CAT-AE 0.972 0.956 0.992 0.974
LSTM 0.990 0.989 0.993 0.991

4.3. Training Details

First, the ECG5000 dataset is preprocessed by transforming and scaling the values
which are originally between the range of −5 and 2 to 0 and 1. This normalization reduces
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the covariate shift and the scale of gradient parameters, resulting in accelerated training. For
the CAT-AE, the normalized data is then passed to the model’s encoder. As a dimensionality
reduction tool, the encoder consists of three layers that reduce the 140 input points to 8,
each activated with a rectified linear unit.

The encoder generates a latent representation of the input data with a one-dimensional
vector of length eight, representing the activation features of each input data. To further
enrich the decoder with the most crucial input data information required to accomplish
a perfect reconstruction, an attention module consisting of a single feedforward layer
network with eight neurons is designed to adaptively focus on the most important cues
in the latent representation. The attention layer finally generates a context vector of
the data’s latent space, emphasizing the encoded saliency features of each ECG time-
step record. This is achieved by implementing the concatenation technique of Luong’s
attention mechanism, obtaining value scores from the latent representation via the one-
layer neural network. Next, the score is converted to a normalized probability distribution,
applying a weighted measure to the decoder’s reconstruction. Subsequently, the weighted
probability distribution is multiplied by the original encoder output to form the attention
context vector.

Finally, the attention context vector is fed to the decoder, reconstructing the ECG 140
time-step sequence. Overall, the final model prediction is compared to the real label values,
and the cost is computed by employing the mean average error. Then, the loss derivative is
computed using backpropagation techniques, and the gradients are optimized with the
Adam optimizer. The model was trained for 15 epochs, resulting in the optimal result with
a batch size of 512 on each iteration. After the 15th epoch, the model loss was drastically
reduced to around 0.0241.

To achieve the classification of the normal and anomalous heartbeats, the CAT-AE
reconstruction loss is compared to the original data distribution to determine the distin-
guishing threshold. The threshold implemented in this study is set to the mean of the
reconstructed loss plus one standard deviation of the mean.

As such, the training process updates the encoder’s weights to generate the optimal
latent representation of the input data while the attention weights are updated to detect
the salient activations of the latent features. Finally, the decoder weights are updated to
reconstruct the context vector generated by the attention module.

For the VAE model, aside from the input and output layers with 140 units, both the
encoder and decoder have one hidden layer with 32 neurons, while the bottleneck, which
computes the mean and variance, has two neurons each. The model loss is computed with
the KL function and is trained for 100 epochs. All of the other parameters are the same
as the CAT-AE model, whereas for the LSTM classifier network, the binary cross-entropy
function computed the loss and trained for 20 epochs with the Adam optimizer.

4.4. Experimental Results
4.4.1. CAT-AE

As shown in Table 1, the proposed CAT-AE model outperformed several of the state-
of-the-art models in all evaluated metrics. This displays the model’s ability to efficiently
learn the latent representation of the ECG data, the saliency features, and the proper
reconstruction to generate the right time-series distribution. In addition, the model can
establish an excellent feature learning with the attention module focusing on the most
significant points of the time steps.

For example, compared to the hierarchical model of [39], the CAT-AE model recorded
an increase of 1.75% and 1.05% accuracy and recall scores. The increased accuracy score
indicates that the generally correctly predicted values are more in the CAT-AE model, and
also, the recall score depicts that the correctly predicted positive observations are also
improved in the CAT-AE model. Similarly, a 3.43% and 2.88% increment were measured in
the precision and F1 score of the CAT-AE model in comparison to the hierarchical model
of [39].
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Compared to VRAE with Wasserstein distance (VRAE+ Wasserstein) [40], the CAT-AE
achieved better results with 2.16% and 2.87% increment in the accuracy and F1 score,
respectively. In addition, a 1.34% and 2.26% increase were recorded in the accuracy and F1
score compared to the VRAE with means clustering (VRAE+ K-means) [40]. This shows that
the positive and negative observation predictions were correctly identified with the CAT-
AE model, emphasizing the model’s ability to model the right reconstruction parameters
for the ECG5000 dataset. Furthermore, the CAT-AE also shows refined performance against
the spectral model, with a 4.54% and 2.77% upturn for the precision and F1 score values.
This is also accompanied by a difference of 1.44% and 0.52% in accuracy and recall score,
with CAT-AE showing superiority.

4.4.2. AE without Attention

Though the autoencoder designed in this study is suitable for learning the latent
representation distribution of the ECG5000 dataset, we display the effectiveness of the con-
catenation attention by comparing the CAT-AE model to the model without the attention
module (AE-No-Attention). Comparing both models with the evaluated metrics indicates
that the attention module significantly boosts the model’s ability to learn and focus on the
saliency representation. The CAT-AE model surpasses the AE-No-Attention with 0.21%
accuracy and 0.12% recall. This indicates that the attention mechanism plays a role in iden-
tifying more correctly predicted observations. In addition, the CAT-AE model surpasses
the AE-No-Attention with a 0.40% precision score and 0.31% F1 score, respectively.

4.4.3. LSTM

The LSTM model records the best results compared to the other models. For the
precision metrics, the CAT-AE model recorded 99.2% compared to the LSTM’s 99.3%.
Similarly, LSTM has a higher score than the others in all the remaining metrics. In contrast
to the VAE model, LSTM has an improved accuracy score of 3.84% and recall improvement
of 6.47%. In addition, it proves to be superior with an F1 score of 3.74%. Compared to the
CAT-AE, LSTM also has a greater accuracy of 99%, while the CAT-AE model has 97.2%.
The LSTM model proves to be more suitable for time-series sequential data as it processes
the heartbeat signals at different time steps, a robust advantage of the recurrent network.
This is emphasized in the confusion matrix per class representation in Figure 6, which
summarizes the predicted count values for the classes. Notwithstanding, the CAT-AE
proved to be more constructive in developing a reconstruction of the input data from
learned latent space, and the VAE architecture has proved excellent in the literature at
extending a reconstruction to new samples of data. The valuation of the models on the
validation set are also presented in Table 2.
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Figure 6. Confusion matrix of the LSTM-predicted result on the test set.

Table 2. Comparison of results performance on the ECG5000 validation set.

Model Accuracy Recall Precision F1-Score

VAE 0.948 0.932 0.978 0.954

AE-Without-Attention 0.956 0.950 0.970 0.960

CAT-AE 0.958 0.946 0.977 0.946

LSTM 0.984 0.998 0.973 0.986

5. Conclusions

In this article, a concatenation attention autoencoder (CAT-AE), variational autoen-
coder, and LSTM time-series models are proposed to detect anomalies in heartbeat se-
quences from ECG data. The ECG data contains heartbeat sequences of healthy individuals
and patients with severe congestive heart failure, analyzed using machine learning algo-
rithms. The first model, CAT-AE, follows the autoencoder design for learning the latent
representation of the input heartbeat sequence with an attention mechanism and then
reconstructs the learned features with the slightest information lost and error. In addition,
the VAE model maps the generative reconstruction of the data via a Gaussian distribution
of the latent space’s mean and standard deviation. Lastly, the LSTM network models
the data sequence using a gated hidden state to learn the essential time-step features for
detecting anomalies in the ECG heartbeats.

Evaluated on the ECG5000 heartbeat dataset, the presented models achieved outstand-
ing anomaly detection capability with state-of-the-art outcomes. Similarly, the CAT-AE’s
encoder reveals exceptional ability to learn the reduced dimensional salient features of the
ECG data, crucial for detecting the reconstruction loss threshold and accurate classification
of the input data. Furthermore, the LSTM network’s supremacy, with 98.9% recall and 99%
accuracy, shows the excellent ability of the model to determine abnormality in the ECG
heartbeat signals.
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