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Abstract: Technology-aided hand functional assessment has received considerable attention in recent
years. Its applications are required to obtain objective, reliable, and sensitive methods for clinical
decision making. This systematic review aims to investigate and discuss characteristics of technology-
aided hand functional assessment and their applications, in terms of the adopted sensing technology,
evaluation methods and purposes. Based on the shortcomings of current applications, and opportuni-
ties offered by emerging systems, this review aims to support the design and the translation to clinical
practice of technology-aided hand functional assessment. To this end, a systematic literature search
was led, according to recommended PRISMA guidelines, in PubMed and IEEE Xplore databases.
The search yielded 208 records, resulting into 23 articles included in the study. Glove-based systems,
instrumented objects and body-networked sensor systems appeared from the search, together with
vision-based motion capture systems, end-effector, and exoskeleton systems. Inertial measurement
unit (IMU) and force sensing resistor (FSR) resulted the sensing technologies most used for kinematic
and kinetic analysis. A lack of standardization in system metrics and assessment methods emerged.
Future studies that pertinently discuss the pathophysiological content and clinimetrics properties of
new systems are required for leading technologies to clinical acceptance.

Keywords: hand; functional assessment; quantitative assessment; kinematic analysis; kinetic analysis;
robotic technology; sensing technology

1. Introduction

The complex anatomy of the hand is efficiently organized to carry out a variety
of complex tasks required in every daily activity. Adopting McPhee words, “hand use
is a function of anatomic integrity, mobility, strength, sensation, coordination, age, sex,
mental status, disease or trauma” [1]. Several injuries and disorders may undermine the
physiological hand function, causing severe to subtle functional consequences in day-to-day
activities. Pathological events, such as traumatic injuries, rheumatic diseases, metabolic
disorders, neurological diseases, neuropsychiatric disorders may undermine hand ability
to carry out successfully daily activities, with serious impact on social participation and
health-related quality of life [2,3].

Conventional methods for hand functional assessment rely on subjective evaluations,
which result not sensitive enough to detect fine changes in impairments, and potentially
introducing bias when attempting to model functional recovery [4,5]. In recent decades,
clinicians working in hand surgery and therapy field emphasized the need for instruments
able to quantify body functions and activity limitations, in order to enable reliable evalua-
tions of hand impairments and related disabilities [6]. The use of quantitative instruments
to assess the impact of hand conditions on its functionality and quality of life is essential
for clinical decision-making, monitoring patient progress, and evaluating the effective-
ness of treatment. Technology-aided approaches are able, on one side, to emphasize the
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importance of impairment evaluation during tasks and activities involving movements,
while on the other hand, to provide objective and traceable descriptions of upper extremity
behavior on continuous scales avoiding ceiling effects [7,8]. Emerging technologies are
expected to provide crucial information on upper limb impairments in individuals with
mild to moderate disability levels, and promise to accurately identify functionally relevant
impairments. A great number of technology-aided approaches for upper limb assessment
have been reported in literature in recent years, despite very few of them have been used
for hand functional assessment issues. Reviews exist presenting overviews of quantita-
tive assessment instruments applied to a specific cohort of subjects carrying upper limb
disorders [9–13]. Nevertheless, to the best of the authors’ knowledge, no published work
provides a comprehensive state of the art about quantitative methods based on emerging
technologies that focus on hand functional assessment. Here, a systematic review on the
state-of-the-art about technology-based methods for quantitative hand functional evalua-
tion is presented, in order to provide inspiration for the development of future systems.
The review classifies systems based on their technology, measurements characteristics, eval-
uation methods, and purposes, to provide an overview on the existing sensing technologies
for assessing hand function, and to highlight key features where emerging systems may
help in solving current issues in the field.

2. Materials and Methods
2.1. Literature Search Strategy

A literature search was conducted in PubMed and IEEE Xplore databases. Papers
addressing the following aspects were selected: functional assessment, upper extremity
(hand or fingers), technology-aided approach. A structured search strategy was performed
in each electronic database. The performed query is presented in Table 1.

Table 1. Literature search strategy.

Concept Search Terms

Assessment functional assessment OR monitoring

AND

Functions/Impairment range of motion OR muscle power OR fine hand use OR hand
activity OR fine impairment

AND

Upper extremity upper extremity OR hand OR finger

AND

Technology-aided approach
technology OR quantitative OR robot OR sensors OR sensor

system OR wearable systems OR mobile OR kinematic OR kinetic
NOT electromyography

Additionally, articles satisfying eligibility criteria were found by hand searching and
included in the review. Only papers published in refereed journals between January 2010
and June 2021 were considered for this systematic review.

2.2. Study Selection Process

This review was carried out according to the Cochrane Collaboration methodology [14].
The article selection process based on the PRISMA guidelines [15] is schematically pre-
sented in Figure 1. After removal of duplicates, titles and abstracts of the remaining articles
were screened, and the full texts read and selected according to inclusion and exclusion
criteria. When the same authors published several studies on the same research initia-
tive, only the most recent ones were retained. Inclusion criteria were: (a) articles must
concern sensing technology-based systems applied for hand functional assessment issues;
(b) articles must be written in English. Exclusion criteria were: (a) traditional mechanical
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systems (e.g., goniometer); (b) systems concerning diagnostic tests, imaging, and inva-
sive electromyography techniques used to evaluate the integrity of anatomical structures;
(c) quantitative analysis performed in static conditions not requiring activity assessment;
(d) sensors technical validation that did not require hand functional assessment procedures;
(e) reviews and books.
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2.3. Data Extraction Process

Data extraction was performed manually. The extracted data included: (a) the sensing
technology used in the research paper; (b) the type of system implemented, features about
the communication protocols (wireless or wired), the needed calibration, the system tech-
nology readiness level (TRL) [16], the feedback modality and the metrics extracted from
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kinematic and kinetic data; (c) the main evaluation features, the evaluation setting (labora-
tory, clinical, home), the assessment targets regarding hand functions and population.

Following literature classification, retrieved systems were classified as: (a) glove-based
system [17], (b) instrumented object [12], (c) body-networked sensor system when wearable
sensor nodes (in smartband or body-mounted sensor) communicate among themselves
or with other devices [18], (d) vision-based motion capture system [19], (e) end-effector,
and (f) exoskeleton system [20]. When the system provided a feedback modality via haptic,
visual, auditory, or virtual reality (VR) during the execution of the task, this information
was reported. TRL of each system was assessed by authors following the “Technology
Readiness Assessment Guide” [16].

The International Classification of Functioning, Disability and Health (ICF), that
provides a comprehensive definition, measurement and policy formulations for health
and disability in a consistent and internationally comparable manner, was adopted as
reference to categorize existing technology-aided functional assessment approaches [6].
The assessment properties of each system were addressed considering when the activity,
considered the ability to execute a task or actions, was evaluated at a singular time point
in a structured environment (capacity) or when evaluated in unstructured free-living
condition (performance) [6]. As described in De Los Reyes-Guzmán et al. work [10],
activities were classified as (a) basic tasks involving a simple hand movement (such as
finger flexion/extension, tapping, pinch, hand grasp), (b) functional tasks when the subject
was invited to perform a point-to-point movement required in basic daily activity (reaching,
grasping, releasing), and (c) real activities of daily living (ADLs), such as drinking, eating,
cooking, and dressing.

With the aim to classify and discuss emerging technology-aided hand functional
assessment in a general core set of hand conditions, van de Ven-Stevens et al. work [21]
was adopted as reference to classify the investigated hand functioning domains in articles.
Identified domains concerned “mobility of joint functions”, “muscle power functions”,
“fine hand use”, and “hand and arm use”.

3. Results

The initial paper search yielded 208 results. After reviewing titles and abstracts and
duplicates rejection, 71 articles were selected. The application of the inclusion and exclusion
criteria led to 18 articles related to technology-aided hand functional assessment. Five
additional articles were identified from the successive manual targeted search, leading to a
total of 23 articles included in the present systematic review (Figure 1). The data extracted
from reviewed articles are summarized in Table 2.
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Table 2. Summary of the paper lists and features. Ref. = reference, TRL = technology readiness level, IMU = inertial measurement unit, ADL = activities of daily
living, Clin = clinical, Lab = laboratory, FSR = force sensing resistor, VR = virtual reality, CIDP = chronic inflammatory demyelinating polyneuropathy.

First Author,
Year Ref. Sensing

Technology System Communication
Protocols Calibration Feedback Data Evaluation

Type Activity Target Functions Target
Population Setting TRL

Schwerz de
Lucena, 2021 [22] Magnetometers,

IMU

Body- networked
sensor system

(Wristband and
ring)

Wireless - Visual Kinematic Performance ADL Fine hand use;
hand and arm use

Chronic stroke
(n = 29) Home TRL 6

Jha, 2021 [23] Fiber optical
sensors

Glove-based
system Wired Required VR Kinematic Capacity Basic task

Mobility of joint
functions; Fine

hand use

Healthy
subjects (n = 5) Lab TRL 4

Schwar, 2020 [24] Force sensor,
IMUs

Body- networked
sensor system Wired Required - Kinematic

kinetic Capacity Functional
task

Mobility of joint
functions; Muscle
power function;
Fine hand use;

Hand and arm use

Chronic stroke
(n = 10) Clin TRL 5

Visée, 2020 [25] GoPro camera
sensor

Vision-based
motion capture

system
Wireless - - Kinematic Performance ADL Hand and arm use Spinal cord

injury (n = 17) Lab TRL 4

Kanzler, 2020 [26] Force sensor End-effector Wired - VR haptic Kinematic
kinetic Capacity Basic task Fine hand use;

hand and arm use Stroke (n = 30) Clin TRL 7

Barlow, 2020 [27]
Strain gage

sensors (bulit-in
load cell)

Instrumented
object Wireless Required Visual

acoustic Kinetic Capacity Basic task
Muscle power
functions; Fine

hand use

Chronic stroke
(n = 7); Healthy
subjects (n = 25)

Lab TRL 4

Bobin, 2018 [28]
Pressure

sensors (FSR),
conductive

electrodes, IMU

Instrumented
object (Smart cup) Wireless Required Visual

acoustic
Kinematic

kinetic
Capacity

Performance
Functional
task; ADL

Muscle power
functions; Fine

hand use; Hand
and arm use

Stroke (n = 9) Clin
Home TRL 7

Liu, 2019 [29] IMUs

Body-networked
sensor system

(finger worn sensor,
wrist worn sensor)

Wireless - - Kinematic Performance ADL Hand and arm use Healthy
subjects (n = 18) Lab TRL 4

Sadarangani,
2017 [30] Force sensors

(FSR)

Body-networked
sensor system
(Smartband)

Wired Required - Kinetic Performance Functional
task Hand and arm use

Stroke (n = 8);
Healthy

subjects (n = 8)
Lab TRL 4

Schreck, 2017 [31] Resistive bend
sensors

Glove-based
system Wireless Required Visual Kinematic Capacity Basic task

Mobility of joint
functions; Fine

hand use

Healthy
subjects (n = 10);

Stenosing
tenosynovitis (n

= 11)

Clin TRL 9

Spasojević, 2017 [32] Resistive bend
sensors

Glove-based
system Wireless Required - Kinematic Capacity Basic task

Mobility of joint
functions; Fine

hand use

Parkinson’s
disease (n = 30);

Healthy
subjects (n = 23)

Clin TRL 9

Romeo, 2015 [33] Force sensor
(FSR)

Instrumented
object Wired Required - Kinetic Capacity Basic task

Muscle power
functions; Fine

hand use

Healthy subject
(n = 1) Lab TRL 3
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Table 2. Cont.

First Author,
Year Ref. Sensing

Technology System Communication
Protocols Calibration Feedback Data Evaluation

Type Activity Target Functions Target
Population Setting TRL

Rammer, 2014 [34] Microsoft
Kinect sensor

Vision-based
motion capture

system
Wireless - - Kinematic Capacity Functional

task

Mobility of joint
functions; Fine

hand use; Hand
and arm use

Healthy
adolescent

subjects (n = 12)
Clin TRL 9

Schuster-Amft,
2014 [35] Resistive bend

sensors
Instrumented

object (smart cup) Wireless - VR Kinematic Capacity Functional
task

Mobility of joint
functions; Fine

hand use; Hand
and arm use

Chronic stroke
(n = 60) Clin TRL 9

Taheri, 2014 [36] Hall Effect
sensors Exoskeleton - - VR Kinematic

kinetic Capacity Basic task

Mobility of joint
functions; Muscle
power functions;

Fine hand use

Stroke (n = 16) Lab TRL 4

Bonzano, 2013 [37] Electrical con-
tacts

Glove-based
system Wired - Visual

acoustic Kinematic Capacity Basic task Fine hand use
Multiple

sclerosis (n =
40)

Clin TRL 8

Kurillo, 2013 [38] Microsoft
Kinect sensor

Vision-based
motion capture

system
Wireless Required Visual Kinematic Capacity Functional

task

Mobility of joint
functions; Hand

and arm use

Healthy
subjects (n = 10) Lab TRL 9

Nica, 2013 [39] Force sensor Instrumented
object Wired - VR Kinetic Capacity Basic task

Musclepower
functions; Fine

hand use

Hand traumatic
injuries (n = 54) Clin TRL 9

Lee, 2013 [40] Force sensor
(FSR)

Instrumented
object Wireless Required Visual Kinetic Capacity Basic task

Muscle power
functions; Fine

hand use

Stroke and
CIDP (n = 12);

Healthy
subjects (n = 4)

Clin TRL 5

Oess, 2012 [41] Resistive bend
sensors

Glove-based
system Wired - - Kinematic Capacity Functional

task

Mobility of joint
functions; Fine

hand use; Hand
and arm use

Healthy
subjects (n = 10);
Cervical spine

cord injury (n =
4)

Clin TRL 5

Zariffa, 2012 [42] Pressure sensor Exoskeleton Wired Required VR Kinetic Capacity Basic task
Muscle power

functions; Hand
and arm use

Spinal cord
injury (n = 14) Clin TRL 9

Sgandurra, 2012 [43] Piezoresistive
pressure sensor

Instrumented
object (ring- shaped

toy)
- - - Kinetic Capacity Basic task

Muscle power
functions; Fine

hand use; Hand
and arm use

Developing
infants from 4-9
months (n = 10)

Home TRL 9

Golomb, 2010 [44] Fiber optical
sensors

Glove-based
system Wired Required VR (game) Kinematic Capacity Basic task

Mobility of joint
functions;

Finehand use

Adolescent
with cerebral
palsy (n = 3)

Home TRL 7
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The different sensing technologies that have been used in the selected articles are
shown in Figure 2. The 75% of the sensing technologies required calibration procedures
whether they implemented wireless or wired communication protocols. Instrumented
objects and glove-based systems resulted to be the most frequently adopted solutions,
for hand functional assessment, present in 30% and 26% of the total works, respectively.
Body-networked sensor systems were used in 4 out of the 23 studies [22,24,29,30], while
vision-based motion capture systems were used in 3 out of the 23 studies [25,34,38]. Three
works adopted exoskeleton [36,42] or end-effector [26] systems.
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The 60% of the systems provide feedback during the assessment procedures via vi-
sual [22,27,28,31,37,38,40], acoustic [27,28,37], or haptic [26] feedback, or by adopting virtual re-
ality technology to retrieve the online kinematic rendering of hand activity [23,26,36,39,42,44].
Systems with TRL ≤ 4 (n= 7) resulted mainly adopted in laboratory setting, while those
with TRL > 5 resulted majorly involved in clinical environments (n = 12). Higher TRL were
used in home settings (TRL = 6 [22]; TRL7 = [28,44]; TRL9 = [43]). The 78% of the functional
evaluations aimed to investigate the execution of tasks in a controlled environment, while
5 out of the 23 papers [22,25,28–30] studied the performance of functional tasks/ADLs in
free-living conditions. The Table A1 (Appendix A) reports the different system metrics
labelled in relation to the original articles.

In Figure 3, systems are classified according to the type of sensor data (kinematic or
kinetic), the type of activity executed, the investigated hand functioning domain.

Three population categories were addressed and reported in Table 3: (1) neurological
disease (stroke n = 9, spinal cord injury n = 3, Parkinson’s disease n = 1, multiple sclerosis
n = 1, chronic inflammatory demyelinating polyneuropathy (CIDP) n = 1, cerebral palsy
n = 1); (2) musculoskeletal impairment (stenosing tenosynovitis n = 1, traumatic injuries
n = 1); and (3) other conditions (developing infants n = 1, healthy subjects n = 11). The
target functioning domain “fine hand use” resulted explored in 18 works, “hand and arm
use” in 13 works, “mobility of joint function” in 10 works, “muscle power function” in
9 works.
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evaluation features. References: [22] = Schwerz de Lucena et al., 2021; [23] = Jha et al., 2021; [24] =
Schwarz et al., 2020; [25] = Visee et al., 2020; [26] = Kanzler et al., 2020; [27] = Barlow et al., 2020; [28] =
Bobin et al., 2018; [29] = Liu et al., 2019; [30] = Sadarangani et al., 2017; [31] = Schreck et al., 2017; [32]
= Spasojević et al., 2017; [33] = Romeo et al., 2015; [34] = Rammer et al., 2014; [35] = Schuster-Amft
et al., 2014; [36] = Taheri et al., 2014; [37] = Bonzano et al., 2013; [38] = Kurillo et al., 2013; [39] = Nica
et al., 2013; [40] = Lee et al., 2013; [41] = Oess et al., 2012; [42] = Zariffa et al., 2012; [43] = Sgandurra
et al., 2012; [44] = Golomb et al., 2010.

Table 3. Classification based on target population. CIDP = chronic inflammatory demyelinating
polyneuropathy.

Category Target Population References

Neurological disease Stroke [22,24,26–28,30,35,36,40]
Spinal cord injury [25,41,42]

Parkinson’s disease [32]
Multiple sclerosis [37]

CIDP [40]
Cerebral palsy [44]

Musculoskeletal impairment Stenosing tenosynovitis [31]
Traumatic injuries [39]

Others Healthy subjects [23,27,29–34,38,40,41]
Developing infants [43]

4. Discussion

This work presents a systematic review of featured technologies developed to support
hand functional assessment procedures, described in peer reviewed literature published in
the last decade (from 2010 on). A total of 208 publications were screened for eligibility and
23 articles were included in the final assessment.

Several advanced technologies have been developed to solve the relevant application
problems of traditional approaches used for hand functional assessment [4,5]. Various
sensing technologies, embedded in different systems, are used to capture relevant kinematic
and kinetic data. These include IMU, FSR, resistive bend sensor, Kinect sensor (Microsoft
Corporation, Redmond, WA, USA) and GoPro camera (GoPro Inc., San Mateo, CA, USA),
fiber optical sensor, electrical contacts, Hall effect sensor, magnetometer, piezoresistive
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pressure sensor, strain gage sensor, conductive electrodes. IMUs and FSRs resulted to be
the most commonly sensing technology used, since they yield accurate essential values, are
easy to use, and are miniaturized in size. Some new developments on innovative sensing
technologies are noteworthy and promising though they have been excluded from the
review as they resulted not applied in assessment procedures: stretchable carbon nanotube
strain sensor [45], bidirectional triboelectric sensors [46], 3D Printed Optical Sensor [47],
and fiber Bragg grating sensors (FBG) [48].

Different types of system that involve diverse and complementary technologies are
currently used to support hand functional assessment procedures: instrumented objects,
glove-based systems, body-networked sensor systems, vision-based motion capture sys-
tems, end-effector, and exoskeleton systems.

4.1. Instrumented Objects and Glove-Based Systems

Instrumented objects and glove-based systems have been recently developed and
applied as functional assessment tools [12,17]. From literature screening, they resulted to
be the most frequently adopted systems, as well as those presenting the highest technology
readiness levels. Instrumented objects are typically equipped by wireless pressure sensors
and IMUs, which provide information to analyze grip force modulation in relation to
movement-induced load fluctuation, spatial orientation, and movement acceleration. A
glove-based system is a hand-worn device including sensors array, specific electronics for
data acquisition/processing, and power supply. Glove-based systems are one of the mostly
exploited devices for quantifying movement range, joint velocity (angular/linear), quality
of movement through bend sensors and IMUs technologies, sometimes providing the
kinematic rendering of the task via visual or VR feedbacks [22,31,37,44]. As reported in a
recent work [13], glove-based systems result more suitable for hand functional assessment
than other capture-motion systems that require more expensive technologies, specific
laboratory settings and advanced post-processing steps. However, such systems need to be
customized for each individual in order to ensure optimal sensor position and, although
some devices implemented wireless solutions, they are typically wired.

4.2. Body-Networked Sensor and Vision-Based Motion Capture Systems

Thanks to the evolution of the technology, the interest to develop compact, lightweight,
and comfortable wearable sensors has grown during the last years. In recent articles
(from 2017 to 2021), the body-networked sensor systems have been widely proposed for
clinical applications, to monitor and assess upper limb during functional tasks. In fact,
such systems relying on inertial built-in smart-bands sensors or equipped with sensors
mounted at finger/wrist level provide meaningful metrics of real-time movements [49].
During recent years, markerless motion capture systems also obtained attention as in-
struments able to provide unobtrusive monitoring and accurate assessment of functional
movements in real world environment. The Microsoft Kinect sensor was applied in two
studies to extract meaningful kinematic features during the execution of some standardized
functional tasks [34,38]. Furthermore, a wearable vision-based approach, that adopted a
head-mounted GoPro camera to provide egocentric first-person videos, was interestingly
exploited to monitor and analyze functional interactions of the hand with objects during
activities of daily living [25].

4.3. End-Effector and Exoskeleton Systems

Designing a robot to actuate hands or fingers is a significant challenge [50]. In fact,
robotic systems were not extensively applied for hand functional evaluations [36,42]. The
exoskeleton Armeo®Spring [42], that helps to support the weight of the upper and lower
arm through a system of springs, was used to record the angles of 6 joints, the position
of the hand in space and the grip pressure during some VR tasks (e.g., putting fruit in a
shopping cart, wiping a window, or catching moving targets on the screen). The FINGER
device was applied to analyze finger motions while subjects are playing a serious game [36]
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thanks to its mechanical design that facilitates wearability to the back of the hand. Finally,
a commercial haptic end-effector device (PhantomOmni or Geomagic Touch, 3D Systems,
USA) was particularly useful to quantify arm and hand movements, as well as grip forces
during a goal-directed manipulation task (virtual peg insertion test), requiring active lifting
of the upper limb against gravity [26].

4.4. Impact of Quantitative Measurements on Clinical Practice

Although novel technologies can foster the collection of reliable measurements in
several dynamic conditions, the use of assessment tasks and measurements is not standard-
ized. In addition, metrics found in literature that analyze movement features do not follow
standardized terminology, and studies analyzing psychometric properties are few. In order
to help a deeper understanding about emerging technologies for hand functional assess-
ment, and support future developments, a new systems classification based on technology
features and assessment properties is proposed here (Figure 3). The most used technology-
aided hand functional assessment systems provide kinematic data during several dynamic
tasks. Kinematic assessments are supposed to offer fine-grained and objective outcomes
on movement quality and have shown to quantify impairments in various pathological
conditions affecting “mobility of joint functions”, “fine hand use”, and “hand and arm
use” domains [22,25,31,32,37,41,44]. On the other hand, kinetic analysis showed to be
fundamental to address significant information about “muscle power functions” and “fine
hand use” domains through the evaluation of basic tasks in neurological diseases which
impairments cause severe motor disability [27,30,40,42]. Some authors highlighted the
needs to develop systems equipped by more than one sensor, to track both kinematic and
kinetic data, thus obtaining metrics that express more detailed outcomes about hand func-
tion [24,26,28,36]. Remarkably, Schwarz et al. [24] combined complete kinematic motion
analysis and interaction force measurements at the fingertip, giving relevant information
about all domains of hand functioning in stroke subjects.

Hand functional impairments related to neurological conditions have been particularly
explored by new technologies in recent years. Functional consequences resulted addressed
majorly in stroke patients than in spinal cord injury, which has minor prevalence in popula-
tion [51]. Further research must be extended to other neurological disease affecting hand
functioning, such as multiple sclerosis, Parkinson’s disease, cerebral palsy, and peripheral
neuropathy [52]. Additional efforts are needed to extend kinematic and kinetic analysis to
musculoskeletal injuries (e.g., osteoarthritis, carpal tunnel syndrome, rheumatoid arthritis,
stenosing tenosynovitis), often causative of complex hand disability [3]. The exploitation of
new technologies-aided hand functional assessment methods in the context of neurodegen-
erative [53,54] and neurodevelopment disorders [43,55] could provide interesting results.
As an example, technologies able to track kinematic information about fine hand use in
free-living conditions could support early detection of fine motor impairments in neurode-
generative disorders [56,57]. Moreover, quantitative analysis of reaching patterns, grasping
forces and power grip maturation patterns could bring a wealth of knowledge about the
subtle fine motor impairments that affect children with cerebral palsy [58], attention deficit
hyperactivity disorder (ADHD) [59], and autism spectrum disorder [60].

5. Conclusions

Technology-aided clinical assessment procedures represent a promising challenge to
optimize healthcare services. Several research studies over the past decade introduced
technologies aimed to quantify gross motor movements of shoulder, arm, and forearm.
Less attention was paid to relevant issues related to the assessment of hand functioning
domains. With this work, the authors aimed to address a comprehensive state-of-the-art
of technology-aided hand functional assessment technologies, taking into account both
technological requirements and clinical assessment needs.

Advantages in applications of such technologies have been discussed, with the aim
to orient the development and usage of assessment systems. The clinical use is still rather
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limited. The gradual adoption of novel systems as complementary tools to conventional
clinical procedures is desirable, and represents a key issue to optimize diagnosis and
treatment outcomes in several pathological condition affecting upper limb functioning.
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Appendix A

The appendix provides supplementary extracted data in Table A1.

Table A1. Supplementary data extracted from included papers.

References Evaluated Task Metrics

[22] ADLs (real) Amount of hand use

[23] Finger flexion/extension Joint ROM, performance score, error rate (%)

[24] ARAT test Joint ROM, velocity, pinch force

[25] ADLs (real) Activity detection

[26] Grasp task Movement smoothness, movement efficiency,
movement speed, smoothness of grip force

[27] Finger pinch

Force reaction time (ms), peak force (N),
maximum rate of force change (N/s),

end-point accuracy, variability metrics (mean,
SD, percentage on target)

[28]
Drinking task: filling,

grasping, manipulating
and releasing.

Mean force, orientation (degrees), velocity,
tremor detection (translational and rotational),

liquid level

[29] ADLs (real) Amount of hand use

[30] Reaching, grasp, releasing Grasp detection

[31] Finger flexion/extension,
grasp task Joint ROM, mean velocity, peak velocity

[32] Finger opposition movements,
finger flexion/extension Joint ROM, velocity, acceleration

[33] Tripod grasp Force (N), time

[34] SHUEE test Reaching ROM, velocity, acceleration

[35] Manipulation, reaching,
grasping tasks Joint ROM, velocity, movement accuracy
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Table A1. Cont.

References Evaluated Task Metrics

[36] Finger flexion/extension Joint ROM, velocity, probability of success task,
peak force

[37] Finger opposition movements
Touch duration (ms), inter tapping interval

(ms), movement rate (Hz), inter hand
interval (ms)

[38] Reaching movements Reaching ROM

[39] Hand grip, finger pinch Hand grip strength (N), pinch force (N)

[40] Hand grip task Pressure: mean absolute difference, mean
absolute variance from target

[41] Prehensile task,
manipulation task Joint ROM, trajectories

[42] Grasp, release task Range of grip pressure

[43] Grasp task Grasping force, amount of hand use

[44] Finger flexion/extension Joint ROM
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