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Abstract: Intelligent traffic management is an important issue for smart cities. City councils try to
implement the newest techniques and performant technologies in order to avoid traffic congestion, to
optimize the use of traffic lights, to efficiently use car parking, etc. To find the best solution to this
problem, Birmingham City Council decided to allow open-source predictive traffic forecasting by
making the real-time datasets available. This paper proposes a multi-agent system (MAS) approach for
intelligent urban traffic management in Birmingham using forecasting and classification techniques.
The designed agents have the following tasks: forecast the occupancy rates for traffic flow, road
junctions and car parking; classify the faults; control and monitor the entire process. The experimental
results show that k-nearest neighbor forecasts with high accuracy rates for the traffic data and decision
trees build the most accurate model for classifying the faults for their detection and repair in the
shortest possible time. The whole learning process is coordinated by a monitoring agent in order to
automate Birmingham city’s traffic management.
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1. Introduction

Nowadays, intelligent data flow management has attracted a large amount of attention
in the smart cities domain. Learning the large amount of data collected with smart city
infrastructure and technologies has become an important issue as it is necessary in order to
make the best decisions in the minimum amount of time.

In this paper, a multi-agent system (MAS) is proposed in order to automate the urban
traffic management and control (UTMC) from Birmingham and the West Midlands councils.
The intelligent agents embedded forecasting or classification techniques in order to extract
knowledge from a large amount of data collected from the sensors.

The proposed architecture is designed to deal with real-time data and to notify a
human expert if any anomalies appear regarding traffic flow occupancy rates, road junction
occupancy rates and car parking occupancy rates in Birmingham city. It also detects the
faults that can appear in the collection equipment and sends real-time notifications.

In the context of smart cities, wireless sensor networks play an important role in devel-
oping smart applications [1], emergency applications [2], seismic monitoring buildings [3],
air pollution monitoring [4], characterization of urban anomalous noise events [5], and
many others.

Regarding intelligent monitoring applications, Byeongjoon Noh et al. [6] propose
data mining techniques for reducing road crossing accidents in Osan city, South Korea, by
clustering different types of vehicle and pedestrian interactions. The authors used object
detection by applying the regional convolutional neural network model on image frames
collected by a video camera. Using feature extraction, cluster analysis, decision trees and rule
models, the authors presented useful information and knowledge to the decision maker.

The approach proposed in [7] uses decision support systems for disaster management
in smart cities. The authors collected and prepared past event data, weather data, sensor
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data and satellite data and constructed models based on convolutional neural networks,
generative adversarial network and reinforcement learning to accurately predict wildfire
direction. Experimental results show that the proposed framework is suitable for automatic
fire detection and can assist in forecasting disasters.

Car park occupancy detection rates are also an important issue in smart cities. Lun-Chi
Chen et al. [8] propose a smart control system that uses camera images and videos to control
streetlights, detect vehicles and calculate the occupancy rates using a voting mechanism.

Traffic noise prediction using a recurrent neural network was proposed by Xue Zhang et al. [9].
The authors studied the traffic noise in Blansko, Czech Republic, using video recording and
audio recording. The audio and video data preprocessing techniques help the model to
better distinguish between the dataset classes.

For pedestrian traffic light classification, in [10], computer vision technology and
transfer learning models are used. Big image data for road traffic is analyzed in [11] using
different topologies of convolutional neural networks.

In [12], an urban transport multi-media data approach for resilience management in
smart cities is described. In [13], a smart decision support system is proposed to support
decision-making processes in a smart city environment.

Multi-agent systems (MAS) are used in smart city application in order to automate and
monitor different processes. A guidance system for route recommendations for travelers
in Nottingham and Sofia is described in [14]. The authors propose a multi-agent system
composed of the following: a managing agent, transport agents, a traffic data fetcher, a
commuter agent, a route recommender agent and a visualization agent. A multi-agent
recommender system for the tourism sector in the Alba Iulia smart city, Romania, is
proposed in [15].

Billhardt et al. [16] show that the coordination in smart cities can be implemented
through multi-agent systems. They propose an architecture consisting of user agents and
smart building agents and test the system for several real-world applications.

David Eneko Ruiz de Gauna et al. [17] propose an approach that combines electric
vehicles with the advantages of multi-agent systems in order to solve the problems of pollution
and congestion. Davide Andrea Guastella et al. [18] designed a cooperative multi-agent system
to reduce the number of necessary sensors to be deployed in a smart city.

Due to the great number of vehicles and limited space, the city councils have to solve
problems such as traffic congestion or crowded parking. Additionally, efficient use of traffic
lights is a main concern. The current studies propose different solutions based on methods
ranging from video and image processing to extracting knowledge from large amounts of data.

Short-term traffic flow prediction for the I-64 in St. Louis, Missouri [19] is a real-world
case that shows that machine learning methods are efficient techniques for analyzing such
data. Traffic prediction on real-world traffic datasets was also performed using the spatio-
temporal attention mechanism-based dynamic network model that learns dynamic spatial
dependencies [20].

Traffic flow congestion at intersections of Kathmandu valley was analyzed using f
statistical multiplexing and particle swarm optimization [21]. The proposed methodology
helped in reducing the average waiting time of vehicles on the considered junctions.

Sakurada et al. [22] modeled an agent-based cyber-physical systems architecture for
smart parking systems. The model describes the interconnection between the intelligent
agents and the physical parking asset controllers and the system proved to also be adaptable
for bicycle parking and car parking.

Over other techniques existing in the literature as alternatives (parallel artificial in-
telligence, distributed problem solving [23]), multi-agent systems have the advantages of
being composed by agents that can interact (in order to distribute the tasks and to plan
and monitor the team) and can perform autonomous actions for the specific tasks they are
responsible for. For smart cities models, these advantages are essential in order to automate
the monitoring processes.
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The proposed MAS architecture was designed according to intelligent urban traffic
management processes in Birmingham city and the agents were enhanced with intelli-
gence after performing an experimental phase. The experimental results show that the
k-nearest neighbor and random tree models forecast the traffic flow in Birmingham city
with maximum direction accuracy. Road junction and car parking occupancy rates were
predicted with high accuracy by the k-nearest neighbor model. Faults can be detected using
decision trees classifiers when high accuracy rates are necessary. When a minimum time
building model is more important, then k-nearest neighbor model is recommended. The
model that best forecasted and classified the proposed datasets were integrated in MAS.
The proposed project has its own communication protocol, improving the communication
between agents.

The paper has the following sections: multi-agent system architecture, experiments
and results (dataset description, forecasting results, classification results and mass testing)
discussion and conclusions.

2. Multi-Agent System Architecture

The designed agents have specific goals, ranging from traffic forecasting to fault
detection and process monitoring. Figure 1 summarizes the interactions between different
agents of the system. The monitoring agent sends the datasets to the forecasting agents as
follows: the traffic flow dataset is sent to the traffic flow agent, the road junction dataset
is sent to the road junction agent and the car parking dataset is sent to the car parking
agent. Together with the dataset, the monitoring agent sends the message “Forecast” to
the abovementioned agents. These agents confirm receiving the datasets and the messages
from the monitoring agent and inform this agent about starting the forecasting operation.
When the training and testing phases are completed, the obtained models, together with
the performance measures and forecasted data, are sent back to the monitoring agent.
In this way, the urban traffic is monitored and forecasted in real time with an automatic
mechanism; therefore, traffic congestion, time spent in road junctions and crowded car
parking can be avoided. On the other hand, faults that can occur can be automated, detected
and classified by the fault detection agent. This agent receives the fault detection dataset
from the monitoring agent together with the classify message. The fault detection agent
runs the classification model and predicts the class (type of fault) of the new instance. The
discovered model, the performance measures’ values and the class value of the tested
instance are sent back to the monitoring agent. This can inform the human expert in real
time about the occurrence of a fault in order to solve the problem in time.

Figure 2 describes the behaviors of the designed agents in detail. The traffic flow agent,
road junction agent and car parking agent use k-nearest neighbor (IBk implementation)
forecasters, and the fault detection agent learns the received dataset using the decision tree
(J48 implementation) classification model.

In the proposed agent-based modeling approach, the monitoring agent sends the
datasets to be evaluated and receives the forecasting/classification models and results.
Other approaches also integrate simulation modeling with machine learning [24–27].
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Figure 1. Multi-agent system architecture.

Figure 2. Agents’ behaviors.
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The communication protocol includes a series of messages and their identifiers (the
symbol # encodes the end of a message):

SendDataset = 60 SendDataset#;
ReceiveDataset = 61 ReceiveDataset#;
StartForecast = 62 StartForecast#;
ReceiveForecastResults = 63 ReceiveForecastResults #;
StartClassification = 64 StartClassification #;
ReceiveClassificationResults = 65 ReceiveClassificationResults #;
SendRequest = 70 SendRequest#;
AckRequest = 71 AckRequest#;
WaitingForResponse = 72 WaitingForResponse#;
SendingResponse = 80 SendingResponse#;
AckResponse = 81 AckResponse#;
ConfirmedReceivedResponse = 82 ConfirmedReceivedResponse#;
IdentifyAnomalies = 91 IdentifyAnomalies #;
Error = 100 Error#;
kNearestNeighbour = knn;
decisionTrees = j48;
separator = #;

The designed agents will send only the message identifiers (e.g., 60, 61, and so on) in
order to improve the communication time, taking into account that agents send the same
messages many times.

The monitoring agent is the decision maker entity in all these cases, being equipped with an
expert system that detects when anomalies and faults appear and sends notification messages.

3. Experiments and Results
3.1. Dataset Description

The MAS uses four real-time traffic datasets published by Birmingham and the West
Midlands councils in [28,29]: fault detection dataset (UTMC Faults), traffic flow dataset
(UTMC Flow), road junction dataset (UTMC RTEM) and car parking dataset (UTMC
Parking). A brief description of the considered datasets is given in Table 1.

Table 1. Dataset description [30].

Dataset Attribute Description

traffic flow
(371 instances,

collected between
2013–2018)

SCN System code number: a unique value for detector, carpark, etc.

Description Road description, e.g., Bristol Road/Oak Tree Lane, Coventry Rd/Kings Rd

Northing/Easting OSGB36 datum reference (latitudes and longitudes on the Airy ellipsoid) [31]

Date Date and time of instance recording

Status Time status, either 0 or 1, indicating false or true

Occupancy Detector occupancy rate

Interval Numeric, between 0 and 5

Flow Flow data produced by vehicle detectors embedded in the road surface per hour

Speed Speed data produced by vehicle detectors embedded in the road surface



Sensors 2022, 22, 208 6 of 15

Table 1. Cont.

Dataset Attribute Description

road junction
(229 instances,

collected between
2018–2021)

SCN System code number

Site/Station Station ID

Description Station description, e.g., A45 Coventry Road/Holder Road, Station 0002

Northing/Easting OSGB36 datum reference (latitudes and longitudes on the Airy ellipsoid) [26]

Date Date and time of instance recording

Lane Numeric, between 0 and 3

Speed Speed data produced by vehicle detectors embedded in the road surface

Headway The time interval between two vehicles traveling

Occupancy Detector occupancy rate

Vehicles Number of vehicles at the current timestamp

Motorbikes Number of motorbikes at the current timestamp

Cars Number of cars at a road junction

Trailers Number of trailers at a road junction

Rigids Number of rigids at a road junction

HGVs Number of HGVs at a road junction

Buses Number of buses at a road junction

car parking
(16 instances, collected

between 2018–2021)

SCN System Code Number

Capacity Car parking capacity

Disabled Numeric, with values between 1 and 12

Description Car parking description, e.g., BCC Paradise Circus, BCC Town Hall, Broad Street

Northing/Easting OSGB36 datum reference (latitudes and longitudes on the Airy ellipsoid) [31]

Date Date and time of instance recording

State State with the following values: SPACES, OPEN, OTHER

Occupancy/Percent Detector occupancy rate

Trend With the following values: Other, Static, Filling

Statistics String, default 0

Entry Number of cars at entry

Exit Number of cars at exit

Queue Number of cars in queue

fault detection
(5411 instances,

collected between
2015–2019)

Source Nominal, with the following values: cctv, car_park, traffic_signal,
meteorological, tl, vms, detector, Camera, tl_anpr, tl_scoot, BSI

SystemCodeNumber System Code Number

DataType Nominal, with the following values: CRS ANPR, SIEMENS UTC, Swarco,
Cloud Amber, CA Traffic, ANPR

SubSystemTypeID SubSystem ID, numeric

FaultID Fault ID, nominal

FaultText 61 distinct values, e.g., CPU Temperature Fault—temperature is excessive, TX
fault—No reply for 3 s

FaultType Fault Type, numeric, 47 distinct values

EquipmentFault Nominal, with the following values: N, Y, 0, 1

Communications Fault Nominal, with the following values: N, Y, 0

SupplierFault Number Nominal

CreationDate Creation date (timestamp)

ClearedDate Cleared date (timestamp)

LastUpdated Last updated (timestamp)

AckTypeId Numeric: 0, 1
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3.2. Forecasting Results

For performing forecasting and classification operations, the WEKA data mining tool
was used [32]. This is open-source software, written in java, and also contains tools for
process design and pre-processing and visualization of the analyzed datasets.

In the experimental phase, a set of models was tested in order to choose the one that
better fits the data to be learned. The dataset, in attribute relation file format (.arff), was
loaded and was sent as input to IBk, KStar and random tree learning methods. IBk and
KStar are lazy learning methods, and random tree is a decision tree-based forecaster. Other
types of learning methods were also tested, but the obtained results showed that these
methods learned the proposed dataset with low accuracy rates.

Table 2 describes the obtained results with the designed forecasting architecture.
Direction accuracy and root-mean-square error performance evaluating measures show
that all the proposed models are suitable for learning the traffic flow dataset.

Table 2. Traffic flow forecasting results.

Dataset Forecasting Model Direction Accuracy Root Mean Squared Error

Traffic flow

IBk, k = 1 100 0

KStar 100 0

Random Tree 100 0

Direction accuracy compares the forecast direction (upward or downward) to the
actual realized direction [33]. High direction accuracy rates were achieved due to the
uniform distribution and repeatability of data for the occupancy attribute.

Figure 3 plots the actual (371 instances) and predicted (100 instances) traffic flow
occupancy rates.

Figure 3. Traffic flow occupancy rates forecasting.

A similar architecture was also designed for predicting the road junction occupancy
rates. Table 3 shows that only the k-nearest neighbor (IBk) model forecasted, with one
neighbor (k = 1) returning high direction accuracy and root-mean-square error rates. The
performed experiments show that the IBk forecaster is suitable to be implemented in the
road junction agent in order to be used on real-time data.
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Table 3. Road junction forecasting results.

Dataset Forecasting Model Direction Accuracy Root Mean Squared Error

Road junction

IBk, k = 1 100 0

KStar 85.92 0

Random Tree 70.29 2.92

Figure 4 plots the actual (229 instances) and predicted (100 instances) road junction
occupancy rates. Actual values are represented by squares, and the forecasted values are
represented by circles.

Figure 4. Road junction occupancy rate forecasting.

In car parking occupancy rate forecasting, better results were obtained using random
forest compared to the random tree model. However, lazy learners also remained the most
suitable forecasters for the car parking dataset (Table 4).

Table 4. Car parking forecasting results.

Dataset Forecasting Model Direction Accuracy Root Mean Squared Error

Car parking

IBk, k = 1 100 0

KStar 100 0

Random Forest 71.47 5127.84

Figure 5 plots the actual (16 instances) and predicted (10 instances) car parking occu-
pancy rates.

Experiments were performed on similar data in a previous study [34], also highlighting
the performance of the k-nearest neighbor (IBk) model compared to other models.

Other studies [35,36] have used polynomial fitting, Fourier series, k-means clustering,
time series and evolutionary deep learning for car park occupancy prediction in Birmingham.
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Figure 5. Car park occupancy rate forecasting.

3.3. Classification Results

The employed visualization techniques highlight that the dataset is unbalanced in
terms of class instance distribution (Figure 6). Classification methods were also chosen
according to this information.

Figure 6. Instances of distribution for class attributes (61 classes).

The aim is to build a performant model and to detect the fault type for a new in-
stance, after learning a training file with known classes for its instances (CPU Temperature
Fault—temperature is excessive, Intermittent TX fault, Remote attended, Identified lamp
fault, CS reply stuck, Identified red lamp fault, Controller synchronization fault, Pelican
signals off, Hurry call detected, Invalid stage transition (J)/No vehicle green confirm (P),
Lamps off, Signals stuck in intergreen, Pedestrian Confirm/Vehicle Green (PC/GX) re-
ply conflict, and so on). Taking into account the data source (car_park, traffic_signal,
meteorological, etc.), data type (CRS ANPR, SIEMENS UTC, Swarco, Cloud Amber, CA
Traffic, ANPR) and the other attributes’ values as presented in Table 1, the best models are
generated and used for real-time data.

The knowledge flow (Figure 7) describes the steps of the classification process:

• Loading the fault detection dataset.
• Assigning the class attribute (fault type attribute).
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• Splitting the dataset into a training set and testing set. The dataset was split into
10 equal folds (parts): nine folds for training and one fold for testing.

• Building the classifier model: the data were learned using lazy models (IBk, KStar),
decision tree models (J48) and decision rules models (JRip).

• Evaluating the discovered model: For this task, a 10-fold cross-validation technique
was used. This performs 10 runs, and at each run, it uses a different fold for testing
and the remaining nine folds for training. Finally, the average classification accuracy
for the 10 runs is computed.

• Presenting the obtained results to the user: for each classifier used, the discovered
model, together with the performance measure (classification accuracy, time taken to build
model, true positive rates, false negative rates, confusion matrix, etc.) values, is shown.

Figure 7. Fault classification process flow.

The best classification results in terms of classification accuracy were achieved by the
J48 model (99.51%); see Table 5 and Figure 8. The time taken to build this model was also
good in terms of a performant model (0.39 s for 5411 learned instances); see Table 5 and
Figure 9. Additionally, precision, recall and F-measure reached the highest values using the
decision tree model (Table 3).
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Table 5. Classification results.

Dataset Classification Model Accuracy (%) Precision Recall F-Measure Time (Seconds)

Fault detection

IBk, k = 1 98.15 0.981 0.982 0.981 0

IBk, k = 3 97.43 0.972 0.974 0.973 0

KStar 94.89 0.952 0.949 0.945 0

JRip 99.02 0.985 0.990 0.987 54.01

J48 99.51 0.992 0.995 0.994 0.39

Figure 8. Classification accuracy (fault detection dataset).

Figure 9. Time taken to build the model (fault detection dataset).

The building model time was equal to zero when lazy learners were used, but with
some decrease in classification accuracy: a 1.36% decrease (comparing to J48) in the case of
IBk learning (with 1 neighbor, k = 1), 2.08% decrease when using IBk learning model (with
3 neighbors, k = 3), and 4.62% decrease when learning data with KStar model.
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JRip classified the testing instances with high accuracy rates (99.02%) but with an
increased building model time (54.01 s).

The best confusion matrix was generated with the J48 model and presents the classifi-
cation of each class of the dataset. In imbalanced problems, this measure is very important
as the classification of underrepresented classes can be evaluated. For instance, for the
classification of the “persistent TX fault” class, 1 out of 17 instances was misclassified.
Other classes, with very few instances (for instance, the “pelican signals off” class with
two instances), which had all the instances assigned to other classes (the “hurry call de-
tected” class), needed a cost matrix (used within the cost-sensitive meta-classifier) with an
increased cost for their position (a cost equal to 3000 discovered experimentally) in order
to correctly classify all instances. In the case of using a cost matrix to help the classifier
better recognize the weakly represented classes, it is necessary to admit a slow drop in the
general accuracy rates. In the case presented above, the general accuracy value was equal
to 99.42%, equating to a 0.09% drop in general accuracy. It is evident that, even in this case,
the J48 model still had the highest accuracy rates compared to other tested classifiers.

3.4. MAS Testing

The MAS was implemented in the Java Agent Development (JADE) Framework [37].
This supports communication between agents and uses Foundation for Intelligent Physical
Agents and Agent Communication Language (FIPA-ACL language).

The designed agents were implemented in the Main JADE Container from the agent
platform (Figure 10). All the exchanged messages and performed tasks were shown in the
application output (Figure 11). The monitoring agent received the discovered patterns and
the predicted data and could perform different actions in order to optimize urban traffic
management and control.

Figure 10. Main container structure.

Figure 11. Sample of agents’ exchange of messages.

The monitoring agent has an embedded expert system implemented with the Jess rule
engine [38,39]. The proposed template contains facts for the forecasting unit name, traffic
flow occupancy rates, road junction occupancy rates and car parking occupancy rates.
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(defglobal ?*maxTrafficFlow* = 12)
(defglobal ?*maxRoadJunction* = 30)
(defglobal ?*maxCarParking* = 10,000)
(deftemplate decision
„Intelligent decision”
(slot name)
(slot traffic_flow (type INTEGER))
(slot road_junction (type INTEGER))
(slot car_parking (type INTEGER)))

In order to check if a forecasted value is anomalous or normal, the monitoring agent
fires a set of decision rules:

(defrule checkForecastedValue
„Check forecasted value against maxTrafficFlow”
?p <- (decision {traffic_flow > ?*maxTrafficFlow *})
=>
(add (new Response (str-cat „Forecasted traffic flow occupancy rates greater than

maximum global value” ?*maxTrafficFlow* „: „ ?p.name „ = „ ?p.traffic_flow)))
(printout t „Notification: anomalous traffic flow value” ?p.name „ = „ ?p.price crlf))
If the forecasted value exceeds the maximum global value, the monitoring agent

decides to send a notification message to the application output, and other management
processes can be started.

4. Discussion and Conclusions

This paper proposes a multi-agent system to automate urban traffic management and
control in Birmingham city. It uses the datasets published by Birmingham and the West
Midlands councils in [28,29] and forecasts occupancy rates for traffic flow, road junctions
and car parking. The system also detects and classifies the faults that occur in different
systems used in the data collection and monitoring processes.

The performed experiments show that the k-nearest neighbor models achieve the best
accuracy rates for forecasting the considered time-series, and they have been included in
the forecasting agents of the designed system.

In the classification task, the obtained results show that decision trees are suitable for
predicting the type of newly occurring faults, considering the classification accuracy and
time taken to build the model. This learning technique was used by the fault detection
agent in the learning process.

Using the proposed system, important decisions can be made in a shorter time, im-
proving citizens’ lives.
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