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Abstract: This study presents a comprehensive review of the history of research and development
of different damage-detection methods in the realm of composite structures. Different fields of
engineering, such as mechanical, architectural, civil, and aerospace engineering, benefit excellent
mechanical properties of composite materials. Due to their heterogeneous nature, composite materials
can suffer from several complex nonlinear damage modes, including impact damage, delamination,
matrix crack, fiber breakage, and voids. Therefore, early damage detection of composite structures
can help avoid catastrophic events and tragic consequences, such as airplane crashes, further de-
manding the development of robust structural health monitoring (SHM) algorithms. This study
first reviews different non-destructive damage testing techniques, then investigates vibration-based
damage-detection methods along with their respective pros and cons, and concludes with a thorough
discussion of a nonlinear hybrid method termed the Vibro-Acoustic Modulation technique. Advanced
signal processing, machine learning, and deep learning have been widely employed for solving
damage-detection problems of composite structures. Therefore, all of these methods have been fully
studied. Considering the wide use of a new generation of smart composites in different applications,
a section is dedicated to these materials. At the end of this paper, some final remarks and suggestions
for future work are presented.

Keywords: composite structures; fracture mechanisms; structural health monitoring; smart composite;
advanced technology systems

1. Introduction

Structural health monitoring (SHM) seeks to perform several tasks, such as damage
detection, localisation, and quantification, to maintain the integrity of an entire structure.
Comparatively, baseline-dependent SHM techniques need data from both “healthy” and
“damaged” states of structure, whereas baseline-independent SHM techniques seek to
identify damage through studying structural response to some natural or synthesised
forces. Identifying damage early is desirable so that suitable maintenance procedures
can be undertaken, whereby the structural integrity and reliability can be ensured. SHM
systems comprise the three following main elements:

• A sensing technology that can be deployed on a structure permanently is used so
that structural response data can be recorded and transmitted to a control center to
monitor the health condition of the structure. However, traditional non-destructive
damage testing is more reliant on scheduled monitoring of the structure at a certain
time and location.

• The recorded data are required to be processed through high-performance computing
facilities in the control center for real-time condition monitoring of the structure. This
was made possible by the advent of high-performance PCs in the mid-1980s.

• Robust algorithms needed to study recorded vibration data for damage must be
resilient to several factors, such as measurement noise and Environmental and Op-

Sensors 2022, 22, 153. https://doi.org/10.3390/s22010153 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22010153
https://doi.org/10.3390/s22010153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0436-5176
https://orcid.org/0000-0002-2798-0104
https://doi.org/10.3390/s22010153
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22010153?type=check_update&version=2


Sensors 2022, 22, 153 2 of 45

erational Variations (EOV) effects. Advanced machine learning, deep learning, and
signal processing algorithms have made the development of such methods possible.

The need for resilient materials has been increasing more than ever due to advance-
ments in different fields of engineering over the past century. As such, composite materials
have emerged and have been used in many applications. The idea of composite materi-
als was initiated based on mimicking natural materials such as wood. They have been
widely used ever since their emergence in different fields of engineering, including civil
infrastructures as well as the automotive and aerospace industries. This is mainly due to
several outstanding and excellent properties of such materials, including increased stiffness,
strength, corrosion resistance, fatigue life, and wear resistance along with enhanced thermal
properties and reduced weight. Composite materials are usually obtained from combining
two or more components to achieve the aforementioned enhanced engineering properties.

Existing damage in a composite can adversely affect its performance and, if not identi-
fied and fixed in time, can lead to catastrophic consequences, such as total destruction of the
structure. There are a variety of failure mechanisms in composite structures, which usually
develop either during the manufacturing process, such as design errors and overheating,
or while in service, such as static overload, shock, and fatigue [1–3]. These mechanisms in-
clude fiber failure, buckling, matrix cracking, and delamination. Fiber failure is known to be
the simplest failure mechanism in composite structuresto detect and usually appears when
the excitation loads applied to the composite structure cause fractures in the fibers. Matrix
damage, on the other hand, usually appears in several forms, including voids, cracks be-
tween fibers within lamina, or even as a single composite layer that is an intralaminar form
of defect [4,5]. Another possible form of failure is buckling, which commonly appears as
shear or compression [6,7]. A main failure mechanism is delamination, known to be one of
the greatest “weaknesses” of laminated composites [1,8]. Delamination can spreed through
a composite laminate, resulting in catastrophic consequences if not discovered and fixed
swiftly. The stiffness of composite structures can be vastly compromised by damage, where
in some cases, it might result in total destruction of the structure. Therefore, it is important
to monitor these structures for damage while lowering the maintenance costs. This prompts
further the development of structural damage-detection systems to obtain efficient and
reliable damage-detection methods. One strategy is to develop advanced Non-Destructive
Testing (NDT) technologies that can detect such local abnormalities in composite structures.
There are different types of NDT techniques used for the structural damage identification
of composite structures, some of which include visual testing (VT) or visual inspection
(VI), ultrasonic testing, thermographic testing, infrared thermography testing, radiographic
testing, acoustic emission testing (AE), acousto-ultrasonic, shearography testing, optical
testing, liquid penetrant testing, magnetic particle testing, and electromagnetic testing.

Advancements in SHM techniques for composite structures widely favor the methods
developed for other structures. Some examples of such methods can be found in [9–13].
Some of these methods are also listed in Table 1.

This study presents a comprehensive review of some key aspects of damage detection
in composite structures, including

1. Laminated composite structures;
2. Types of failure modes in such structures;
3. Various damage-detection techniques that are suitable for such structures as well as

their key properties; and
4. Advantages and disadvantages of such techniques. At the end of this study, some

updated guidelines for undertaking smart monitoring systems for composite laminate
structure are outlined.
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Table 1. Some recent advancements in SHM of composite structures.

Refs Method Description Model

[14] Enhanced wavefield imaging

- A new damage index, termed first-
to-residual energy ratio (FRER), was
developed based on the amplitude
signatures and the residual wave
components of the first Lamb waves
to arrive

A composite plate (CFRP,
T300/3231)

[15] Fiber Bragg Grating (FBG)
sensors

- A damage-identification method
of CFRP laminated plates based on
strain information

CFRP laminated plates

[16] Edge-reflected Lamb waves

- Structural prognosis is made possi-
ble using the proposed method lever-
aging the multipath reflected Lamb
waves

A composite plate (CFRP,
T300)

[17] Frequency domain-based cor-
relation

- The complex frequency domain
assurance criterion (CFDAC) was
leveraged to develop a domain-
based correlation approach

A CFRP laminated plate

[18] Low-frequency guided waves

- Low excitation frequencies of
guided waves (GW) propagation in
different types of FE modelling of
composite laminates are used for de-
lamination detection
- Two new convergence criteria are
employed to obtain accurate results

A laminated composite
plate

[19] Correlation function ampli-
tude Vector (CorV)

- The delamination area can be de-
termined through calculation of the
relative changes between the CorVs
of the intact and damaged composite
laminate plates
- Combining the method with a
statistic evaluation formula resulted
in localising damage precisely

A composite sandwich
beam

[20] Continuous wavelet trans-
form and mode shapes

- Higher-order mode shapes or op-
erational deformation shapes (ODSs)
were employed for damage detection

A composite plate

[21] A Lamb wave-based nonlin-
ear method

- An artificial delamination is created
in a composite laminate using a thin
Teflon sheet to be detected with the
proposed Lamb wave-based nonlin-
ear method

A woven fiber composite
(WFC) laminate

[22] Ultrasonic guided waves

- The effective linear and nonlinear
guided wave parameters were ex-
tracted through Hilbert transform
(HT), Fourier transform (FFT), and
wavelet transform (CWT) analysis to
characterize the delamination length

A composite double can-
tilever beam (DCBs)

2. Composite Structures

Common types of engineering materials include metals, polymers, ceramics, and
composites. Among these, composite materials are often a better alternative for traditional
materials, such as metals, ceramics, and polymers due to their light weight, corrosion
resistance, high strength and stiffness, ability to withstand high temperatures, and sim-
ple manufacturing process [23,24]. Composite structures are used in a range of different
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industries from aerospace, marine, aviation, transport, and sports/leisure to civil engineer-
ing. For example, advanced composite materials have been used in different structures
regarding the above industries, such as rotor blades, aircraft main body, and wing skins.

Laminated composites usually consists of a couple of ply termed as lamina. Each
lamina generally consists of two substances: (1) the matrix, and (2) the reinforcement
material or fiber, which is immersed in the matrix. Generally, composite materials are made
of a base material (matrix) and a reinforcement material (fiber) [24–26]. Fiber-reinforced
composite (FRC) materials are composed of high-strength fibers that are embedded in a
matrix for two main reasons: (1) to hold the fibers in place and (2) to prevent the fibers from
exposure to destructive environmental conditions, such as humidity. The different types
of composite textures pertain to fibrous composites, laminated composites, particulate
composites, symmetric laminates, and unsymmetrical laminates.

Figure 1 shows the contributions of the matrix and fiber to different properties of a ply
in composite laminates.

• Fibrous Composites:
Fibrous composite is a type of composite materials that includes fibers integrated
with a matrix, owing its remarkable stiffness and strength to the fibers. Fibers can
be classified based on their length into long and short fibers. While long fibers
are usually produced in straight form or woven form, short fibers, also known as
whiskers, possess better strength and stiffness properties. The geometrical properties
of a fiber are usually characterised by a high length-to-diameter ratio as well as its
near crystal-sized diameter. The effectiveness of a fiber is, however, determined by its
strength-to-density and stiffness-to-density ratios. Fibers can effectively improve the
fracture resistance of the matrix [27], and the long-dimension reinforcement made by
fibers stalls the growth of the cracks initiating normal to the direction of reinforcement.

• Laminated Composites:
Laminated composites consist of several layers of different materials (at least two)
bonded together. Since layers are usually very thin individually, they are combined
through lamination to achieve a material with better mechanical properties. Various
orientations of the layers are typically used to form a multiply laminated composite
suitable for engineering applications. Some examples of laminated composites include
bimetals, clad metals, laminated glass, plastic-based laminates, and fibrous composite
laminates [28].
A hybrid class of composites, called laminated fiber-reinforced composites, involves
both fibrous composites and lamination techniques. The fiber direction of each layer
of fiber-reinforced composites is typically oriented in a direction different from the
direction of other layers in order to achieve strength and stiffness in different direc-
tions. Thus, the layering of such composites can be tailored based on specific design
requirements [29].

• Particulate Composites:
Particulate composites, such as concrete, consist of particles of different materials with
different shapes, sizes, or configurations that are randomly suspended in a matrix.
However, unlike fibers, particulate composites are not usually of long dimensions
(with the exception of platelets) but instead are regarded as isotropic materials. Simi-
lar to a matrix, particles can be composed of different types of materials, including
metallic and nonmetallic. As such, there are four possible combinations of fibers and
matrices in terms of the type of material used in each one: (1) metallic particles in non-
metallic matrix, (2) nonmetallic particles in metallic matrix (metal matrix composites),
(3) nonmetallic particles in nonmetallic matrix, and (4) metallic particles in metallic
fibers. Particulate composites are meant to reduce the cost of integrating composites
with fibers [30]. Notwithstanding, they typically do not exhibit the strong load-bearing
capability of fibrous composites and are not typically resistant to fracture.
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• Symmetric Laminates:
Symmetric laminates are a laminated composite that is symmetric in geometry and
material with respect to the geometrical middle surface. Therefore, the layers that
make up a symmetric pair possess the same properties. Symmetric laminates are more
common compared with unsymmetrical laminates [31].

• Unsymmetrical Laminates:
Unsymmetrical laminates are not symmetric with respect to their middle surface. They
are used in many applications, depending on the design requirements [32].

Often times, various types of composite textures can be mixed to obtain six different
kinds of composite materials as follows:

• Symmetric–fibrous composites;
• Symmetric–laminated composites;
• Symmetric–particulate composites;
• Unsymmetrical–fibrous composites;
• Unsymmetrical–laminated composites; and
• Unsymmetrical–particulate composites.

The load is mainly carried by the fibers that act as reinforcement, while the roles of the
matrix are (1) to hold the fibers in place and (2) to transmit the load to the fibers. Typically,
fibers are composed of carbon, glass, aramid, boron, and silicon carbide, whereas the matri-
ces are usually made from polymers such as epoxies and polyimides [32]. Figure 2 shows
the classification of composite materials based on the type of reinforcement and matrix.
Therefore, the properties of a composite are generally determined by the following factors:

1. Fiber properties;
2. Matrix properties;
3. Fiber Volume Fraction (FVF), which is defined as the ratio of fiber to matrix; and
4. Arrangement of fibers in the composite, such as geometry and orientation.

Matrix Fiber

Fibers wetting
Pocess easing 
Laminate quality
Strain to the
failure
Resistance to
environmental
factors
Density
Cost

Strength
Stiffness
Fatigue lifespan
Density
Toughness
Cost
Sensitivity to
temperature
Termal expansion
Wear resistance
Corrosion resistance
Corrosion resistance 
Conductivity
Electrical
Thermal
Insulation
Acoustical
Thermal

Figure 1. The contributions of matrix and fibers to different properties of a ply.
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The density, stiffness, and strength of the matrix is lower than those of the fibers. The
combination of the matrix and fibers usually offers very high strength and stiffness while
maintaining low density [26].

Based on
Reinforcement

Based on 
Matrix

Fiber-reinforced composites

Particle-reinforced composites

Structural composites

Ceramic-matrix composites

Organic-matrix composites

Metal-matrix composites

Composite 
Materials

Figure 2. The classification of the composite material.

For further details about the classification of composite structures, the readers are
referred to [33–36].

2.1. Failure Mechanisms of Composite Structures

Various types of defects can occur in composite structures, which can be classified
based on the size and component of the effected composite structure, as illustrated in
Figure 3. Some of the most critical types of damage are those caused by cyclic loading
(fatigue damage) or impact loading. Such damage can significantly reduce the residual
strength in a part of a composite structure, depending on their type and size [36]. Damage
can occur in a composite structure in different forms, ranging from defects in the matrix
or fiber to other forms of damage such as a breakage of elements or failure of attachments
that are either bonded or bolted to the body of the structure [5]. The extent of damage
determines the remaining service life of a composite component and is thus considered a
factor to identify the damage tolerance of the component. While some types of damage
can have very little effect on the residual strength, they can become more severe over time
when combined with other factors, such as environmental and operational effects [37,38].

Impact damage can reduce the compression, shear, and tensile strength of composite
materials. As such, the compressive residual strength of the laminated composite material is
dependent on the extent of delamination and fiber failure produced by transverse impacts.
Fiber failure can subsequently affect the tensile residual strength of the material. However,
the effect of impact damage can vary based on the specific design and application of
the composite member. For example, in aircraft systems, impact damage can decline the
resistance and integrity of composite components to the environmental factors, such as
moisture. As such, the core of sandwich panels with thin face sheets may be subjected
to moisture after the impact, or the impact can bring about fuel leaks in stiffened wing
panels. Therefore, a good understanding of these effects can guarantee a safe and economic
application of composite materials.

Table 2 lists some studies that investigate common failure mechanisms in composite
structures.
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Table 2. Some common failure mechanisms along with recommended damage detection methods in
composite structures.

Refs Failure Description Method

[39] Matrix cracking

An NDE method based on propagation of
ultrasonic Lamb wave in polymeric compos-
ites that is capable of detecting and classi-
fying matrix cracking in the material using
artificial intelligence was developed

Method based on guided wave
propagation and artificial neu-
ral networks

[40] Fiber cracking

A mixed-mode I/II crack detection crite-
rion was developed for fracture detection of
orthotropic materials with arbitrary crack-
fiber angle

Augmented Strain Energy
Release Rate (ASER)

[41] Delamination

An image processing methodology, based
on digital radiography, was developed to
characterize the drilling-induced delamina-
tion damage

Image processing

Coupled micro-macro damageMacro damage

- Delamination

- Transverse crack due to
delamination

Micro damage

- Fibre level  
1. Fibre     
Fracture/Breaking 
2. Fibre Buckling or
Kinking 
3. Fibre Bending 
4. Fibre Splitting 
5. Fibre Radial
Cracking

- Coupled Fibre-Matrix level  
1. Fibre Pullout 
2. Fibre Breakage-Interfacial   
  Debonding 
3. Fibre Failure due to Matrix
Cracking 
4. Transverse Matrix  Cracking

- Matrix level
1.Matrix Cracking 
2.Fibre Interfacial
Cracking

Figure 3. Types of damage in composite structures.

Some more details about failure mechanisms in composite materials can be found
in [10,42–44].

2.2. Environmental Variations Effects

One pertinent factor to be considered when designing a composite component is the
environment that the component is exposed to during service time. This is mainly due to the
fact that the performance of composite members is significantly affected by environmental
factors. There are several environmental factors that can have such effects, with temperature
and moisture being the most important for polymer composites. For example, the modulus
and strength of the polymer matrix are highly affected by temperature variations, which
can further affect the mechanical properties of the lamina and laminate. While the modulus
and strength of the matrix can be reduced by elevated temperature, extreme cold conditions
can trigger brittle behaviour in some resin systems [45–48]. However, the extent of this
event highly depends on the type of resin and, more generally, all other materials used
in the design of the composite component. For example, the effect of temperature on
glass or carbon fibers is less than that on some organic fibers, such as aramid. Likewise,
increased moisture content can decrease some mechanical properties of materials, such
as the resin’s modulus and strength. Moreover, matrix swelling is another effect caused
by moisture uptake, resulting in increased residual stresses within the laminate. Except
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for most spacecrafts, moisture swelling effects are not as severe as those pertaining to
temperature and, therefore, are usually neglected at the design stage.

Table 3 outlines the effect of different environmental, operational, and damage mecha-
nisms on the mechanical properties of composite structures based on reviewing
References [33,34,49–51]. For instance, the composite material stiffness is highly sensi-
tive to the temperature and moisture variations as well as the presence of fiber cracks.
Another factor that is highly sensitive to moisture, as an environmental effect, is the mass
of composite components. As such, the boundary formation is the item least influenced
by the environmental variations, i.e., temperature and humidity. The mechanical load and
electromagnetic radiation have relatively moderate effects on composite material conduc-
tivity. However, their impact on other mechanical properties of the composite structure
is negligible.

Table 4 indicates the review of several studies on the environmental and operational
effects on different types of structures. Some further references on this topic include [52–55].

Table 3. Influence of environmental conditions on local properties of composite structures. (+) strong,
(◦) average, and (−) weak influence. (Dl) Delamination, (T) Temperature, (Dt) Dirt, (M) Moisture,
(ER) Electromagnetic Radiation, and (ML) Mechanical Load.

Condition
Influence Notch Matrix

Crack
Fiber
Crack Dl T Dt M ER ML

Material
Stiffness ◦ ◦ + ◦ + − + − −

Mass − − − − − + + − −
Damping − ◦ ◦ ◦ ◦ + ◦ − −
Material
Conductivity + ◦ + ◦ ◦ − ◦ ◦ ◦

Boundary
Formation + − − + − ◦ − − −

Table 4. Some references studying the environmental and operational effects.

Effect Refs Description

Temperature effects

[56] Vibration tests conducted on five bridges in the UK indicated that bridge
responses are sensitive to the structural temperature

[57]
The movement of a point in the experimental model with respect to
its expected location in the analytical model confirmed a significant
expansion of the bridge deck due to the elevated temperature.

[58] A 5% variation in the first mode frequency of the bridge, during the 24 h
cycle, was detected

[59] The frequency–temperature and displacement–temperature correlations
using long-term monitoring data were investigated

[60] Dempster–Shafer data fusion technique was employed to investigate the
correlation between modal data and temperature

[61]
The regression analysis in conjunction with Principal Component Analy-
sis (PCA) was employed to purify natural frequency from the environ-
mental and operational variations effects

[62] The back-propagation neural network (BPNN)-based approach was em-
ployed to clean the identified natural frequencies from temperature effects

Boundary condition effects
[63] The effect of crack and beam lengths on the natural frequencies was

investigated

[64] The changes in the natural frequencies caused by the freezing bridge
supports were investigated

Mass loading effects
[65] It was noted that heavy traffic on a 46 m long, simply supported plate

girder bridge decreased the natural frequencies of the bridge by 5.4%

[66] The effect of the traffic mass on the damping ratios becomes evident
when the vibration of the deck due to the traffic exceeds a certain level
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Table 4. Cont.

Effect Refs Description

Wind-induced variation effect

[67] The alleviated wind velocity can reduce the natural frequency and de-
crease the modal damping of a suspension bridge

[68]
A quadratic function can be established to map the vertical amplitude
of the bridge response to the wind speed. It was also noted that the
damping ratio is dependent on the vibration amplitude

3. SHM of Composite Structures

Structural health monitoring (SHM), as a well-established tool, is currently used
extensively for damage diagnosis in different types of composite structures, such as bridges.
SHM methods can be categorised into two groups in terms of the extent of the area they
are applied to on a structure: local and global techniques. Global techniques are of more
interest when it comes to monitor a large area on structures, whereas local methods, also
termed non-destructive evaluation (NDE) techniques, have been widely used for damage
identification of different structures such as composite materials.

Non-destructive testing (NDT) refers to a family of damage-identification methods
that do not pose damage onto the structure under investigation. As such, they are valuable
techniques in terms of saving money and time in system evaluation. Alternatively, these
techniques may be termed nondestructive examination (NDE), nondestructive inspection
(NDI), or nondestructive evaluation (NDE) [69–73]. The advantages, limitations, and range
of applications of different NDT methods are listed in Table 5. Accordingly, thermography
and ultrasonic testing are the most suitable NDT methods for damage identification in
composite materials. NDT aims to detect the presence of and to characterise damage in the
interior or on the surface of materials without cutting or piercing through the materials that
can otherwise lead to changing the material properties. NDT techniques can be categorised
in several ways based on the type of the composite to be tested and testing conditions.

Table 5. The advantages, limitations, and ranges of applications of different NDT techniques.

NDTE Technique Advantages Limitations Range of Applications

Neutron imagine (NI) [74]

- Simple
- Quick
- Economically viable
- Easy to handle
- Flexible

- Good method for the detection of sur-
face imperfections only
- Effective when used to detect macro-
scopic flaws. Not a good method for
micro-damage detection.
- Highly subjective and suffers from low
repeatability of results and high repro-
ducibility of errors
- Requires multiple engineering ap-
proaches for subsurface defect detection

- Civil engineering
- Aerospace industries
- Health monitoring of com-
posite structures

Acoustic emission (AE) [75]

- Good for real-time struc-
tural health monitoring
- Applies highly sensitive
sensors to detect stress
waves
- Applicable in situ
Supports large volumes
of measurement
- Effective for micro-scale
damage detection
- It is simple, fast, and
cost-effective

- Sample must be stressed
- Sensitive to surrounding noise
- Not effective for thick sample
- Hard to explain and characterise dam-
age modes
- High-cost in terms of consumables and
equipment
- Limited in terms of offshore applica-
tion
- High acquisition rates and measure-
ments on test sample are critical
- Provides a qualitative damage detec-
tion only

- Civil engineering
- Automobile industries
- Machining
- Aerospace industries
- Health monitoring of com-
posite structures
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Table 5. Cont.

NDTE Technique Advantages Limitations Ranges of Application

Ultrasonic testing (UT) [76]

- Applicable to different
material systems
- Enables the identifica-
tion, quantification, and
localisation of internal
defects
- Permits one-sided
inspection
- Fast scanning
- Long-range inspection
capability
- Suitable for assembly
lines
- Good for in situ inspec-
tion due to portable and
compact equipment
- Often affordable
- Non-ionizing radiation
- Minimal preparation
requirement
- Sensitive to both surface
and subsurface disconti-
nuities

- Complex setup and transducer design
- Requires skills to interpret multi-modes
and complex features
- Sensitive to operational and environ-
mental variations
- Difficult to identify damage in the close
vicinity of probe
- Restricted resolution imposed by the
limitation of algorithms and computing
power
- Requires accessible surface to transmit
ultrasound

- Material research
- Weld inspection
- Quality assurance
- Bridges
- Aerospace industries
- Gas trailer tubes
- Health monitoring of com-
posite structures

Nonlinear acoustics
(NLA) [77]

- A robust method to de-
tect microscopic damage
- Capable of fatigue moni-
toring prior to crack
initiation

- Difficult implementation

- Civil engineering
- Automobile industries
- Medicine
- Machining
- Aerospace industries
- Health monitoring of com-
posite structures

Digital image correlation
(DIC) [78]

- Affordable
- Easy to implement
- Adjustable temporal and
spatial resolution
- Insensitive to ambient
changes

- Requires high-quality speckle patterns
- Resolution is limited by speckle pattern
- Can be applied for the identification of
subsurface defects

- Civil engineering
- Automobile industries
- Medicine
- Machining
- Aerospace industries
- Health monitoring of com-
posite structures

X-ray radiography and X-ray
tomography (XRI) [79]

- Good for different mate-
rials
- Can identify both sur-
face and bulk damage
- Detailed shape of damage
can be revealed through
2D and 3D images
- Specific resolution at the
sub-micron level
- High efficiency
- Great image-processing
ability

- Not good for large structures
- Not good for in situ tests
- Requires access to both sides of the test
specimen
- Dangerous ionizing radiation and,
therefore, needs protection
- Limit access to facilities
- Can endanger human health

- Civil engineering
- Health monitoring of com-
posite structures

Resistivity [80] - Self-sensing capability
- Real-time monitoring

- Requires electrodes
- Can be applied to electrically conduc-
tive materials

- Civil engineering
- Health monitoring of com-
posite structures
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Table 5. Cont.

NDTE Technique Advantages Limitations Ranges of Application

Infrared thermography
(IRT) [81]

- Can be implemented
real-time
- Can visualise damage
- Applicable to a wide
range of materials
- One-sided inspection is
possible
- Easy and safe operation
(non-ionizing radiation)
- Fast and cost effective

- Vulnerable and sensitive equipment,
not suitable for in situ tests
- Restricted by the cost and availability
of excitation sources in the field
- The accuracy depends on the complex-
ity of the specimen geometries
- Data-processing time depends on the
computing power and algorithms
- Implementation is limited for offshore
structure
- More automation from footage is
needed for crack identification

- Civil engineering
- Medicine
- Optimising processes
- Surveillance
- Aerospace industries
- Health monitoring of com-
posite structures

Shearography (ST) [82]

- Surface strain measure-
ment via non-contact full-
field tests
- Flexible to environmen-
tal disturbance
- Applicable to large com-
posite structures
- High-speed capability
- Automated inspection
capability

- Requires external excitation sources
- Sensitive to rigid-body motion
- Not ideal for subsurface defect identifi-
cation
- Not resilient to uncertainties

- Civil engineering
- Machining
- Aerospace industries
- Health monitoring of com-
posite structures

Terahertz (THz) [83]

- Robust and repeatable
- Great scan rate with
imaging
- Great accuracy, sensitiv-
ity, and resolution
- Great penetration depths
- Non-ionizing radiation

- Low speed examination
- Limited to non-conductive materials
- Costly

- Civil engineering
- Aerospace industries
- Health monitoring of com-
posite structures

Eddy current testing (ET) [84] - Fast
- Contactless

- Can be applied to only electrically con-
ductive materials
- Applicable for surface analysis

- Civil engineering
- Aerospace industries
- Health monitoring of com-
posite structures

Neutron imagine (NI) [85]

- Applicable to different
materials
- Applicable for in situ tests
- Good for both surface and
bulk damage detection
- Detailed shape of dam-
age can be revealed in 2D
and 3D images
- High resolution at the
sub-millimeter level
- High image-processing
ability
- Provides greater pene-
tration depth than X-rays
- High sensitivity to light
elements

- Not good for in situ tests
- Requires access to both sides
- Requires protection against dangerous
ionizing radiation
- Acquisition efficiency lower than XRI
- Access to facilities is limited
- More expensive than XRI

- Civil engineering
- Automobile industries
- Aerospace industries
- Health monitoring of com-
posite structures

According to Table 5, NDT is widely employed in forensic engineering of different
systems, including mechanical engineering, petroleum engineering, electrical engineering,
civil engineering, systems engineering, aeronautical engineering, medicine, and art [86,86].
For instance, medical imaging techniques, such as echocardiography, medical ultrasonog-
raphy, and digital radiography, are NDT techniques that have had a profound impact
on medicine.
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Ultrasonic testing (UT) techniques belong to another family of NDT techniques that
are used to investigate materials by studying the propagation of ultrasonic waves. Typically,
UT devices transmit very short ultrasonic impulses with center frequencies ranging from
0.1 to 15 MHz and, in some cases, up to 50 MHz. The recorded signals at the receiver side
are studied for internal flaws or in order to characterize materials [5,87–89]. For example,
UT is used to measure the thickness of the test object to determine the extent of corrosion
in a piping system.

Shearography or speckle pattern shearing interferometry is an NDT technique that uses
coherent light or coherent sound waves for the quality assessment of materials in different
problems, such as nondestructive testing, strain measurement, and vibration analysis. It has
a wide range of applications in the aerospace and wind turbine industries, among other
areas [5,29,90,91]. The shearography techniques present several advantages over traditional
NDT techniques, including (1) being capable of testing large area on the structure (up to
1 m2 per minute [92]), (2) providing contactless techniques, (3) being relatively insensitive
to environmental variations effects, and (4) performing well on honeycomb materials [93].

Eddy-current testing (ECT) is an electromagnetic NDT method that exploits electro-
magnetic induction in conductive materials for the detection/characterisation of surface
and sub-surface defects [94].

Thermographic inspection is a technique used to monitor the thermal changes in the
surface of an object. It can be also used to provide images from thermal patterns on the
surface of an object. The infrared thermography technique is non-intrusive and contactless
and is used to provide mapping from thermal patterns (thermograms) on an object’s surface
through an infrared detector [95].

Radiographic Testing (RT), on the other hand, is an NDT technique to inspect the
interior of a material for hidden flaws. In order to penetrate into the material, RT applies
short-wavelength electromagnetic radiation [96], which can be produced by some equip-
ment, such as X-ray machines. To provide high-energy photons, the machine is equipped
with a source of radioactive material, such as Ir-192; Co-60; or in some rare cases, Cs-137.
Neutron imaging is a variant of radiographic testing that produces an image with neutrons,
while neutron radiography is a technique that applies neutrons, instead of photons, to
penetrate through materials. The neutron attenuation determines the properties of the
obtained image. Despite some similarities, it might not be possible to see some details
in the resulting images of neutron radiography that could be otherwise detected through
X-ray imaging techniques, and vice versa. For instance, neutrons can pass through lead and
steel easily but not through plastics, water, and oils [97]. The thickness or composition of a
material is determined by measuring the variations in the radiation detected in an opposite
side of the material as waves penetrate and pass through.

Electromagnetic testing (ET) is a family of NDT techniques that monitors the electro-
magnetic response of a test object by applying electric currents and/or magnetic fields
inside the object. Figure 4 lists different types of non-destructive testing and evaluation
techniques (NDTE) along with their subcategories. Each of these techniques can be applied
to a specific range of damage in composite structures, as shown in Figure 5.

As a main disadvantage of these techniques, the evaluation process cannot be carried
out without any prior knowledge about the approximate location of the damage. The SHM
system should ideally fulfill the following requirements:

• Cheap;
• Enables continuous assessment;
• Can detect low level damage;
• Can detect different damage types;
• Resilient to ambient loading conditions;
• Resilient to measurement noise; and
• Resilient to environmental variations.
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Figure 5. The range of damage to which different types of NDTE techniques can be applied.

3.1. Characteristics of Sensors for SHM

Any SHM system requires a data-collection mechanism, for which different types
of sensors can be selected depending on the type of data required for damage detection.
Some commonly used sensors include strain gauges [98], accelerometers [99], temperature
gauges [100], acoustic emission sensors [101], and fiber optic-based sensor systems [102].
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Several factors to be considered prior to select sensors for an SHM system are described
as follows:

• Type of sensors;
• Sensor cost(s);
• Number of sensors and their installation procedure;
• Damage protection against mechanical and chemical factors;
• Reduction in the effect of noise;
• Data-collection procedure; and
• Sensitivity of sensors to long-term environmental effects, such as moisture and humidity.

Therefore, sensors need to be protected against harsh environmental effects for ob-
taining decent measurements. Sometimes, powerless sensors may be desired [103–106],
especially for long-term condition monitoring of structures. These sensors do not require a
source of power to operate and are usually equipped with an energy-harvesting mechanism.
Some of the main characteristics of sensors are listed in Table 6.

Table 6. Fundamental characteristics of sensors used for damage detection of composite materials.

Specifications Description

Range
The variation in measurements is limited between
a minimum and maximum value, termed the range
of a sensor

Sensitivity The sensors should be sensitive enough to the re-
sponse of a system to the applied load

Accuracy
The value shown by a sensor might be slightly off
by a factor, whereby the accuracy of the sensor can
be characterised

Stability The durability of sensors for long-term condition
monitoring of structure

Repeatability
The measurement made by the sensor on the struc-
ture subjected to the same load should not vary
much from the previous measurements

Energy Harvesting
Energy harvesting capability of sensors is essential
for sensors used for long–term condition of struc-
tures

Compensation due to change in tem-
perature and other environmental
parameters

The signal conditioning feature of the sensors
should be capable of reducing the environmental
variations effects

The type of sensor to be employed for damage detection is determined based on the
type of data to be measured. Table 7 presents different types of sensors that could be
used for monitoring different mechanical properties of a component. Additionally, some
criteria to be considered prior to sensor selection are listed in Table 8 based on the authors’
extensive review of the literature.
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Table 7. Types of different sensors for damage detection of composite materials.

Measurement Type Refs

Displacement

Magnetic optical
Ultrasonic
Acoustic emission
Inductive
Capacitive
Gyroscope

[107]
[108]
[109]
[110]
[111]
[112]

Velocity
Magnetic induction
Optical
Piezoelectric

[113]
[114]
[115]

Acceleration

Capacitive
MEMS
Piezoelectric
Piezoresistive

[116]
[117]
[118]
[119]

Strain Piezoresistive
Optical

[120]
[121]

Force Piezoresistive
Optical

[122]
[102]

Temperature

Acoustic
Optical
Thermoresistive
Thermoelectric

[1]
[123]
[124]
[125]

Pressure Piezoresistive [126]

Optimal sensor placement is an important task that needs to be addressed properly
for any successful SHM system. As such, the extraction of sufficient and useful informa-
tion from the structural response to some applied forces can be guaranteed through the
deployment of the sensor network on the identified optimal locations on the structure [127].

Table 8. The criteria based on which the type of sensors need to be decided.

Characteristic Description Influence

Amplitude range - Response levels are sensitive to ex-
citations levels

- Sensors can be overloaded or burst by high
levels of response
- Low levels of response can produce poor data
- Certain response levels may not contain dam-
age information
- Response level in one frequency range can pre-
vail the response in other ranges

Frequency range

- Excitations in different frequency
ranges trigger different response fre-
quencies and deflection patterns in a
structural component

- Narrowband data contains short frequency
bandwidths
- Lower frequency excitations are less capable
of revealing small damage
- Certain frequencies excitation are more sensi-
tive to damage
- Traveling waves combined with vibrations can
reveal damage in specific locations
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Table 8. Cont.

Characteristic Description Influence

Nature of data

- Constant excitation amplitude pro-
duce stationary frequency and phase
responses, whereas time-varying ex-
citation amplitude results in nonsta-
tionary frequency and phase

- Stationary response data require less data for
diagnostics as they are more repeatable
- Stationary data also exhibit a cyclic nature that
sometimes does not reveal damage in data
- Nonstationary response requires averaging as
it is not as repeatable
- Nonstationary data can expose more types of
damage due to its transient nature causing a
broader frequency range

Temperature
range

- Temperature fluctuation can affect
operating components

- Temperature shifts change sensor calibration
- Can limit sensors positioning
- Sensors and attachment mechanisms can fail
due to high/low temperatures

Acoustic excitation - Air pressure fluctuations can trig-
ger vibration and wave responses

- Acoustic excitations can directly excite sensor
housings

Electromagnetic
interference

- Converting a measured signal to an
electrical signal can produce electric
and magnetic fields

- Shielding, such as coaxial cables, is needed to
prevent electromagnetic interference
- Minimizing the noise effect through preampli-
fication of signals is a common practice

3.2. Damage Detection Using Ambient Vibration Data

Ambient vibration data provide information on the functions of a structure’s phys-
ical properties and, thus, are widely used for damage identification in different types
of structures. Damage can reduce the mass and stiffness of a structure while increasing
its damping ratio locally. Hence, any information about damage can be retrieved from
studying structural modal data. Usually, information about all modal parameters, such as
natural frequencies, mode shapes, and modal damping ratio or some combinations of them,
are employed for damage detection. Among all structural properties, damping and mass
are, respectively, the most and the least sensitive parameters to damage [128–132]. Since
damping cannot be easily modelled as with mass and stiffness, proportional damping is a
preferred alternative often used for damage detection [133–135]. Surface measurements of
a vibrating structure can carry information about the health condition of internal members.
Hence, the majority of such methods exploit lower-frequency modal data to characterise
the global behaviour of structures. Additionally, measurement points can be customized in
these techniques due to their global nature. These methods also favour cheap-to-obtain
and easy-to-extract properties of the modal information.

However, these methods present some limitations:

1. Sensitivity only to some particular forms of damage;
2. Usually requiring baseline data extracted from a healthy model of the structure to be

compared against data obtained from a damaged state for damage characterisation;
3. Succumbing to some structural conditions, such as closely situated eigenvalues,

a phenomenon occurred in composite structures [136];
4. Requiring large data storage capacity derived from complex structures, such as com-

posite structures; and
5. Not being capable of extracting information about small defects from global features.

Table 9 summarises different modal features used for damage detection of composite
structures along with the type of damage that can be detected and the advantages and
disadvantages of each based on the authors’ extensive review of the literature.
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Table 9. Characteristics of different modal data employed for damage detection of composite structures.

Features Types of Damage Advantages Disadvantages

Natural frequency

- Delamination
- Cracks
- Stiffness reduction
- Circular holes
- Debonding
- Impact damage

- Cost effective
- Can be conveniently measured
from just a few accessible points
on the structure
- Less sensitive to measurement
noise

- Cannot be used alone for dam-
age localisation
- Sensitive to environmental and
operational variations

Mode shapes and cur-
vature

- Delamination
- Cracks
- Stiffness reduction
Cutout
- Impact damage

- More sensitive to local damage
- Less sensitive to environmental
effects

- Require a series of sensors for
measurement
- They are more prone to mea-
surement noise, compared with
the natural frequencies

Modal strain energy
- Delamination
- Surface cracks
- Stiffness reduction

- Suitable for damage localisation
- Effective and practical for detec-
tion and quantification of single
or multiple damage
- Less sensitive to environmental
effects

- More sensitive to local damage
and small cracks
- Not very suitable for damage
quantification

Damping

- Delamination
- Micro buckling
- Debonding
- Fiber fracture
- Kink bands
- Cracks

- Sensitive to even small cracks
- Not very sensitive to noise

- Very sensitive to environmental
conditions such as temperature

Frequency response
function and curva-
ture

- Delamination
- Debonding
- Impact damage
- Cracks

- Suitable for structures with
many closely situated eigenvalues
- Do not require matching and
pairing of the mode shapes
- Less sensitive to measurement
noise and the accumulation of
computation errors

- Measurement of the frequency
response function requires a
series of sensors

3.2.1. Natural Frequency

It is known that damage can reduce the stiffness of a structure, causing its natural
frequencies to decline. Therefore, such natural frequencies provide good parameters to be
studied for damage detection and classification. Classical vibrational measurement data are
usually employed for the identification of structural natural frequencies, thus allowing for
the procedure to be a very cheap experimental practice. Therefore, being cheap and easy to
measure, natural frequencies are an easy choice for conducting damage detection. Another
advantage comes from the level of confidence in the accurate measurement of frequencies,
where uncertainties in the measured frequencies can be considerably reduced by a perfect
control of the experimental conditions. Moreover, the selection of adequate measurement
points for efficient detection of the changes in frequencies can be performed by studying
numerical models, such as finite element models, which further enhance the simplicity
of identifying the damage location and severity. According to Doebling et al. [137], the
first attempt to identify damage by studying the shift in structural natural frequencies was
made by Lifshitz and Rotem [138]. Specifically, the latter authors analyzed the shifts in
the natural frequencies made by changes in the dynamic moduli for damage detection of
elastomers. Notwithstanding, it is known that natural frequencies are highly sensitive to
environmental effects, such as temperature fluctuations.

For more information about damage detection in composite structures via natural
frequencies, the readers are referred to [139–142].
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3.2.2. Mode Shapes

Mode shapes are relatively less influenced by environmental effects than frequencies,
making them a better choice for damage assessment of structures [143]. Moreover, this type
of spatial information has been proven to enable damage localisation (Level 2 as per [144]).
Modal Assurance Criterion (MAC) is a statistical technique developed on the basis of
structural mode shape data and has been widely used for damage detection [145]. This
method favors the orthogonality property of eigenvectors. Coordinate Modal Assurance
Criterion (COMAC) is an advanced version of MAC that uses modal node displacement
for damage detection and localisation [145]. It has been demonstrated that MAC and
COMAC can be successfully used to detect and localise different types of damage [146].
COMAC, either alone or in conjunction with other methodologies, seems to be a popular
damage detection method across different disciplines of engineering. Table 10 presents
some recent developments in the application of mode shapes for damage detection of
composite structures.

Table 10. Some methods developed for damage detection in composite structures using mode shapes.

Ref Description Model

[147]

The coefficients of the continuous wavelet trans-
form extracted from the difference between mode
shapes of undamaged and damaged structures was
used for damage detection.
Mathematical techniques were employed to miti-
gate the edge effect of wavelet transform, to reduce
experimental noise in mode shapes, and to identify
virtual measuring points.
The method was validated by studying steel
beams with different cracks sizes and locations
experimentally.

Composite beam-type structures.

[148]

Experimentally identified modal parameters were
used for damage detection.
New damage indicators based on the change in nat-
ural frequencies and mode shapes were developed.

A composite cantilever beam

[149]

The mode shape difference curvature (MSDC) anal-
ysis method was proposed for estimating damage
location and severity in wind turbine blades. The
method makes the use of an FEM for dynamic
analysis.
The mode shape difference curvature (MSDC) infor-
mation was used for damage detection/diagnosis.

Multi-layer composite material of
wind turbine blades

[150]

The proposed method implements online structural
health monitoring using modal data used in tech-
nologies such as machine learning and artificial
intelligence.
The commercial FE code Ansys was employed to
develop a novel technique, termed node-releasing
technique, through FE analysis (FEA) of perpendic-
ular and slant cracks of various depths and lengths
in different Unidirectional Laminate (UDL) com-
posite layered configurations.

Laminated composite plates

For more information about damage detection in composite structures via modal
shapes refer to [151,152].

3.2.3. Modal Curvature

The Modal Curvature Method (MCM) is a technique based on the expanded mode
shape monitoring theory, which concerns the second derivative of mode shapes. The
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method was first developed by Pandey et al. [153] based on the relationship between
curvature and flexural stiffness (EI). As such, the loss of stiffness due to damage can be
sought through monitoring increased modal curvature values. The high level of sensitivity
of MCM to damage was demonstrated by [154]. Ho and Ewins [155] improved MCM by
amplifying the curvature variations in the Modal Curvature Squared Method (MCSM),
which can be employed to more easily discern abnormal changes compared with MCM.
However, MCM introduces some drawbacks, such as requiring many sensors to iden-
tify higher modes and limited performance due to the number of modes considered in
analysis [156]. The central difference approximation used in MCM can magnify the effect
of errors in displacement mode shapes. This effect can also amplify high-frequency noise,
resulting in an increase in the variance of the extracted damage features [157]. On the
other hand, using larger sampling frequency to avoid noise can bring about truncation
error [158]. Additionally, calculating the curvatures from measured strain values has shown
to be less informative [159]. Given the above drawbacks and to enhance the credentials
of MCM, it is usually coupled with other sub-optimal modal parameters, such as natural
frequencies [160].

Table 11 presents some of the recent developments in the application of MCM for
damage detection in composite structures.

Table 11. Some recent developments in the application of MCM in damage detection of composite
structures.

Ref Description Model

[161]

The method exploits two-dimensional Chebyshev pseudo-
spectral modal curvature to address undesirable properties
of the two-dimensional Fourier spectral modal curvature
in damage detection.
As such, the proposed method is analogous to the two-
dimensional Fourier spectral modal curvature. Therefore,
it extends the wavenumber domain filtering to the pseudo
wavenumber domain.

Composite plates

[162]

A modal frequency curve method combined with wavelet
analysis has been proposed for damage detection.
It was shown that both numerically and experimentally
more robust and unambiguous results can be obtained
through using the proposed damage indicator compared
with when solely the wavelet coefficients of the studied
modes are used.
Moreover, the size of defect was identified satisfactorily.

A beam-like structure

[163]

A flexible printed circuit board (FPCB) sensor membrane
with polyvinylidene fluoride (PVDF) arrays was devel-
oped for accurate extraction of modal curvature to be used
for damage detection of in situ aerospace structure.
The proposed structure was proven to offer a strong self-
sensing performance, where the modal curvature informa-
tion can be extracted without any calculation of differential
equation numerically.

Composite beam structure

For more information about using MCM for damage detection in composite structures,
the readers are referred to [150].

3.2.4. Modal Strain Energy

Modal strain energy is the energy stored in a structure when it undergoes a defor-
mation in its mode shape patterns [156]. Referring to the Euler–Bernoulli beam theory,
damage compromises the ability of the structure to store as much energy due to a loss of
stiffness, as it would in its healthy state. An assessment of the application of the method
to Finite Element (FE) modelled beams demonstrates its superior performance in damage
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localisation compared with frequency-based damage indicators [164]. According to the
same study, modal strains were proposed to be reasonably capable of estimating crack size
and, thus, exhibit potential for damage quantification. In another study, Yam et al. [165]
indicated the higher sensitivity of strain modes to local structural changes compared with
the displacement modes in a tested plate structure. However, the identified strain response
of higher modes was not as strong as in lower modes, which limits the use of higher modes
strain energy for damage detection. Similar to MCM, the modal strain energy relies on the
central difference approximation method that can magnify the effect of noise. Moreover, in
order to obtain continuous strain values between sensors, curve fitting techniques must be
employed to smooth out the curve resulting in concealed local damage [156].

The application of the modal strain energy method was extended to two-dimensional
bending structures by Cornwell et al. [166]. Subsequently, Duffey et al. [167] advanced
the method for structures featuring axial and torsional responses. However, both of
these methods require numerous sensors and defy from the original relationship between
curvature and flexural stiffness. Table 12 presents some of the recent developments of
modal strain energy use for the damage detection of composite structures.

Table 12. Some recent developments in the application of modal strain energy in damage detection
of composite structures.

Ref Description Model

[168]

A damage index is proposed based on the ratio of pre- and
post-damage modal strain energies.
The ratio of modal strain energies of different modes before
and after damage was introduced as a damage index.
Accordingly, the local areas of the structure was scanned
through moving the developed damage indices.

Cylinder

[169]

The mathematical fundamentals of a modal strain energy
method was developed and then numerically tested when
data were contaminated by 5% noise.
The proposed method was proved more accurate, conver-
gent, and efficient when compared with its predecessors.

A beam structure

[170]

A damage detection method based on genetic algorithm
and finite element model updating was developed.
The proposed objective function was developed based on
weighted strain energy.
It was shown that the proposed objective function is more
sensitive to damage when compared with other methods.

Laminated composite plates

For more information about damage detection in composite structures via modal
strain energy, the readers are referred to [171].

3.2.5. Modal Damping

Although damping is one structural parameter that can be influenced by damage,
it is less commonly considered for damage detection due to its complex nature that
does not simply allow for its simulation and study for damage. In a study conducted
by Franchetti et al. [172], the nonlinear damping of a concrete structure was identified from
ambient vibration responses and further used for damage localisation in the structures
without requiring any baseline information available from the undamaged structure. In
another study, Mustafa et al. [173] developed an energy-based damping evaluation method
for identifying the location of damage in structures. Ay et al. [174] studied the statistical
framework of free-vibration of a dynamic system to estimate the damage-induced changes
in the overall damping behaviour of the system. Conclusively, damping-based methods
are dependent on the specified damping model. For more information about using modal
damping for damage detection in composite structures, the readers are referred to [175,176].
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3.2.6. Modal Flexibility

Another popular modal parameter for structural damage detection is modal flexibility,
which was first proposed by Pandey and Biswas [177] and further applied to bridge
structures by Toksoy and Aktan [178]. The modal flexibility method (MFM) is based on the
flexibility matrix obtained as the inverse of the structural stiffness matrix. The MFM method
can be reconstructed out of fewer modes compared with the stiffness matrix and, thus,
has a greater sensitivity to damage, as guaranteed by the reconstruction of the flexibility
matrix out of more easily extracted lower modes. Additionally, in light of the higher
sensitivity, MFM characterises damage based on a single feature extracted from information
embedded in many frequency modes. This has been confirmed in a study conducted by
Wang et al. [179], which demonstrated that the advanced damage sensitivity of MFM is
superior to other modal-based damage indicators. Moreover, the damage localisation
capabilities of MFM were demonstrated in beam and plate structures through a dynamic
computer simulation [180]. The good performance of MFM can be attributed to the usage
of mass-normalised mode shapes. The displacement pattern of the structure, therefore, can
be portrayed per unit applied force by the flexibility matrix. This enhances the damage
localisation results, as damage events can be uniformly assessed across different parts of
the structure. However, since mass-normalised mode shapes require knowledge about
the load effect, MFM’s performance can be compromised by the ambient or unknown
conditions effects. Zhang and Aktan [181] employed a hybrid method of MFM and MCM
to monitor changes in structural flexibility. The authors devised this method considering
that damage increases flexibility and local curvature concurrently at the same location,
and therefore, combining these two effects will increase the sensitivity of damage indices.
Lu et al. [182] also applied the hybrid MFM–MCM method to a beam and demonstrated
the decent sensitivity of the modal flexibility to local damage. However, in the presence of
multiple damage, localisation was made difficult, as the flexibility peaks merged together.
The results of this study also indicated that, in the case of multiple damage events with
varying magnitudes, changes in the flexibility occurred in locations other than the damage
sites. Notwithstanding, the results showed that the hybrid MFM–MCM method obtained
superior results in localising closely distributed damage and in differentiating between
damage events with different magnitudes. Table 13 lists some recent developments of
modal flexibility use for damage detection of composite structures.

Table 13. Some recent developments using modal flexibility in damage detection of composite
structures.

Ref Description Model

[183]

Two vertical and lateral damage indexes based
on the MFM was proposed for damage detec-
tion and localisation in the main cables and
hangers of a suspension bridge.
The proposed vertical damage index requires
only the first few modes to accurately detect
damage in real suspension bridges.

A suspension bridge

[184]

The MFM was employed to evaluate its per-
formance using the displacement of nodes for
damage detection
According to the obtained results, the modal
flexibility method was capable of damage de-
tection through the displacement of nodes.

A honeycomb composite beam
structure
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Table 13. Cont.

Ref Description Model

[185]

The MFM was employed for damage detection
of cantilever beam-type structures through esti-
mation of the damage-induced inter-storey deflec-
tion (DIID).
The proposed approach can directly identifies dam-
age location(s) as it relies on a clear theoretical base
and does not require an FEM.

Cantilever beam-type structures

Additional information about the application of MFM in damage detection of struc-
tures can be found in [186].

3.3. Frequency Response Function

Unlike modal data, Frequency Response Functions (FRFs) are obtained over a wide
range of frequencies, providing more information about damage, and have been widely
used as input in optimisation-based model-updating problems [187,188]. Nevertheless,
FRFs have also been utilised to obtain damage sensitive features in damage detection
problems. For example, in a study conducted by Limongelli [189], a damage sensitive
feature based on the difference between the FRF and its spline interpolation was proposed.

The major challenge, however, lies in the choice of a proper frequency range for
excitation. Furthermore, the FRF requires knowledge about the excitation force and the
corresponding structural response. Transmissibility is a substitute for the FRF, which is
defined based on the relationship between two sets of responses and thus is independent of
input excitations. Since transmissibility is a local quantity, it is highly sensitive to damage.

Table 14 presents some recent developments of the FRF applications for damage
detection in composite structures.

Table 14. Some recent development in applications of FRFs for damage detection in composite
structures.

Ref Description Model

[190]

A method based on the modelling of nonlinear
Auto-Regressive Moving Average with eXogenous
Inputs (NARMAX) and the Nonlinear Output Fre-
quency Response Functions (NOFRFs)-based anal-
yses was proposed for damage detection

Plate structures

[191]

Artificial neural networks were employed to de-
velop a damage detection method using FRFs. The
proposed method is capable of nonlinear damage
detection effectively when the excitation is set at a
specific level

A three-story structure

[192]

A Frequency Response Function (FRF)-based dam-
age detection strategy based on the usage of mea-
sured FRF was proposed. Graphical diagrams were
used to identify the exact location of defective ele-
ment(s)

Cantilever beam-type structures

[193]

Three Fractal Dimention (FD)-based damage in-
dices, i.e., Higuchi, Katz, and Sevcik, based on the
FD analysis of FRF data in frequency domain were
proposed

Beam-type structures
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Table 14. Cont.

Ref Description Model

[188]

A modified sensitivity equation was proposed to
solve the problem of damage detection in struc-
tures with closely situated eigenvalues.
The capability of the proposed method in damage
detection of structures with closely situated eigen-
values was demonstrated when incomplete noisy
measurements were used.

Three-layered laminated composite
plate

For more information about damage detection using FRFs, the readers are referred
to [194,195].

3.4. Model Updating

Model updating methods aim to synchronise the responses from a finite element (FE)
model of a structure with measured responses by updating the physical parameters of the
FE model on an elemental or sub-structural level. Different static and dynamic responses,
or a combination of both, have been used in model-updating problems [188,196]. There
are generally two types of model-updating methods: (1) sensitivity-based methods and
(2) optimisation-based methods.

Table 15 lists some recent advances of model-updating techniques for damage detec-
tion of composite structures.

Table 15. Different types of features employed in some recent model-updating techniques for damage
detection of composite structures.

Methods Features Refs

Conventional model updating

- FRFs
- Frequencies and mode shape
- Dynamic strain
- Accelerations
- Static strains and displacements

[197]
[198]
[199]
[200]
[201]

Substructuring techniques - Frequencies and mode shapes
- Accelerations

[202]
[203]

Regularisation techniques
- Accelerations
- Frequencies and mode shapes
- Frequencies

[204]
[205]
[206]

3.4.1. Sensitivity-Based Model Updating Methods

Sensitivity-based model updating methods are set to minimise a penalty function of
errors constructed based on the difference between the measured and simulated data [207].
These methods characterise the sensitivity of the FE model parameters by measuring
changes in the FE model response caused by a unit change in the model input via iterations.
On the other hand, sensitivity-based methods are capable of updating the FE model and
of reproducing the measured responses robustly [201]. However, these methods also
suffer from modifying the most sensitive element and overlook the element with error. To
tackle this problem, it is recommended to localise the errors first and then changes in the
corresponding elements to be sought [207].

3.4.2. Optimisation-Based Model Updating Methods

Traditional gradient-based optimisation methods are limited in a sense that they re-
quire a good initial value. Modern optimisation-based model updating methods favour
the development of computational intelligence techniques, such as the Genetic Algorithm
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(GA), Artificial Neural Network (ANN), particle Swarm Optimization (PSO), and Artificial
Bee Colony (ABC). Since these algorithms do not rely on a fixed mathematical struc-
ture for optimisation, they can overcome the aforementioned shortcomings of traditional
methods. Moreover, these algorithms are capable of dealing with the uncertainties and
insufficient information of structural damage detection problems. The three main categories
of population-based metaheuristic algorithms include evolutionary-based, swarm-based,
and bio-inspired algorithms [208].

Table 16 indicates some recently developed optimisation-based methods for damage
detection of composite structures.

Table 16. Different types of features employed in some recent optimisation-based methods for
damage detection of composite structures.

Algorithms Features Refs

GA
- Mode shapes and stiffness matrix
- Natural frequencies
- Natural frequencies and accelerations

[209]
[210,211]
[212]

DE - Mode shapes
- Natural frequencies and mode shape

[213]
[214]

PSO - Natural frequencies and mode shapes
- Frequency response function

[215]
[215]

ABC - Natural frequencies and mode shapes
- Natural frequencies

[216]
[217]

4. Advanced Hybrid Vibration Methods

The low-frequency structural vibration-based methods present several advantages,
such as (1) the structural responses being relatively easy to interpret, (2) they can be easily
applied to complex and larger structures, and (3) they do not necessarily require full access
to the structure [11]. Nevertheless, these methods face some limitations. For instance, they
have a lower sensitivity to local defects compared with higher frequency-based approaches
and require the installation of numerous sensors in order to be able to describe standing
wave patterns [218]. Some researchers have employed nonlinear dynamic analysis to
feature local defects [219]. Although classical linear methods have been successfully used
in various applications [220], they succumb to various properties of nonlinear features,
such as high sensitivity to local damage [221] and robustness to environmental effects [222].
Some frequently used nonlinear features for damage identification include the sub-/higher
harmonics modulation in the structural response, waveform distortions, correlation be-
tween frequency shifts and the excitation amplitude, coherence functions, vibro-acoustic
modulation, etc. [222].

4.1. Vibro-Acoustic Modulation Techniques

Thanks to the advancement of various NDT methods, the damage detection of com-
posite structures has immensely progressed over the past decades. Some of these methods,
which include visual inspection, ultrasonic testing, acoustic emission, X-rays, and vibro-
thermography [223], use a web of integrated sensors with the structure under study. Among
all methods, guided ultrasonic waves [224] are of particular interest as they require a smaller
number of transducers to inspect large structures. Nonlinear damage features have been
sought through concurrent application of mechanical vibrations and acoustic waves [225].
A review on such nonlinear interactions can be found in [226].

Vibro-acoustic modulation (VAM) is a nonlinear NDT method that is widely used
for structural damage evaluation in different materials, such as composites. The method
is based on the application of two types of signals: (1) a more intense low-frequency vi-
bration (pumping signal) and (2) a high-frequency acoustic wave (probing signal). First,
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the composite component is excited via a low-frequency mechanical signal, and then
concurrently, a high-frequency acoustic signal is transmitted through the material. The low-
frequency vibration signal causes cyclic opening and closing of microscopic defects, produc-
ing modulations in transmitted acoustic signals—a phenomenon termed Contact-Acoustic
Nonlinearity [227]. The recorded vibration signal carries information about damage in
the form of Higher Harmonics (HH) modulations and Side-Bands (SB). Demodulation
techniques are used to isolate the high-frequency content of the recorded signal that has
information about damage. VAM is shown to be sensitive to damage severity in complex
structures [77].

Numerous studies in the literature have been conducted on the application of VAM in
featuring different types of damage in composite materials, such as impact damage [228],
delamination [229,230], and debonding [231].

The existing theories of VAM are developed based on one-dimensional spring-mass
models [226]. As such, the nonlinear signal of VAM is caused by the nonlinearity of the
spring constant, which can stem either from the inherent material nonlinearity or the
bilinear behaviour due to the opening and closing of the crack [226]. A generic three-
dimensional (3D) body theory of VAM has yet to be developed [232].

4.2. Data Analysis Techniques

Traditional signal processing techniques are generally based on the bold assumption
that the signals are generated through a stationary and linear process. Table 17 lists some
of the advantages and disadvantages of some methods. These methods can result in false
information once they are employed for fault detection in signals. The main reason is that
the effect of the damage on mechanical responses may be non-stationary, generating a
transient effect in the response signals [233]. To deal with non-stationary signals, several
advanced time-frequency analysis techniques have been developed and further employed
for fault diagnosis of rotating machinery [234]. Time-frequency (TF) methods can provide
an improved representation of energy variation in a signal caused by damage and, thus,
have attracted much research in the SHM community over the past decades.

The raw data obtained from the deployment of sensors on a structure cannot be used for
damage detection on its own and, instead, must be treated to extract meaningful information
about the structural health condition. Hence, it is vital to employ some analysis techniques
to process the recorded data. One method is to transform the data into various domains
whereby hidden information, which is not usually accessible in the raw data, can be extracted.
To this end, various frequency-domain analysis (FDA) and time-frequency analysis (TFA)
signal processing techniques have been employed. While FDA methods are more suitable for
stationary signal analysis, TFA are typically employed to tackle the problem of information
extraction out of nonstationary signals. Examples include Short Time Fourier Transformation
(STFT), Wavelet Transformation (WT), Empirical Mode Decomposition (EMD), Variational
Mode Decomposition (VMD), etc. Some of the most common types of TFA methods employed
in composite structures are reviewed in the following sections.

4.2.1. Wavelet Transformation

Wavelet transformation (WT) has been of great interest for SHM due to its high
sensitivity to anomalous observations in measured vibration signals. The first studies on
the application of wavelet analysis in the damage detection of structures were conducted in
the early 1990s during the initial stages of its development. As the first attempt, Surace and
Ruotolo [235] employed WT to analyze vibration signals for damage detection. Spatial WT,
based on Continuous WT (CWT) with a Haar wavelet, was initially used for crack detection
and localisation in beams [236]. Additionally, Sung et al. [237] first employed Discrete WT
(DWT) for the damage detection of composite laminates, using Daubechies wavelets for
impact damage detection through studying acoustic emission waves. Chang and Chen [238]
expanded the work by Wang and Deng [239] on the use of spatial CWT for detection and
localisation of damage in Timoshenko beams using Gabor wavelets. The proposed method
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was further generalised by the authors for spatial damage detection of plate structures [240].
Chang and Chen [241] proposed a CWT-based approach for estimation of crack position
and depth in beam-type structures. Rucka and Wilde [242] presented a comparative study
on the application of various WT techniques for damage detection of beams and plates
through experimental study. To this end, several parameters of WT, including number of
the vanishing moments, symmetry and width of the effective support, were considered. The
results indicated that Gaussian and reversed bi-orthogonal wavelets were most effective for
CWT-based damage identification. Zhong and Oyadiji [243] demonstrated the superiority
of Stationary WT (SWT) over Continuous WT (CWT) in terms of computational efficiency
by employing symlet wavelets of order 4 for damage detection of simply supported beams,
following the same approach taken by [244]. Gökdağ and Kopmaz [245] developed a
method based on the calculation of modal assurance criterion through combining CWT
and DWT for damage detection of beam-type structures. In all such methods, a metric was
sought through sensitivity analysis of wavelet-based methods in damage-identification
problems in a bid to estimate the presence and location of damage. Bayissa et al. [246]
proposed energetic zeroth-order moment approach based on Daubechies wavelets of order
8 for damage identification of a concrete plate and steel plate girder in a bridge structure.
Katunin et al. further developed DWT-based algorithms for damage detection of composite
beams [247,248] and plates [249,250] by making use of B-spline wavelets. As such, the
application of B-spline wavelets provides higher sensitivity to damage compared with all
other compactly supported orthogonal wavelets, such as DWT [249].

Table 17. The advantages and disadvantages of frequency domain versus time domain damage-
detection methods.

Methods Advantages Disadvantages Feature

Frequency Domain (FD)

- Simple and rapid identification
- Can be coupled with a half
power bandwidth approach for
damping ratio extraction
- They are an accurate, while sim-
ple, method for system identifica-
tion and are widely used in struc-
tural modal analysis
- Can be used in output-only
methods for identifying system
parameters
- They are appropriate technique
for information extraction from
closely spaced modes

- Are limited in terms of
frequency resolution of the
estimated spectral data
- They are inaccurate and
unreliable for the analysis of
nonlinear/non-stationary sig-
nals
- They can provide resolution
in low-frequency ranges, and
therefore, fewer numbers of
modes can be incorporated
- Cannot be used to detect the
modal parameters in cable-
stayed bridges

- Peak picking (PP)
- Complex mode indication func-
tion (CMIF)
- Least squares complex frequency-
domain (LSCF)

Time Domain (TD)

- They are more appropriate for
continuous monitoring
- Extracted information are more
complete compared with FD
methods
- They can provide resolution
in larger frequency ranges, and
therefore, a large number of
modes can be incorporated
- Higher computational complex-
ity than FD methods
- They are direct methods and,
therefore, are not reliant on
any data pre-processing stage to
work out correlation functions

- The results can be unreliable for
a pair of closely spaced natural
frequencies
- Generated data from output-
only modal analysis can be more
scattered
- Cannot detect damage for earth-
quake induced excitation
- Require human judgment

- Natural excitation technique
(NExT)
- Auto-regressive moving aver-
age (ARMA)
- Subspace system identification
(SSI)
- Canonical variate analysis (CVA)
- Numerical algorithms for state
space/subspace system identifi-
cation (N4SID)
- Multivariable output error state-
space (MOESP)
- Data-driven subspace system
identification (SSI-DATA)
- Covariance-driven subspace
system identification (SSI-COV)
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Using WT methods in conjunction with other supporting methods has proven to pro-
vide better solutions to damage detection problems. For instance, Rucka and Wilde [251]
presented a CWT-based algorithm supported by the ANN. Hein and Feklistova [252]
used wavelet transform along with ANN for delamination detection in composite beams.
Xiang and Liang [253] proposed a two-step 2D DWT-based algorithm along with parti-
cle swarm optimisation for damage detection of plate structures. Xu et al. [254] intro-
duced a new damage-detection method using CNN and WT for damage detection of
composite structures and verified the results of the proposed method via experimental
studies. Sha et al. [255] employed the Teager Energy operator (TEO) in conjunction with
WT to process mode shapes of laminated composite beams, termed TEO–WT mode shapes.
The results showed that, since each TEO–WT mode shape exhibited a specific sensitivity
to damage location, simultaneous detection of multiple damage from a single TEO–WT
mode shape is not possible. Wu et al. [256] proposed a novel method for internal delam-
ination detection in carbon fiber-reinforced plastics by combining deep CNN and CWT.
The proposed data-driven method can effectively make use of big data without being
reliant on complex feature extraction. Su et al. [257] presented a technique for damage
localisation and quantification in composites under strong noise background based on
synchro-squeezing WT and the stack autoencoder algorithm. Some useful information
about feature extraction and selection in dealing with data can be found in [258].

4.2.2. Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is another time-frequency signal processing
technique that can be used to decompose a complex signal into a set of amplitude/frequency
modulated and almost orthogonal components, termed intrinsic mode functions (IMFs) [259].
IMFs represent natural oscillation modes that can be deemed as the basis functions ex-
tracted from the original signal [260]. Therefore, it is a self-adaptive signal processing
algorithm that can be applied to a nonlinear/non-stationary signal to decompose it into its
constructive IMFs. It is known that EMD suffers from the mode mixing phenomenon, which
can compromise the accuracy of damage-detection methods. Hence, Wu and Huang [261]
proposed a new ensemble EMD (EEMD) method to tackle the mode mixing problem of
the EMD. Looney et al. [262] introduced a multivariate empirical mode decomposition
(MEMD) framework, which is robust to noise and used to produce localised instantaneous
frequencies. Leo et al. [263] developed a bi-variate EMD and further applied it for damage
detection in composite materials.

Wang et al. [264] proved the equivalence of the computational complexity of EMD
and fast Fourier transform (FFT). The researchers further optimised the computational
efficiency of EEMD by 1000 times by proposing a fast Hilbert–Huang Transformation
(HHT) with an optimized EEMD algorithm. Accordingly, the optimized EEMD method
can be considered for real-time impact localisation of composite structures. Other than
its mode-mixing problem, EMD also is limited by its ability to only decompose a single
measurement data at a time. As such, a multivariate version of the EMD, termed Mul-
tivariate EMD (MEMD), was recently proposed, which facilitates the decomposition of
multi-channel vibration signals [265–267]. Cao et al. [268] developed an ultrasonic signal
processing method for non-destructive testing of composite structures by improving the
depth evaluation of phased array ultrasonic waves. The developed algorithm is based on
a combination of EMD, correlation coefficient analysis, a fuzzy entropy algorithm, and
Hilbert transform and, as such, can be regarded as an improved adaptive time-frequency
analysis algorithm. Barile et al. [269] used both Wavelet Packet Transform (WPT) and
EMD to develop a model for decomposing recorded waveforms. The proposed model
reconstructs the decomposed waveforms after excluding the residual signal from the par-
ent waveform and further calculates the energy content of each frequency band of the
reconstructed signal. Han et al. [270] extracted damage modes of composite laminates from
acoustic emission (AE) signals utilising EEMD and a decorrelation algorithm.



Sensors 2022, 22, 153 28 of 45

4.2.3. Advancement of

Time–Frequency Signal Analysis and Processing (TFSAP) algorithms
It is generally desirable to have a time–frequency algorithm that enables the decompo-

sition of non-stationary/nonlinear signals contaminated by a high level of noise. This is
critical for modal parameter identification from highly noisy vibration data. Variational
Mode Decomposition (VMD) is an adaptive signal decomposition algorithm that can be
used for the effective decomposition of a non-stationary/nonlinear signal, contaminated
by a high level of noise, into a set of mutually independent oscillatory modes (IMFs) [271].
The VMD method has been widely used for fault diagnosis of mechanical systems, and
its superiority over other algorithms, such as EMD and EWT, has been proven in several
studies [272–274]. However, its application in damage detection of composite laminates
has yet to be explored.

A recently proposed accurate adaptive signal decomposition method, termed Em-
pirical Fourier decomposition (EFD), can overcome several shortcomings of its preceding
algorithms [275]. However, future work needs to be dedicated to exploring the application
of this method in damage detection of different structures, such as composite structures.

5. Artificial Intelligence

Artificial Intelligence (AI) aims at mimicking human intelligence through develop-
ing computer programs for solving complex problems. In early applications, AI was
particularly developed to solve rule-based problems. These sorts of problems, which are in-
tellectually difficult for human, were proven to be straightforward for developed AI-based
computer programs that are hand-coded by a human expert [276]. Although AI-developed
programs are based on human knowledge, they have surpassed human ability in many
cases, such as playing chess [277]. Notwithstanding, knowledge-based AI still succumbs to
human capabilities in many “everyday” tasks, such as face recognition, object detection,
and speech understanding. Since such tasks are naturally performed by humans based on
informal awareness obtained through several experiences about the world, they cannot be
explicitly translated to a set of formal rules in a computer program. This is regarded as
the most confronting challenge experienced by most AI systems thus far [278], for which
the concept of machine learning (ML) was developed to remedy this challenge. An ML
algorithm is designed in a way that the program can acquire the required information
from data to learn how to fulfill a specific task systematically [279]. To this end, data are
required to be pre-processed for extracting and characterising some features in terms of the
quality they represent through a procedure termed “feature extraction” [280]. The extracted
features are then used to train the ML system to learn how they discriminate different
patterns in the data.

5.1. Machine Learning

The primarily two classes of ML algorithms include supervised and unsupervised
algorithms [281]. Supervised algorithms rely on a human-labeled data for training [282]
and aim to establish an optimal mapping of the feature space and the space correspond-
ing to the target values (labels) [283]. Unlike supervised ML algorithms, unsupervised
algorithms do not require labeled data, instead their objective is to label data based on
the algorithm’s underlying structure [284]. Figure 6 illustrates the procedure of training
an ML algorithm. Regression and classification problems are the two types of problems
solved by ML algorithms. Some of the recent studies on the application of supervised
and unsupervised ML algorithms for different damage detection problems are listed in
Table 18.
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Figure 6. Procedures of training an ML algorithm.

Table 18. Some studies on the application of supervised/unsupervised ML algorithms in structural
damage-detection problems.

Methods Advantage Disadvantage Input–Output

Supervised
learning

- Commonly ML algorithms
- Identify Level 1 to 3

- Needs features obtained
from both undamaged and
damaged states of the struc-
ture
- The performance depends
on the model accuracy

- Frequencies and mode shapes—stiffness re-
duction [285]
- FRF—structural condition monitoring [286]
- Dynamic displacement—joint connection dam-
age [287]
- Frequencies—damage in a steel-girder bridge
model [288]
- Acceleration under random excitation—damage
in a steel girder-bridge model [289]
- Fourier amplitude spectrum of wind-induced
acceleration—damage from loosening its con-
nection bolts [290]
- Image vectors converted from acceleration—
damage detection in hanger cables [291]
- Wavelet energy spectrum—multi-pattern
anomalies [292]
- AR coefficients and residual errors of the sta-
tistical parameters—structural condition moni-
toring [293]
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Table 18. Cont.

Methods Advantage Disadvantage Input–Output

Unsupervised
learning

- Needs features of the intact
state of a structure
- Employed for generating
class-information about dif-
ferent modes of failures

- Limited to Level 1 damage
identification

- Time-series displacements and rotations—
structural condition monitoring [294]
- Accelerations from passing vehicle—detecting
small stiffness reductions[295]
- Frequency domain of ambient vibration—
condition monitoring of a railway bridge [296]
- Crest factor and T-continues WT extracted—
structural condition monitoring [297]
- Random acceleration responses—novelty de-
tection [298]

5.2. Deep Learning

As previously discussed, the performance of ML algorithms is mostly reliant on the
strength of the extracted features in representing data. It is, however, critical to extract
optimal features that can properly characterise properties of the input data in order to
simplify the process of establishing the map between the feature and target spaces for ML
algorithms [299]. However, it is neither always practical to manually identify the optimal
features extracted from the raw data nor very easy to select a proper group of features
manually for training [300].

Therefore, Deep learning (DL) methods, such as Deep Neural Networks, have been
developed to mitigate the reliance of complex ML applications on hand-crafted features.
DL techniques are, thus, a special type of ML algorithm that can extract optimal features
directly from raw data without incorporating user intervention. DL systems are hardwired
to establish a direct map from raw data to targets without requiring extraction of features
a priori [301]. Therefore, by learning how to extract high-level and abstract features hierar-
chically out of simple and low-level learned features [276], DL is able to handle complex
problems [302–304].

Table 19 lists some reviewed recent studies on the application of DL and ML in SHM
of composite structures.

Table 19. Some review papers on the application of DL and ML in SHM of composite structures.

Refs Method Description Model

[305] Deep Learning

- A basalt fiber-reinforced polymer (BFRP)
pipeline system was analysed.
- Long-gauge distributed fiber Bragg grating
(FBG) sensors were used to collect data

Fiber-reinforced poly-
mer (FRP) composite
pipeline

[306] Deep Learning

- A damage-assessment algorithm for com-
posite sandwich structures was developed
- The full-field vibration mode shapes and
deep learning were employed to this end

Composite sandwich
structures

[307] Deep Learning

- Deep learning was exploited for quanti-
tative assessment of visual detectability of
different types of damage in in-service lami-
nated composite structures

Laminated composite
structures such as air-
craft and wind tur-
bine blades

[308] Deep Learning

- Labeled damaged data was generated
through FE models for a pin-joint composite
truss structure
- A model-based approach for the data ac-
quisition problem was employed

A pin-joint composite
truss structure
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Table 19. Cont.

Refs Method Description Model

[309] Artificial Neural
Network (ANN)

- The fast convergence speed of gradient
descent (GD) techniques of ANN and the
global search capacity of evolutionary al-
gorithms (EAs) were exploited for network
training

Laminated composite
structures

[310] Artificial Neural
Network (ANN)

- A new modified damage indicator com-
bined with ANN was proposed
- Local Frequency Response Ratio (LFCR)
was improved through a transmissibility
technique

Laminated composite
structures

[311] Machine learning

- The possibility of damage detection
through monitoring acoustic emission (AE)
signals generated in minicomposites with
elastically similar constituents was demon-
strated

Unidirectional
SiC/SiC composites

[312] Deep autoencoder
- Ultrasonic Lamb waves data were used to
develop a robust fatigue damage detection
method via deep autoencoder (DAE)

Composite structures

6. Smart Structures

One promising technological advancement of the twentieth century in the realm
of SHM is the possibility of integrating sensors and actuation systems with structures
(Figure 7a). Similar to the human body, a smart structure is designed to react to external
conditions and to change its responses accordingly. The structural system is aimed at
performing damage identification and characterisation (recognition, localization, and quan-
tification) as well as to report damage to a control centre for facilitating proper response by
the system manager (Figure 7b). To this end, smart structural systems are comprised of sev-
eral factors, including a host structural material, actuators, a network of sensors, real-time
control facilities, and computational appliances. As such, the structure can autonomously
monitor the health conditions of the host material in an automatic and continuous fashion,
through the following steps:

1. The actuator creates vibration in the structure by inducing strain or displacement.
2. The sensors record the resultant vibration response of the structure.
3. The data recorded by the sensors are transmitted to the control/processor unit.
4. The transmitted data are studied via some computational instrument for damage.

The development of smart structures for damage detection is projected to meet the
following goals [313]:

1. Enable the structure to detect damage as soon as it is incurred by the structure;
2. Determine the location and severity of the damage;
3. Predict the remaining service life of the structure; and
4. Alert the operator about the extent to which the performance of the structure was

compromised, so that necessary steps can be followed to handle the situation.

Some examples of smart materials include composites with surface-attached or embedded
sensors, electrorheological (ER) materials, and magnetorheological (MR) materials [314,315].
Smart structural systems are also common in a range of industries, from aerospace, IT,
automobile, and space to the military [316]. As a case in point, one of the most well-known
smart system technologies includes composite materials embedded with fiber-optic sensors
(FOS) [317], which is utilized in several applications, such as safety-related areas in aircrafts.
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Figure 7. (a) Smart structures and smart adaptive structures, and (b) implementation of structural
health monitoring.

Self-Sensing Composites

The property of a material to sense different factors pertaining to its own conditions,
such as stress, strain, damage, and temperature, is termed a self-diagnosing or self-sensing
capability. As such, self-sensing composites are capable of sensing their own health con-
dition, which makes this sort of material an excellent choice for conducting continuous
SHM of civil engineering structures. Electrical resistivity enables self-sensing composite
materials to sense the strain and damage based on the piezoresistivity principle in self-
sensing composite materials. To establish piezo-resistivity in composite materials, some
conducting elements have to be integrated with the materials. Examples of such conducting
elements include short and continuous carbon fibers (CFs), carbon particles, as well as
carbon nanomaterials, such as carbon nanofibers (CNFs) and nanotubes (CNTs) [318–320].
Moreover, the electrical resistivity of such elements undergoes disruption as soon as the
material is subjected to deformation or damage. The results are, however, highly dependent
on the amount, type, and distribution of the conducting component. The design flexibil-
ity of self-sensing composites is considered one of their main advantages, whereby the
type of response can be tailored. Since composites are widely used in civil infrastructures
as strengthening materials, integrating self-sensing capability with such materials can
strengthen the health monitoring functions of these structures. This further eliminates the
required externally deployed sensors on such structures [320].

The following list describes different types of self-sensing composite materials that are
used for the SHM of civil infrastructures:

• Polymeric composites [321]

– Short CF Composites
– Continuous CF Composites
– CNT/CNF Composites

• Cementitious composites [322]

– Short CF Composites
– Continuous CF Composites
– CNT/CNF Composites

7. Final Remarks

In this study, several aspects of composite structures were reviewed, including the
types of composite structures, damage mechanisms that can affect such structures, and
methods employed for damage detection of composite structures. To this end, 322 papers
have been reviewed, with 203 papers were published from 2015 to present, as shown in
Figure 8.
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Figure 8. Reviewed number of publications per time period.

Different aspects of the methods for damage detection of composite structures were
investigated which include the types of sensing technologies used to this end, the types
of recorded data, and various data analysis techniques that can be utilised to interpret the
recorded data for extracting information about the health state of the structure under study.
Finally, some remarks on the smart structures and self-sensing composites were made. This
study, thus, provides a comprehensive reference for any researcher who wants to begin
their academic career in the realm of the SHM of composite structures.

8. Conclusions and Future Work

This review provides a comprehensive research on the different aspects of SHM of
composite structures. First, different types of composite structures were studied, and com-
posite materials were classified based on their compositions. Next, the contribution of each
component to different properties of such structures was described. Importantly, this infor-
mation helps to provide background knowledge about how damage in such structures can
progress as these components become defective. Next, different types of damage in such
structures were studied and classified based on the component in which they may occur.
Since composite materials are highly sensitive to environmental and operational variations
(EOV) effects, several environmental effects and their impact on composite materials were
fully investigated. Understanding the types of damage and impact of EOV on composite
structures can guide an engineer to select a proper damage detection strategy for the SHM
of the structure. We demonstrated that different SHM methodologies are effective to unfold
a limited range of damage in composites, though some methods, such as AE and NI, are
more promising and can reveal a wide range of defects from micro-scale to macro-scale
damage. Next, the properties of different sensors employed for the SHM of composite
structures were reviewed. As such, it was argued that the proper selection of the sensors
depends on the type of data to be recorded for damage detection and is also a function of
various other factors that must be considered prior to selecting the type of sensors. Next,
different features that can be extracted from vibration signals were reviewed. Such features
that are mostly in frequency domains were fully studied along with their advantages
and disadvantages. Subsequently, it was demonstrated that advanced damage-detection
algorithms developed for composite structures seek nonlinear interactions between a trans-
mitted acoustic signals and mechanical vibration of the structure. As a following argument,
these techniques benefit vastly from the development of time-frequency signal processing
algorithms. Accordingly, more advanced time frequency features can be extracted for
damage detection using these techniques. With the development of ML and DP algorithms,
more advanced damage detection methods have bee proposed for composite structures.
Therefore, some recent developments made in this area of research were reviewed in this
study. Finally, some remarks on the smart structures and self-sensing composites were
outlined. Overall, this study provides a comprehensive review on the various aspects of
SHM of composite structures and can be referred by any researcher who wants to start
research in this exciting area.
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148. Radzieński, M.; Krawczuk, M.; Palacz, M. Improvement of damage detection methods based on experimental modal parameters.

Mech. Syst. Signal Process. 2011, 25, 2169–2190. [CrossRef]
149. Wang, Y.; Liang, M.; Xiang, J. Damage detection method for wind turbine blades based on dynamics analysis and mode shape

difference curvature information. Mech. Syst. Signal Process. 2014, 48, 351–367. [CrossRef]
150. Govindasamy, M.; Kamalakannan, G.; Kesavan, C.; Meenashisundaram, G.K. Damage detection in glass/epoxy laminated

composite plates using modal curvature for structural health monitoring applications. J. Compos. Sci. 2020, 4, 185. [CrossRef]
151. Akpabot, A.I.; Ede, A.; Olofinnade, O.; Odetoyan, A.O. Vibration-Based Structural Damage Detection Techniques: A Review;

International Structural Engineering And Construction Society: Fargo, ND, USA, 2020.
152. Das, M.; Sahu, S.; Parhi, D. Composite materials and their damage detection using AI techniques for aerospace application: A

brief review. Mater. Today Proc. 2020, 44, 955–960. [CrossRef]
153. Pandey, A.; Biswas, M.; Samman, M. Damage detection from changes in curvature mode shapes. J. Sound Vib. 1991, 145, 321–332.

[CrossRef]
154. Wahab, M.A.; De Roeck, G. Damage detection in bridges using modal curvatures: Application to a real damage scenario. J. Sound

Vib. 1999, 226, 217–235. [CrossRef]
155. Ho, Y.; Ewins, D. On the structural damage identification with mode shapes. In Proceedings of the European COST F3 Conference

on System Identification and Structural Health Monitoring, Madrid, Spain, 6–9 June 2000; Volume 1.
156. Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2012.
157. Moughty, J.J.; Casas, J.R. A state of the art review of modal-based damage detection in bridges: Development, challenges, and

solutions. Appl. Sci. 2017, 7, 510. [CrossRef]
158. Sazonov, E.; Klinkhachorn, P. Optimal spatial sampling interval for damage detection by curvature or strain energy mode shapes.

J. Sound Vib. 2005, 285, 783–801. [CrossRef]
159. Chance, J.; Tomlinson, G.R.; Worden, K. A simplified approach to the numerical and experimental modelling of the dynamics of a

cracked beam. In Proceedings of the 12th International Modal Conference, Honolulu, HI, USA, 31 January–3 February 1994;
pp. 778–785.

160. Capecchi, D.; Ciambella, J.; Pau, A.; Vestroni, F. Damage identification in a parabolic arch by means of natural frequencies, modal
shapes and curvatures. Meccanica 2016, 51, 2847–2859. [CrossRef]

161. Yang, Z.B.; Radzienski, M.; Kudela, P.; Ostachowicz, W. Two-dimensional Chebyshev pseudo spectral modal curvature and its
application in damage detection for composite plates. Compos. Struct. 2017, 168, 372–383. [CrossRef]

162. Yang, C.; Oyadiji, S.O. Damage detection using modal frequency curve and squared residual wavelet coefficients-based damage
indicator. Mech. Syst. Signal Process. 2017, 83, 385–405. [CrossRef]

163. Zhong, H.; Wu, J.; Bao, B.; Mao, Q. A composite beam integrating an in-situ FPCB sensor membrane with PVDF arrays for modal
curvature measurement. Measurement 2020, 166, 108241. [CrossRef]

164. Kim, J.T.; Ryu, Y.S.; Cho, H.M.; Stubbs, N. Damage identification in beam-type structures: Frequency-based method vs
mode-shape-based method. Eng. Struct. 2003, 25, 57–67. [CrossRef]

165. Yam, L.; Leung, T.; Li, D.; Xue, K. Theoretical and experimental study of modal strain analysis. J. Sound Vib. 1996, 191, 251–260.
[CrossRef]

http://dx.doi.org/10.2172/249299
http://dx.doi.org/10.1177/002199836900300305
http://dx.doi.org/10.1016/j.compstruct.2018.05.002
http://dx.doi.org/10.1016/j.compositesb.2018.08.134
http://dx.doi.org/10.1088/0957-0233/19/12/122001
http://dx.doi.org/10.1016/j.matpr.2021.01.295
http://dx.doi.org/10.1006/jsvi.1997.0977
http://dx.doi.org/10.1061/(ASCE)0733-9445(1995)121:2(161)
http://dx.doi.org/10.1016/j.ymssp.2013.06.006
http://dx.doi.org/10.1016/j.ymssp.2011.01.007
http://dx.doi.org/10.1016/j.ymssp.2014.03.006
http://dx.doi.org/10.3390/jcs4040185
http://dx.doi.org/10.1016/j.matpr.2020.11.005
http://dx.doi.org/10.1016/0022-460X(91)90595-B
http://dx.doi.org/10.1006/jsvi.1999.2295
http://dx.doi.org/10.3390/app7050510
http://dx.doi.org/10.1016/j.jsv.2004.08.021
http://dx.doi.org/10.1007/s11012-016-0510-3
http://dx.doi.org/10.1016/j.compstruct.2017.02.066
http://dx.doi.org/10.1016/j.ymssp.2016.06.021
http://dx.doi.org/10.1016/j.measurement.2020.108241
http://dx.doi.org/10.1016/S0141-0296(02)00118-9
http://dx.doi.org/10.1006/jsvi.1996.0119


Sensors 2022, 22, 153 40 of 45

166. Cornwell, P.; Doebling, S.W.; Farrar, C.R. Application of the strain energy damage detection method to plate-like structures.
J. Sound Vib. 1999, 224, 359–374. [CrossRef]

167. Duffey, T.; Doebling, S.; Farrar, C.; Baker, W.; Rhee, W. Vibration-based damage identification in structures exhibiting axial and
torsional response. J. Vib. Acoust. 2001, 123, 84–91. [CrossRef]

168. Hu, H.; Wu, C.; Lu, W.J. Damage detection of circular hollow cylinder using modal strain energy and scanning damage index
methods. Comput. Struct. 2011, 89, 149–160. [CrossRef]

169. Moradi Pour, P.; Chan, T.; Gallage, C. An improved modal strain energy method for structural damage detection, 2D simulation.
Struct. Eng. Mech. 2015, 54, 105–119. [CrossRef]

170. Ashory, M.R.; Ghasemi-Ghalebahman, A.; Kokabi, M.J. An efficient modal strain energy-based damage detection for laminated
composite plates. Adv. Compos. Mater. 2018, 27, 147–162. [CrossRef]

171. Wang, S.; Xu, M. Modal strain energy-based structural damage identification: A review and comparative study. Struct. Eng. Int.
2019, 29, 234–248. [CrossRef]

172. Franchetti, P.; Modena, C.; Feng, M.Q. Nonlinear damping identification in precast prestressed reinforced concrete beams.
Comput.-Aided Civ. Infrastruct. Eng. 2009, 24, 577–592. [CrossRef]

173. Mustafa, S.; Matsumoto, Y.; Yamaguchi, H. Vibration-based health monitoring of an existing truss bridge using energy-based
damping evaluation. J. Bridge Eng. 2018, 23, 04017114. [CrossRef]

174. Ay, A.M.; Khoo, S.; Wang, Y. Probability distribution of decay rate: A statistical time-domain damping parameter for structural
damage identification. Struct. Health Monit. 2019, 18, 66–86. [CrossRef]

175. Cao, M.; Sha, G.; Gao, Y.; Ostachowicz, W. Structural damage identification using damping: A compendium of uses and features.
Smart Mater. Struct. 2017, 26, 043001. [CrossRef]

176. Chandra, R.; Singh, S.; Gupta, K. Damping studies in fiber-reinforced composites—A review. Compos. Struct. 1999, 46, 41–51.
[CrossRef]

177. Pandey, A.; Biswas, M. Damage detection in structures using changes in flexibility. J. Sound Vib. 1994, 169, 3–17. [CrossRef]
178. Toksoy, T.; Aktan, A. Bridge-condition assessment by modal flexibility. Exp. Mech. 1994, 34, 271–278. [CrossRef]
179. Wang, J.Y.; Ko, J.M.; Ni, Y.Q. Modal sensitivity analysis of Tsing Ma Bridge for structural damage detection. In Proceedings of the

Nondestructive Evaluation of Highways, Utilities, and Pipelines IV, Newport Beach, CA, USA, 6–8 March 2000; International
Society for Optics and Photonics: Bellingham, WA, USA, 2000; Volume 3995, pp. 300–311.

180. Shih, H.W.; Thambiratnam, D.; Chan, T. Vibration based structural damage detection in flexural members using multi-criteria
approach. J. Sound Vib. 2009, 323, 645–661. [CrossRef]

181. Zhang, Z.; Aktan, A. The damage indices for the constructed facilities. Proc. SPIE 1995, 13, 1520.
182. Lu, Q.; Ren, G.; Zhao, Y. Multiple damage location with flexibility curvature and relative frequency change for beam structures. J.

Sound Vib. 2002, 253, 1101–1114. [CrossRef]
183. Wickramasinghe, W.R.; Thambiratnam, D.P.; Chan, T.H. Damage detection in a suspension bridge using modal flexibility method.

Eng. Fail. Anal. 2020, 107, 104194. [CrossRef]
184. Esfarjani, S.M. Structural Damage Detection Using Modal Flexibility Method in Honeycomb Composite Sandwich Beam. Rom. J.

Acoust. Vib. 2020, 17, 51–56.
185. Sung, S.H.; Koo, K.Y.; Jung, H.J. Modal flexibility-based damage detection of cantilever beam-type structures using baseline

modification. J. Sound Vib. 2014, 333, 4123–4138. [CrossRef]
186. Kim, B.H. Local Damage Detection Using Modal Flexibility; Texas A&M University: College Station, TX, USA, 2002.
187. Esfandiari, A.; Nabiyan, M.S.; Rofooei, F.R. Structural damage detection using principal component analysis of frequency

response function data. Struct. Control. Health Monit. 2020, 27, e2550. [CrossRef]
188. Hassani, S.; Shadan, F. Using incomplete FRF measurements for damage detection of structures with closely-spaced eigenvalues.

Measurement 2021, 110388. [CrossRef]
189. Limongelli, M. Frequency response function interpolation for damage detection under changing environment. Mech. Syst. Signal

Process. 2010, 24, 2898–2913. [CrossRef]
190. Peng, Z.; Lang, Z.; Wolters, C.; Billings, S.; Worden, K. Feasibility study of structural damage detection using NARMAX modelling

and nonlinear output frequency response function based analysis. Mech. Syst. Signal Process. 2011, 25, 1045–1061. [CrossRef]
191. Bandara, R.P.; Chan, T.H.; Thambiratnam, D.P. Structural damage detection method using frequency response functions. Struct.

Health Monit. 2014, 13, 418–429. [CrossRef]
192. Homaei, F.; Shojaee, S.; Amiri, G.G. Multiple-structural damage detection using measured frequency response function. Iran. J.

Struct. Eng. 2015, 2, 13–18.
193. Lee, E.T.; Eun, H.C. Damage detection of steel beam using frequency response function measurement data and fractal dimension.

J. Vib. Acoust. 2015, 137, 034503. [CrossRef]
194. Gomes, G.F.; Mendez, Y.A.D.; Alexandrino, P.d.S.L.; da Cunha, S.S.; Ancelotti, A.C. A review of vibration based inverse methods

for damage detection and identification in mechanical structures using optimization algorithms and ANN. Arch. Comput. Methods
Eng. 2019, 26, 883–897. [CrossRef]

195. Du, Y.; Zhou, S.; Jing, X.; Peng, Y.; Wu, H.; Kwok, N. Damage detection techniques for wind turbine blades: A review. Mech. Syst.
Signal Process. 2020, 141, 106445. [CrossRef]

http://dx.doi.org/10.1006/jsvi.1999.2163
http://dx.doi.org/10.1115/1.1320445
http://dx.doi.org/10.1016/j.compstruc.2010.08.011
http://dx.doi.org/10.12989/sem.2015.54.1.105
http://dx.doi.org/10.1080/09243046.2017.1301069
http://dx.doi.org/10.1080/10168664.2018.1507607
http://dx.doi.org/10.1111/j.1467-8667.2009.00612.x
http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0001159
http://dx.doi.org/10.1177/1475921718817336
http://dx.doi.org/10.1088/1361-665X/aa550a
http://dx.doi.org/10.1016/S0263-8223(99)00041-0
http://dx.doi.org/10.1006/jsvi.1994.1002
http://dx.doi.org/10.1007/BF02319765
http://dx.doi.org/10.1016/j.jsv.2009.01.019
http://dx.doi.org/10.1006/jsvi.2001.4092
http://dx.doi.org/10.1016/j.engfailanal.2019.104194
http://dx.doi.org/10.1016/j.jsv.2014.04.056
http://dx.doi.org/10.1002/stc.2550
http://dx.doi.org/10.1016/j.measurement.2021.110388
http://dx.doi.org/10.1016/j.ymssp.2010.03.004
http://dx.doi.org/10.1016/j.ymssp.2010.09.014
http://dx.doi.org/10.1177/1475921714522847
http://dx.doi.org/10.1115/1.4029687
http://dx.doi.org/10.1007/s11831-018-9273-4
http://dx.doi.org/10.1016/j.ymssp.2019.106445


Sensors 2022, 22, 153 41 of 45

196. Friswell, M.; Penny, J. Updating model parameters from frequency domain data via reduced order models. Mech. Syst. Signal
Process. 1990, 4, 377–391. [CrossRef]

197. Sipple, J.D.; Sanayei, M. Finite element model updating using frequency response functions and numerical sensitivities. Struct.
Control. Health Monit. 2014, 21, 784–802. [CrossRef]

198. Moaveni, B.; He, X.; Conte, J.P.; Restrepo, J.I. Damage identification study of a seven-story full-scale building slice tested on the
UCSD-NEES shake table. Struct. Saf. 2010, 32, 347–356. [CrossRef]

199. Li, J.; Law, S.; Ding, Y. Substructure damage identification based on response reconstruction in frequency domain and model
updating. Eng. Struct. 2012, 41, 270–284. [CrossRef]

200. Matarazzo, T.J.; Kurata, M.; Nishino, H.; Suzuki, A. Postearthquake strength assessment of steel moment-resisting frame with
multiple beam-column fractures using local monitoring data. J. Struct. Eng. 2018, 144, 04017217. [CrossRef]

201. Sanayei, M.; Khaloo, A.; Gul, M.; Catbas, F.N. Automated finite element model updating of a scale bridge model using measured
static and modal test data. Eng. Struct. 2015, 102, 66–79. [CrossRef]

202. Wang, T.; He, H.; Yan, W.; Chen, G. A model-updating approach based on the component mode synthesis method and
perturbation analysis. J. Sound Vib. 2018, 433, 349–365. [CrossRef]

203. Yuen, K.V.; Huang, K. Identifiability-enhanced Bayesian frequency-domain substructure identification. Comput.-Aided Civ.
Infrastruct. Eng. 2018, 33, 800–812. [CrossRef]

204. Huang, J.Z.; Li, D.S.; Zhang, C.; Li, H.N. Improved Kalman filter damage detection approach based on lp regularization. Struct.
Control. Health Monit. 2019, 26, e2424. [CrossRef]

205. Wu, Y.H.; Zhou, X.Q. L 1 Regularized Model Updating for Structural Damage Detection. Int. J. Struct. Stab. Dyn. 2018, 18, 1850157.
[CrossRef]

206. Chen, C.; Yu, L. A hybrid ant lion optimizer with improved Nelder–Mead algorithm for structural damage detection by improving
weighted trace lasso regularization. Adv. Struct. Eng. 2020, 23, 468–484. [CrossRef]

207. Friswell, M.; Mottershead, J.E. Finite Element Model Updating in Structural Dynamics; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2013; Volume 38.

208. Azlan, F.; Kurnia, J.; Tan, B.; Ismadi, M.Z. Review on optimisation methods of wind farm array under three classical wind
condition problems. Renew. Sustain. Energy Rev. 2021, 135, 110047. [CrossRef]

209. Cha, Y.J.; Buyukozturk, O. Structural damage detection using modal strain energy and hybrid multiobjective optimization.
Comput.-Aided Civ. Infrastruct. Eng. 2015, 30, 347–358. [CrossRef]

210. Gomes, G.F.; Mendéz, Y.A.D.; da Cunha, S.S.; Ancelotti, A.C. A numerical–experimental study for structural damage detection in
CFRP plates using remote vibration measurements. J. Civ. Struct. Health Monit. 2018, 8, 33–47. [CrossRef]

211. Zhang, Z.; He, M.; Liu, A.; Singh, H.K.; Ramakrishnan, K.R.; Hui, D.; Shankar, K.; Morozov, E.V. Vibration-based assessment of
delaminations in FRP composite plates. Compos. Part B Eng. 2018, 144, 254–266. [CrossRef]

212. Gomes, G.; Cunha, S., Jr.; Ancelotti, A., Jr.; Melo, M. Damage detection in composite materials via optimization techniques based
on dynamic parameters changes. Int. J. Emerg. Technol. Adv. Eng. 2016, 6, 157–166.

213. Vo-Duy, T.; Ho-Huu, V.; Dang-Trung, H.; Dinh-Cong, D.; Nguyen-Thoi, T. Damage detection in laminated composite plates using
modal strain energy and improved differential evolution algorithm. Procedia Eng. 2016, 142, 182–189. [CrossRef]

214. Dinh-Cong, D.; Vo-Duy, T.; Nguyen-Minh, N.; Ho-Huu, V.; Nguyen-Thoi, T. A two-stage assessment method using damage
locating vector method and differential evolution algorithm for damage identification of cross-ply laminated composite beams.
Adv. Struct. Eng. 2017, 20, 1807–1827. [CrossRef]

215. Khatir, S.; Belaidi, I.; Khatir, T.; Hamrani, A.; Zhou, Y.L.; Wahab, M.A. Multiple damage detection in composite beams using
Particle Swarm Optimization and Genetic Algorithm. Mechanics 2017, 23, 514–521. [CrossRef]

216. Xu, H.; Ding, Z.; Lu, Z.; Liu, J. Structural damage detection based on Chaotic Artificial Bee Colony algorithm. Struct. Eng. Mech.
2015, 55, 1223–1239. [CrossRef]

217. Ding, Z.; Lu, Z.; Huang, M.; Liu, J. Improved artificial bee colony algorithm for crack identification in beam using natural
frequencies only. Inverse Probl. Sci. Eng. 2017, 25, 218–238. [CrossRef]

218. Fritzen, C.P.; Kraemer, P. Self-diagnosis of smart structures based on dynamical properties. Mech. Syst. Signal Process. 2009,
23, 1830–1845. [CrossRef]

219. Krohn, N.; Stoessel, R.; Busse, G. Acoustic non-linearity for defect selective imaging. Ultrasonics 2002, 40, 633–637. [CrossRef]
220. Ooijevaar, T.; Loendersloot, R.; Warnet, L.; de Boer, A.; Akkerman, R. Vibration based Structural Health Monitoring of a composite

T-beam. Compos. Struct. 2010, 92, 2007–2015. [CrossRef]
221. Van Den Abeele, K.A.; Johnson, P.A.; Sutin, A. Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material

damage, part I: Nonlinear wave modulation spectroscopy (NWMS). J. Res. Nondestruct. Eval. 2000, 12, 17–30. [CrossRef]
222. Yoder, N.C.; Adams, D.E. Vibro-acoustic modulation utilizing a swept probing signal for robust crack detection. Struct. Health

Monit. 2010, 9, 257–267. [CrossRef]
223. Boller, C.; Chang, F.K.; Fujino, Y. Encyclopedia of Structural Health Monitoring; Wiley: Hoboken, NJ, USA, 2009.
224. Diamanti, K.; Hodgkinson, J.; Soutis, C. Detection of low-velocity impact damage in composite plates using Lamb waves. Struct.

Health Monit. 2004, 3, 33–41. [CrossRef]
225. Duffour, P.; Morbidini, M.; Cawley, P. A study of the vibro-acoustic modulation technique for the detection of cracks in metals.

J. Acoust. Soc. Am. 2006, 119, 1463–1475. [CrossRef]

http://dx.doi.org/10.1016/0888-3270(90)90064-R
http://dx.doi.org/10.1002/stc.1601
http://dx.doi.org/10.1016/j.strusafe.2010.03.006
http://dx.doi.org/10.1016/j.engstruct.2012.03.035
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001967
http://dx.doi.org/10.1016/j.engstruct.2015.07.029
http://dx.doi.org/10.1016/j.jsv.2018.07.026
http://dx.doi.org/10.1111/mice.12377
http://dx.doi.org/10.1002/stc.2424
http://dx.doi.org/10.1142/S0219455418501572
http://dx.doi.org/10.1177/1369433219872434
http://dx.doi.org/10.1016/j.rser.2020.110047
http://dx.doi.org/10.1111/mice.12122
http://dx.doi.org/10.1007/s13349-017-0254-3
http://dx.doi.org/10.1016/j.compositesb.2018.03.003
http://dx.doi.org/10.1016/j.proeng.2016.02.030
http://dx.doi.org/10.1177/1369433217695620
http://dx.doi.org/10.5755/j01.mech.23.4.15254
http://dx.doi.org/10.12989/sem.2015.55.6.1223
http://dx.doi.org/10.1080/17415977.2016.1160391
http://dx.doi.org/10.1016/j.ymssp.2009.01.006
http://dx.doi.org/10.1016/S0041-624X(02)00188-9
http://dx.doi.org/10.1016/j.compstruct.2009.12.007
http://dx.doi.org/10.1080/09349840009409646
http://dx.doi.org/10.1177/1475921710365261
http://dx.doi.org/10.1177/1475921704041869
http://dx.doi.org/10.1121/1.2161429


Sensors 2022, 22, 153 42 of 45

226. Broda, D.; Staszewski, W.; Martowicz, A.; Uhl, T.; Silberschmidt, V. Modelling of nonlinear crack–wave interactions for damage
detection based on ultrasound—A review. J. Sound Vib. 2014, 333, 1097–1118. [CrossRef]

227. Solodov, I.Y.; Krohn, N.; Busse, G. CAN: An example of nonclassical acoustic nonlinearity in solids. Ultrasonics 2002, 40, 621–625.
[CrossRef]

228. Bijudas, C.; Jayesh, P. Non-linear SHM Based Damage Detection in Doubly-Curved-Shells. In Proceedings of the European
Workshop on Structural Health Monitoring: Special Collection of 2020 Papers-Volume 1, Palermo, Italy, 6–9 July 2020; Springer:
Berlin/Heidelberg, Germany, 2021; Volume 127, p. 161.

229. He, Y.; Xiao, Y.; Su, Z.; Pan, Y.; Zhang, Z. Contact acoustic nonlinearity effect on the vibro-acoustic modulation of delaminated
composite structures. Mech. Syst. Signal Process. 2022, 163, 108161. [CrossRef]

230. Klepka, A.; Pieczonka, L.; Staszewski, W.J.; Aymerich, F. Impact damage detection in laminated composites by non-linear
vibro-acoustic wave modulations. Compos. Part B Eng. 2014, 65, 99–108. [CrossRef]

231. Qin, X.; Peng, C.; Zhao, G.; Ju, Z.; Lv, S.; Jiang, M.; Sui, Q.; Jia, L. Full life-cycle monitoring and earlier warning for bolt joint
loosening using modified vibro-acoustic modulation. Mech. Syst. Signal Process. 2022, 162, 108054. [CrossRef]

232. Singh, A.K.; Chen, B.; Tan, V.B.; Tay, T.E.; Lee, H.P. A theoretical and numerical study on the mechanics of vibro-acoustic
modulation. J. Acoust. Soc. Am. 2017, 141, 2821–2831. [CrossRef]

233. Cempel, C.; Tabaszewski, M. Multidimensional condition monitoring of machines in non-stationary operation. Mech. Syst. Signal
Process. 2007, 21, 1233–1241. [CrossRef]

234. Bartelmus, W.; Zimroz, R. A new feature for monitoring the condition of gearboxes in non-stationary operating conditions. Mech.
Syst. Signal Process. 2009, 23, 1528–1534. [CrossRef]

235. Surace, C.; Ruotolo, R. Crack detection of a beam using the wavelet transform. Proc. SPIE 1994, 2251, 1141–1147.
236. Liew, K.M.; Wang, Q. Application of wavelet theory for crack identification in structures. J. Eng. Mech. 1998, 124, 152–157.

[CrossRef]
237. Sung, D.U.; Kim, C.G.; Hong, C.S. Monitoring of impact damages in composite laminates using wavelet transform. Compos. Part

B Eng. 2002, 33, 35–43. [CrossRef]
238. Chang, C.C.; Chen, L.W. Vibration damage detection of a Timoshenko beam by spatial wavelet based approach. Appl. Acoust.

2003, 64, 1217–1240. [CrossRef]
239. Wang, Q.; Deng, X. Damage detection with spatial wavelets. Int. J. Solids Struct. 1999, 36, 3443–3468. [CrossRef]
240. Chang, C.C.; Chen, L.W. Damage detection of a rectangular plate by spatial wavelet based approach. Appl. Acoust. 2004,

65, 819–832. [CrossRef]
241. Chang, C.C.; Chen, L.W. Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based

approach. Mech. Syst. Signal Process. 2005, 19, 139–155. [CrossRef]
242. Rucka, M.; Wilde, K. Application of continuous wavelet transform in vibration based damage detection method for beams and

plates. J. Sound Vib. 2006, 297, 536–550. [CrossRef]
243. Zhong, S.; Oyadiji, S.O. Crack detection in simply supported beams without baseline modal parameters by stationary wavelet

transform. Mech. Syst. Signal Process. 2007, 21, 1853–1884. [CrossRef]
244. Douka, E.; Loutridis, S.; Trochidis, A. Crack identification in beams using wavelet analysis. Int. J. Solids Struct. 2003, 40, 3557–3569.

[CrossRef]
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