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Abstract: Finite Gamma mixture models have proved to be flexible and can take prior information
into account to improve generalization capability, which make them interesting for several machine
learning and data mining applications. In this study, an efficient Gamma mixture model-based
approach for proportional vector clustering is proposed. In particular, a sophisticated entropy-based
variational algorithm is developed to learn the model and optimize its complexity simultaneously.
Moreover, a component-splitting principle is investigated, here, to handle the problem of model
selection and to prevent over-fitting, which is an added advantage, as it is done within the variational
framework. The performance and merits of the proposed framework are evaluated on multiple, real-
challenging applications including dynamic textures clustering, objects categorization and human
gesture recognition.

Keywords: Gamma mixtures; variational Bayes; entropy; component splitting; texture clustering;
objects categorization; gesture recognition

1. Introduction

The amount of multimedia data available in the world is increasing at an astounding
rate. Analyzing these heterogeneous and multimodal data automatically and extracting
knowledge instantly through machine learning techniques has become a substantial prob-
lem for various decision-making fields. Among the most used techniques are clustering,
recognition and classification [1]. For instance, image classification research focuses on seek-
ing effective image representation that can be utilized to categorize images into different
categories and then to learn patterns in these classes. Pattern recognition is often applied
in the new-age technical sectors, such as human gesture recognition, face identification,
speech recognition and so on. Furthermore, clustering techniques aim at grouping items
having the same features and this process can assist businesses, for instance, in identifying
separate groups within their customer base. These problems have great practical appli-
cations in multimedia information retrieval, machine learning, data security and pattern
recognition, to name a few. Much research in various decision-making fields and many
real-life computer vision applications has been conducted that focuses on finding efficient
algorithms to analyze data accurately. Although much research has been carried out, the
obtained performance is far from reliable and leaves these issues open, to a large extent, for
further investigation. Indeed, how to build an accurate model of high-dimensional data in
a compact and reliable way is one of the most difficult issues.

The knowledge of the statistical properties of the data has a crucial role in the majority
of applications. Among the main developed methods in this context, finite mixture models
have been broadly adopted, thanks to their flexibility [2–8]. The basic idea is to assume
that the data can be represented by a mixture of distributions, of which we then need to
estimate the parameters. For instance, the Gaussian mixture model (GMM) has shown its
effectiveness in many applications, due to its simplicity in data modeling [9–11].
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However, when dealing with mixture models, we face the following challenging issues: (i)
selecting a flexible distribution that well-describes and fits complex (non-Gaussian) shapes; (ii)
accurately estimating the parameters of the probabilistic model; and, finally, (iii) defining the
appropriate number of clusters (known also as studying the model complexity). Furthermore,
in many cases, complex data cannot be represented by simple Gaussian distributions.

To deal with conventional GMM limitations, many other alternatives have been pro-
posed. Examples include the Gamma (GaM) mixture which has been shown to fit different
types of data and to provide better results than GMM [12–15] thanks to its long-tailed
distributions. In learning statistical mixture model, the most common estimation algorithm
is expectation maximization (EM), which is based on the maximum likelihood estimator
(MLE) [2,16]. Nevertheless, this estimator suffers from dependency on initialization, may
converge to local maxima instead of a global one, and can result in wrong parameters
estimation. To overcome such issues, an alternative is using a pure Bayesian approach,
such as Markov chain Monte Carlo (MCMC) [17,18], which has proven to be more efficient
than MLE, but it is also computationally intensive, and convergence is not always guaran-
teed. Consequently, to profit from the merits of both pure Bayesian and MLE techniques
and avoid their drawbacks, variational Bayes approaches have been proposed as effective
alternatives [19–21]. In particular, variational approaches are more controllable, are less
costly in computation than MCMC, and can efficiently address the problem of overfitting
and parameters estimation. The basic idea is to determine the optimal approximation via,
for instance, Kullback—Leibler (KL) divergence (i.e., difference between the approximated
posterior distribution and the true one) [22].

To accurately determine the number of mixture clusters (this problem is known as
model complexity) when dealing with mixture models, some researches have considered
different criteria, such as MML and MDL [6]. In other works, the so-called component-
splitting criterion has been investigated [9]. The main idea is to begin with two components
(clusters) and to then progressively add more components by splitting existing ones. For
example, in [23], entropy measures are computed and investigated via variational learning
framework to split the components of Gaussian mixture models.

The objective of our work is to investigate the modeling capabilities of Gamma mix-
tures and to develop a variational approach to learning finite Gamma mixture models.
Moreover, we go a step further, by incorporating an entropy metric and component splitting
approach to handle the model selection and parameters estimation problems simultane-
ously. The added advantage of this method is that it happens within a Gamma mixture
model and entropy-based variational framework. Thus, it is possible to automatically select
the optimal number of clusters to learn the model’s parameters efficiently and to overcome
the problem of under-fitting. The merits of the proposed framework are proved through
some challenging applications involving dynamic textures clustering, objects categorization
and human gesture recognition.

The rest of the paper is organized in the following manner. In Section 2 we introduce
the finite Gamma mixture model with local model selection. In Section 3, the details of our
variational Bayes learning framework via entropy-based splitting are described. Section 4
is devoted to reporting the obtained results, which are based on several challenging appli-
cations, to verify the merits and effectiveness of our framework, and Section 5 concludes
the paper.

2. The Statistical Model

In this section, a brief description of finite Gamma mixture modeling is presented, then
we introduce the mixture model with local model selection using a component-splitting
approach. The motivation for choosing Gamma mixtures is mainly due to its flexibility in
terms of modeling non-Gaussian and complex shapes, and also its ease of use.
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2.1. Finite Gamma Mixture Model

Let us suppose we have a data set denoted byY with N data instancesY = {~Y1, . . . ,~YN}
(i.e., feature vectors), where each ~Yi = (Yi1, Yi2, . . . , YiD) is a D-dimensional positive vector
that can be modeled using a Gamma distribution:

p(~Yi | θ) =
D

∏
d=1

β
αd
d Yαd−1

id e−βdYid

Γ(αd)
(1)

where ~Yi (i = 1, . . . , N) satisfies 0 ≤ Yid, for d = 1, . . . , D; αd is the shape and βd the
location parameter of this distribution (here θ = {αd, βd}). The function Γ(.) is defined as:
Γ(x) =

∫ ∞
0 sx−1e−sds.

If the D-dimensional vector ~Y (observed data) is distributed according to a mixture of
Gamma distributions with M components, then we have

p(~Y | Θ) =
M

∑
j=1

πj p(~Yi | θj) (2)

where the vector πj denotes mixing coefficients with the constraints 0 6 πj 6 1, and
∑M

j=1 πj = 1. Θ = {θ1, θ2, . . . , θM, π1, . . . , πM} and θj = {αjd, β jd} is the set of parameters of

the jth mixture component. We now introduce an indicator matrix Z = (~Z1, ..., ~ZN) which
indicates to which component each data sample is assigned. Here ~Zi = (Zi1, ..., ZiM). ~Zi is
a binary vector that satisfies the conditions Zij ∈ {0, 1} and ∑M

j=1 Zij = 1, such that Zij = 1

if ~Yi ∈ j and Zij = 0 otherwise. The conditional distribution of Z can thus be defined as:

p(Z | ~π) =
N

∏
i=1

M

∏
j=1

π
Zij
j (3)

Now, the conditional probability of the data, given Z (class labels), is expressed as

p(Y | Z , Θ) =
N

∏
i=1

M

∏
j=1

[
p(~Yi | ~θj)

]Zij
(4)

2.2. Finite Gamma Mixture Model with Local Model Selection

In this work, we address the problem of model selection in finite Gamma mixtures
using a component-splitting approach, which has been successfully applied for the case
of Gaussian and Dirichlet mixtures in [9,24]. Indeed, this approach has the advantage of
preventing over-fitting. The core idea of this algorithm is to partition (split) the components
on the basis of a split criterion into two different sets: fixed and free components. We
constrain the algorithm to perform computations on only the free components and we
assume that the fixed components fit the dataset already (fixed components perfectly
approximate the data). Let us denote by s the free components and let the remaining M− s
be the fixed ones. Thus, our framework is developed based on this local model selection
design and then we can reformulate the prior distribution of Z in Equation (5) as,

p(Z | ~π, ~π∗) =
N

∏
i=1

[
s

∏
j=1

π
Zis
j

M

∏
j=s+1

π
∗Zij
j

]
(5)

where {πj} and {π∗j } indicate the mixing coefficients of the free and fixed components,
respectively. It is to noted that {πj}, {π∗j } > 0 and follow the constraint:

s

∑
j=1

πj +
M

∑
j=s+1

π∗j = 1 (6)
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Subsequently, we need to introduce a prior over {π∗j } (fixed mixing coefficient). It is
noted that {π∗j } are considered random variables. The goal here is to find the conditional
probability of fixed components that depends only on the free mixing coefficients {πj}. As
introduced in [9], we choose a prior for ~π∗j as a non-standard Dirichlet distribution.

p( ~π∗ | ~π) =

(
1−

s

∑
k=1

πk

)−M+s Γ(∑M
j=s+1 cj)

∏M
j=s+1 Γ(cj)

M

∏
j=s+1

(
π∗j

1−∑s
k=1 πk

)cj−1

(7)

Next, conjugate priors have to be determined for the model’s parameters. Unfortu-
nately, in our case, there are no possible priors. Thus, based on the fact that our parameters
are positive and statistically independent, the Gamma distribution is an appropriate choice
to approximate these priors (~α and ~β). They can be expressed as:

p(~α) = G(~α | ~u,~v) =
M

∏
j=1

D

∏
l=1
G(αjl | ujl , vjd) =

M

∏
j=1

D

∏
l=1

v
ujl
jl

Γ(ujl)
α

ujl−1
jl e−vjlαjl (8)

p(~β) = G(~β | ~g,~h) =
M

∏
j=1

D

∏
l=1
G(β jd | gjl , hjl) =

M

∏
j=1

D

∏
l=1

h
gjl
jl

Γ(gjl)
β

gjl−1
jl e−hjl β jl (9)

Finally, the joint distribution of all the random variables is determined as follows:

p(Y ,Z ,~α,~β, ~π∗ | ~π) = p(Y | Z ,~α,~β)p(Z | ~π, ~π∗)p( ~π∗ | ~π)p(~α)p(~β)

=
N

∏
i=1

M

∏
j=1

[
D

∏
d=1

β
αd
d Yαd−1

id e−βdYid

Γ(αd)

]zij

×
N

∏
i=1

[
s

∏
j=1

π
Zis
j

M

∏
j=s+1

π
∗Zij
j

]

×
(

1−
s

∑
k=1

πk

)−M+s Γ(∑M
j=s+1 cj)

∏M
j=s+1 Γ(cj)

M

∏
j=s+1

(
π∗j

1−∑s
k=1 πk

)cj−1

×
M

∏
j=1

D

∏
l=1

v
ujl
jl

Γ(ujl)
α

ujl−1
jl e−vjlαjl

×
M

∏
j=1

D

∏
l=1

h
gjl
jl

Γ(gjl)
β

gjl−1
jl e−hjl β jl

(10)

It is noteworthy that free coefficients are considered, here, parameters and not random
variables; therefore, we do not place a prior over ~π.

3. Variational Bayesian Learning via Entropy-Based Splitting
3.1. Model Learning Using Variational Bayes

For the parameter estimation problem, we focus, here, on the application of varia-
tional Bayes with the mean field approximation, which has been shown to be an efficient
technique for inferring posterior distributions of mixture models [20,25,26]. Indeed, varia-
tional Bayes has been proposed as an efficient solution for posteriors approximation with
low computational cost, as opposed to other inference approaches such as the MCMC
technique [8,27]. Due to the computational complexity of the true posterior p(Θ | Y), the
best methodology to follow is to find a good approximation for it, which we denote by
Q(Θ), that can be calculated easily [20]. Indeed, p(Θ | Y) is known to be intractable and
cannot be calculated directly. Accordingly, we propose determining this approximation by
maximizing the lower bound, ln(p(Y)), as follows:
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L(Q) =
∫

Q(Θ) ln
(

p(Y , Θ)

Q(Θ)

)
dΘ (11)

where Θ = {Z , ~π,~α,~β} includes both latent variables and random parameters. Next, we
factorize the distribution Q(Θ) into disjoint tractable distributions by using the mean field
theory, as in [1]. This process leads to the following expression:

Q(Θ) = Q(Z , ~π,~α,~β) = Q(Z)Q(~π)Q(~α)Q(~β) (12)

Finally, the solutions of the updated variational posteriors are obtained by optimizing
L(Q) with respect to each distribution. The resulting solutions are expressed as follows:

Q(Z) =
N

∏
i=1

M

∏
j=1

r
Zij
ij (13)

Q(~π) = Dir(~π | a0) (14)

Q(~α) =
M

∏
j=1

D

∏
d=1
G(αjd | u∗jd, v∗jd) (15)

Q(~β) =
M

∏
j=1

D

∏
d=1
G(αjd | g∗jd, h∗jd) (16)

where the hyperparameters in the above equations can be fixed in a similar way as in [26]
by testing and experimenting different values depending on the data set to model .

3.2. Gamma Model Learning via Entropy-Based Component Splitting

In this section, we develop a robust variational learning approach through the entropy-
based splitting method to learn the Gamma mixture model. We are fundamentally en-
couraged by the entropy principle, as suggested in [23], to learn Gaussian mixtures. The
core idea is to evaluate the quality of fitting of a component of the implemented Gamma
mixture model. Thus, it is possible to evaluate the goodness of fitting components of such
a model. This step is achieved by making a comparison between the theoretical entropy
and the estimated entropy. In particular, we proceed by calculating an estimation of the
entropy using MeanNN entropy [28] and then compare it with the theoretical maximum
entropy to check if a component is truly distributed with Gamma. In case of a significant
difference (greater than 10−2), we can conclude that this component does not fit well and so
we proceed with a portioning process which leads to the division of the current component
into two new clusters. As a result, via the proposed entropy-based learning approach for
Gamma mixtures, we can assess accurately the number of components (i.e., define model
complexity) by making a comparison between the estimated and theoretical entropies.

3.2.1. Theoretical Entropy of Gamma Mixtures

Let us denote, by ~Yi, a continuous random variable and, by p(~Y), its probability density
function; then the expression of the differential entropy of ~Y is given, as in [29], by:

H(~Yi) = −
∫

p(~Yi) ln p(~Yi)d~Yi (17)

In our case, ~Y is supposed distributed according to a Gamma distribution (given in
Equation (1)). After simplification, we obtain the following theory value of the maximum
differential entropy of ~Y, given as:

HGa(~Y) = −
D

∑
d=1

ln (βd) +
D

∑
d=1

ln (Γ(αd))−
D

∑
d=1

(αd − 1)ψ(αd) +
D

∑
d=1

αd (18)
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where ψ is a digamma function, such as ψ(x) = d
dx ln (Γ(x))

3.2.2. MeanNN Entropy Estimator

In order to assess if a given component is truly distributed according to a Gamma
distribution, we proceed with an estimator, namely, MeanNN entropy, proposed in [28].
It is an extension to the Shannon entropy that allows estimating the entropy H(~Y) of a
D-dimensional random variable ~Yi by supposing we have an unknown density function
p(~Yi) [30]. The Shannon differential entropy, given in Equation (17), is applied. By esti-
mating ln p(~Yi), we can determine an unbiased entropy estimator. We follow the key idea
in [28], where ε is the diameter of a ball centered at ~Yi. We suppose that there exists a
point within the distance of [ε, ε + dε]. Therefore, it is possible to discover other points
having smaller (k̂− 1) or larger (N − k̂− 1) distances from ~Yi. Based on this paradigm, the
distance probability function to be satisfied (i.e., between ~Yi and its k̂th nearest neighbor) is
given as:

pik̂(ε) =
(N − 1)!

(k̂− 1)!(N − k̂− 1)!)
dpi(ε)

dε
pk̂−1

i (1− pi)
(N−k̂−1) (19)

pi(ε) represents the ε-ball mass centered at ~Yi:

pi(ε) =
∫
||~Y−~Yi ||

p(~Yi)d~Yi (20)

the expected value of logpi(ε) with respect to pi(ε) is given:

E(logpi(ε)) =
∫ ∞

0
pik̂logpi(ε)dε = ψ(k̂)− ψ(N) (21)

In the whole ε-ball, p(~Yi) is supposed to be constant. So, we have:

pi(ε) ' Vdεd p(~Yi) (22)

Vd =
πd/2

Γ(1 + d/2)
(23)

where d is the dimension of ~Yi and Vd denotes the unit ball volume. When substituting
Equation (22) into Equation (21), −logp(~Yi) is determined as

− logp(~Yi) ' ψ(N)− ψ(k̂) + dE(log ε) + logVd (24)

which leads to the unbiased kNN estimator of the differential entropy as

Hk̂(
~Y) = ψ(N)− ψ(k̂) +

d
N

N

∑
i=1

log εi + logVd (25)

Based on the assumption in [23], the differential entropy can be extracted from the mean of
many estimators corresponding to different values of k. Thus, if we consider all values of k
(i.e., from 1 to N − 1) , we obtain the following result of the differential entropy:

HM(~Y) =
1

N − 1

N−1

∑
k̂=1

Hk̂(
~Y) = logVd + ψ(N) +

1
N − 1

N−1

∑
k̂=1

[
d
N

N

∑
i=1

log εi,k̂ − ψ(k̂)

]
(26)

where εi,k̂ is the k̂-th nearest neighbor of ~Yi.
The maximum entropy of the our Gamma mixture model can be expressed by

HGa(~Y) =
M

∑
j=1

πj HGa(j) (27)
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where HGa(j) is the maximum differential entropy of the jth cluster.
Thereafter, we can assess the quality of fitting the developed model within each cluster

while comparing the entropy mentioned above. Indeed, we denote, by ΩGa, the results
of calculating the normalized, weighted sum of the difference between two entropies as
in [23]. This output is evaluated for each component of our model, GaMM, as:

ΩGa =
M

∑
j=1

πj

[
HGa(j)− HM(j)

HGa(j)

]
=

M

∑
j=1

πj

[
1− HM(j)

HGa(j)

]
(28)

where HM(j) is the result entropy for the component j, which is computed by the MeanNN
estimator. Thus, ΩGa is in the interval [0, 1]. If the observed dataset is truly Gamma
distributed, then the value of ΩGa reaches to zero. Now the splitting process is based on
selecting the component j∗ with the highest ΩGa(j) as follow:

j∗ = arg max
j

[ΩGa(j)] = arg max
j

[
πj

HGa(j)− HM(j)
HGa(j)

]
(29)

Thus, we inspect ΩGa by comparing both the theoretical and estimated entropies of the
Gamma mixture, then we split j∗ into two new components.

3.2.3. Variational Learning Algorithm via Entropy-Based Splitting

The proposed variational inference algorithm for Gamma mixture models is illustrated
in Algorithm 1. It is noteworthy that there are two scenarios for our algorithm. In the
first one, all components are kept (i.e., all mixing coefficients are different from zero). In
this case, the splitting process will be performed with success and the number of clusters
(components) will be increased by one (K + 1). The component that will be selected to
be split into two new clusters is the one that has the largest ΩGa(j). The second scenario
happens when one of the mixing coefficients is near zero. In this case, its associated
component will be deleted (K− 1), the splitting process is not performed, and the algorithm
is stopped with k clusters. Note that we start with one component (M = 1).

Algorithm 1: Proposed Entropy-based Variational Learning for GaMM.
(1) Initialization

Initialize hyperparameters u, v, g, h, a0.
(2) Splitting process

Split j∗ into two new components j1 and j2 with equal proportion equal π∗/2
•M = M + l
• Initialise the parameters of j1 and j2 using same parameters of j∗

(3) Perform standard variational Bayes, until convergence.
(4) Determine the number of components through the evaluation of the mixing

coefficients {πj}
(5) if πj w 0 then

M = M − 1 and program terminates
end
else

Evaluate ΩGa, choose j∗ according to Equation (29), and go to the splitting
process in step

end

4. Experimental Results
4.1. Dynamic Texture Clustering

Dynamic textures (DT) are defined by Doretto et al. [31] as an extension of texture
to the temporal domain. In other words, it is a sequence of images of moving scenes that
display specific stationary properties in time (e.g., smoke, clouds, sea waves and trees). In
such case, the spatial (i.e., appearance) and temporal (i.e., motion) characteristics may not be
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the same. DT plays a substantial role in many applications and the modeling of DT has been
addressed by many researchers to solve different problems, including motion synthesis
or retrieval, motion classification, recognition and segmentation [32]. Thus, new concepts
that can be derived from static texture approaches are needed to integrate the analysis of
temporal variations into the spatial analysis. However, the main issues encountered in
dynamic textures analysis arise from the large range of appearances and the association of
both temporal and spatial properties.

In order to apply the proposed entropy-based learning model to clustering dynamic
textures, some preprocessing steps are performed. First, we start by extracting spatial visual
features with scale-invariant feature transform (SIFT) [33], which is largely utilized in such
contexts. In order to encode the full dynamic texture, including time information, SIFT
is considered insufficient. Furthermore, we propose taking into account other temporal
descriptors, such as the so-called space-time interest points (STIPs) [34]. As a result, we
calculate 128-dimensional SIFT/STIPs descriptors from each frame of every video through
the difference-of-Gaussians (DoG) detector. This step allows the selection of potential
interest points in which we ensure both rotation and scale invariance. Next, these features
are combined with features extracted using the imagenet trained deep learning model and,
finally, normalized and modeled using the developed (GaM-En) approach. It is noted that
we do not need to consider the class labels because our aim is to perform clustering analysis
in an unsupervised manner.

In this experiment, a challenging dynamic texture dataset, the DynTex database [35], is
used to evaluate performance. It consists of more than 650 dynamic texture sequences
videos, in PAL format (720 × 576, 25 fps). In this work, we limit our work to a subset of
videos representing 10 different categories, including flags, sea, vegetation, clam water,
trees, smoke, fountains, fountains, traffic, fountains and rotation. Every category contains
20 videos. Some samples from these categories are depicted in Figure 1.

Figure 1. Sample snapshots from different categories of the DynTex dataset.

In order to assess the performance of GaM-EN, we compare it with three other methods;
the Gaussian mixture model with a component-splitting technique (GM-Split), the Gaussian
mixture model via entropy-based learning (GM-EN) and the Gamma mixture model via
variational-based learning (GaM-VB). Thus, we have run each testing method 30 times and
report the average results in terms of accuracy and processing time. The averages of the
clustering accuracy are given in Table 1. From these results, GaM-En has reached 93.40%;
however, the accuracies of the others are less than 88%, which confirms that our model is
able to provide better performance. This fact demonstrates a significant improvement when
using Gamma distribution and entropy-based variational learning over Gaussian-based
models to distinguish dynamic texture categories.
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Table 1. Overall accuracy (%± standard error) of dynamic texture clustering of different approaches
using SIFT features on the DynTex dataset.

Approach Average Accuracy (%) ± Standard Error Average Time (S)

GM-Split 86.11 ± 1.21 4.26
GM-En 86.34 ± 1.13 4.22
GaM-VB 88.27 ± 1.09 3.56
GaM-En (our method) 93.40 ± 1.03 1.64

4.2. Human Gesture Recognition

Recognizing human gestures has become an important active research direction in the
fields of computer vision and pattern recognition that may be applied in many potential
applications, such as human–computer interaction, artificial intelligence, video surveillance
systems, virtual reality, etc. Indeed, human gestures (or actions) are the natural way
of expressing intentions in people’s daily lives. The use of gestures can help people
with certain disabilities to communicate with others. In particular, hand recognition is a
technique that helps in understanding the movement of a hand. Recently, this research field
has been gaining increasing attention and, so far, many research works have been conducted
on human gesture recognition [16,36–38]. Nevertheless, it still remains a challenging
research field, primarily due to the complexity and ambiguity of human motion and of
backgrounds. The goal of this experiment is to evaluate our proposed statistical approach
(GaM-En) with two types of human gesture recognition, which are hand and body gestures.
In this experiment, we proceed as in [39] in order to obtain discriminative features for
gesture detection in the spatiotemporal domain from each video. Indeed, both motion
and appearance features are extracted for human gestures characterization. For motion
features, we use the so-called motion history image (MHI) [40]. Then, the histogram of
oriented gradients features (HOG) [41] is adopted for extracting appearance feature, which
takes into account the magnitude of edge, direction and corner information. Finally, we
apply the model of bag-of-visual words to quantize the resulting discriminative vectors
via the K-means algorithm. As a result, a histogram vector (representing the frequency
of each visual word) is constructed to model each input frame. After this preprocessing
step, we apply our proposed statistical model (GaM-En) to recognize human gestures.
In particular, each test video is assigned to the appropriate category with the maximum
posterior probability under Bayes’ rule.

In this experiment (hand gesture recognition), we consider the Cambridge-Gesture
database [42] as a public database. It includes nine hundred (900) image sequences rep-
resenting nine different classes of hand gesture data. These classes are composed of
three primitive hand shapes (‘Flat’, ‘Spread’ and ‘Vshape’) and three primitive motions
(leftward, rightward and contracting). In every class there are 100 sequences captured with
different illuminations and arbitrary motions, and the size of each image is 320× 240 pixels.
In our case, the dataset is divided into two equal partitions: one is used for training and
the other is for testing. Sample hand gesture frames from this database can be viewed
in Figure 2.

We also conduct other experiments on human body gesture recognition and we
test our approach using the publicly available dataset UMD Keck body-gesture (http:
//www.umiacs.umd.edu/~zhuolin/Keckgesturedataset.html, accessed on 5 December
2021) [43]. This database includes 14 different gesture classes: Turn Left (A), Turn Right
(B), Attention Left (C), Attention Right (D), Attention Both (E), Stop Left (F), Stop Right
(G), Stop Both (H), Flap (I), Start (J), Go Back (K), Close Dist (L), Speed Up (M), Come Near
(N). It comprises people representing a subset of military signals. Thus, we have 126 video
sequences captured by fixed camera and 168 videos collected from dynamic environments.
Sample body gesture frames from the UMD Keck dataset are shown in Figure 3.

http://www.umiacs.umd.edu/~zhuolin/Keckgesturedataset.html
http://www.umiacs.umd.edu/~zhuolin/Keckgesturedataset.html
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Figure 2. Sample frames of hand gesture from Cambridge-Gesture dataset.

Figure 3. Sample frames of body gestures (gesture classes) from the UMD Keck body-gesture dataset.

In order to demonstrate the benefits of using Gamma models with entropy-based
variational learning and component splitting for both body and hand gesture recognition,
we calculate the confusion matrix for the UMD Keck body-gesture database. Furthermore,
we compare the performance on the Cambridge-Gesture dataset through the overall recog-
nition accuracy. This is performed for our approach (GaM-En) and three other mixture
methods, Gaussian mixture model with component splitting technique (GM-Split), Gaus-
sian mixture model via entropy-based learning (GM-En), and Gamma mixture model via
variational-based learning (GaM-VB). Table 2 reports the average results obtained by testing
different approaches 30 times for accuracy and processing time. Based on this comparative
study, we can see clearly that our model has a higher overall recognition accuracy (91.66%)
than the others. Moreover, the shortest required processing time to reach the optimal
solution is obtained with the proposed GaM-En. For the other models, the accuracy is
less than 87%. These results prove again the effectiveness of using our entropy-based
framework for recognizing human gestures.

Table 2. The average recognition rate (%±standard error) of hand gestures, using different ap-
proaches, performed on Cambridge-Gesture dataset.

Approach Average Accuracy (%) Average Time (S)

GM-Split 85.25 ± 1.33 2.21
GM-En 85.28 ± 1.24 2.33
GaM-VB 87.37 ± 1.09 3.18
GaM-En (our method) 91.66 ± 0.91 1.59
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4.3. Object Categorization

Our last experiment involves the application of object categorization. Indeed, the
detection of real-world objects has been an important application of computer vision due
to the increasingly huge amounts of images created every day [44,45]. The goal of object
categorization is to differentiate the classes of objects from each other. This problem is
considered to be difficult due to the changes in viewpoint and illumination conditions that
can drastically modify a particular object’s appearance. Several research works have tackled
the problem of modeling and categorization objects because solving it will help further
tasks in pattern recognition and computer vision applications, such as image classification
and retrieval. We address, here, this challenging problem and evaluate the performance of
our framework by comparing it with other methods. In particular, our aim is to test the
effectiveness of our statistical model in terms of clustering the input from a set of images.

In this section, we evaluate our framework on the basis of two challenging databases,
Caltech256 [46] and GHIM10K (http://www.ci.gxnu.edu.cn/cbir/dataset.aspx, accessed
on 1 August 2021). Caltech256 contains 600 images divided into four categories: Faces,
Planes, Bikes and Camels. The GHIM10K dataset contains 400 images divided into four
classes, which are Flowers, Boats, Cars and Bugs. Each class consists of 100 images. To
make the problem more challenging, the objects are acquired with different lighting, from
different angles and against different background conditions. Samples from these two
databases are presented in Figures 4 and 5.

Figure 4. Sample from the Caltech dataset. From left to right: Bikes, Faces, Planes, Camels.

Generally, when addressing the problem of object categorization the first step is to
extract robust descriptors from input data. Thus, a preprocessing step was adopted here to
extract visual features using SIFT (scale-invariant feature transform). All extracted local
SIFT descriptors are grouped into a collection (corpus). Then, K-means is applied to cluster
the corpus and generate a visual words vocabulary. In this experiment, the optimal number
of vocabulary words is 50.

Figure 5. Sample from the GHIM10K dataset. From left to right: Boats, Cars, Flowers, Bugs.

In order to prove the merits of the proposed framework for object categorization
application, we also evaluate other generative model-based methods, such as Gaussian
mixture model with component splitting technique (GM-Split), Gaussian mixture model
via entropy-based learning (GM-EN), and Gamma mixture model via variational-based
learning (GaM-VB). Furthermore, we compare the performance and report the average
results from 30 runs in terms of overall categorization accuracy in Table 3. To initialize the
model’s parameters, different parameter setting are considered to ensure the robustness of
our choice. As illustrated in Table 3, we may notice the merits of GaM-En in differentiating
different objects from the Caltech256 and GHIM10K datasets by obtaining the highest
accuracy rates: 97.84% and 97.02%, respectively. Lower rates of categorization accuracy are

http://www.ci.gxnu.edu.cn/cbir/dataset.aspx
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obtained by Gaussian-based models (GM-En and GM-Split). These results demonstrate
that entropy-based Gamma offers better modeling capabilities over Gaussian-based models
when dealing with compositional feature vectors. On the other hand, it is clear from
the same depicted table that entropy-based variational learning (GaM-En) outperforms
conventional variation (GaM-VB) in learning Gamma mixture models.

Table 3. Results of object categorization using different models (average %± standard error (Average
time (S))).

Datasets/Method GaM-En (Proposed Method) GaM-VB GM-En GM-Split

Caltech256 97.84 ± 0.86 (2.11) 94.32 ± 1.14 (2.99) 92.97 ± 1.09 (2.28) 92.91 ± 1.10 (2.18)
GHIM10K 97.02 ± 0.92 (2.89) 95.37 ± 1.18 (3.11) 93.33 ± 1.13 (2.97) 93.17 ± 1.15 (2.93)

5. Conclusions

This paper has presented a novel entropy-based variational approach with a splitting
method to learn the parameters of Gamma mixture models. The main goal is to investigate
entropy criteria in order to evaluate whether a given component is truly Gamma distributed.
This process is performed by comparing theoretical maximum entropy with that calculated
by the MeanNN estimator. Subsequently, in the case of having important comparison
difference (i.e., we inspect the component with the highest difference), a splitting process
is performed and such component is split into two new components (or clusters), since
it is not well-fitted by the mixture model. Our developed framework (GaM-En) leads to
a principled solution and has the advantage of avoiding over- and under-fitting issues.
Through extensive experimentation, including examining the problems of dynamic texture
clustering, human gesture recognition and object categorization, we have validated our
framework. The obtained results show that our approach is competitive and outperforms
some state-of-the-art methods, thanks to its flexibility and effectiveness in terms of multidi-
mensional data modelling and learning. The developed approach has attractive simplicity
and generality that makes it easily applied to many other challenging problems, including
text clustering and medical image analysis. To improve the expected results, a promising
future work could be the integration of a visual feature selection mechanism into the current
framework. We plan also to deal with dynamic data by suggesting an online learning
process, instead of batch learning.
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