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Abstract: This work considers industrial process monitoring using a variational autoencoder (VAE).
As a powerful deep generative model, the variational autoencoder and its variants have become
popular for process monitoring. However, its monitoring ability, especially its fault diagnosis ability,
has not been well investigated. In this paper, the process modeling and monitoring capabilities of
several VAE variants are comprehensively studied. First, fault detection schemes are defined in three
distinct ways, considering latent, residual, and the combined domains. Afterwards, to conduct the
fault diagnosis, we first define the deep contribution plot, and then a deep reconstruction-based
contribution diagram is proposed for deep domains under the fault propagation mechanism. In a
case study, the performance of the process monitoring capability of four deep VAE models, namely,
the static VAE model, the dynamic VAE model, and the recurrent VAE models (LSTM-VAE and
GRU-VAE), has been comparatively evaluated on the industrial benchmark Tennessee Eastman
process. Results show that recurrent VAEs with a deep reconstruction-based diagnosis mechanism
are recommended for industrial process monitoring tasks.

Keywords: process monitoring; deep model; variational autoencoder; deep reconstruction; dynamic
process

1. Introduction

Statistical process monitoring (SPM) is an important decision-making module in mod-
ern manufacturing sectors, allowing them to achieve higher plant safety, product quality,
and enterprise profitability [1]. Currently, the ongoing Industry 4.0 movement has also
brought new thrust and opportunities to SPM, due to key enablers such as the perva-
sive sensory module deployment, unprecedented Internet of things (IoT) connection and
communication, low-cost massive data storage, as well as the ever-increasingly powerful
computation technologies. Thus, to distill advisable knowledge and intelligence from
real-time process data and to promote timely decision making, the study of SPM, includ-
ing data-driven process modeling, fault detection, and fault diagnosis, have been highly
focused among the smart manufacturing community [2].

Traditional statistical process analysis is notably dominated by principal component
analysis (PCA). As the pioneering milestone for coping with high-dimensional and cor-
related process data, PCA performs the feature extraction by transforming the original
process variables and yields on an orthogonal basis, in which different dimensions become
uncorrelated [3]. Those basis vectors are called principal components. By looking into
the latent projections which cover the most informative viewpoint, two monitoring statis-
tics, called Hoteling’s T2 and squared prediction error (SPE), are commonly constructed.
Hoteling’s T2 monitors the unexpected variations in latent space while the SPE inspects
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the residual space. One can also build up a single index by combining the two indexes
through proper weighting [4]. In this way, rather than processing two indices, only one com-
bined index is utilized for process monitoring. For fault diagnosis, the contribution plots
and reconstruction-based methods are generally utilized [5]. With this well-formulated
prototype, extensions can be found to address industrial nonlinearity and/or time-wise
correlations. For instance, the kernel PCA uses the kernel transformation so that PCA
can be performed in a reproducing kernel Hilbert space [6]. The work by [7] considers
nonlinear PCA (NLPCA) modeling by using a five-layer auto-associative neural network.
To deal with the time-dependence, the dynamic PCA has been suggested as a remedy by
adding time-lagged observations [8]. In [9], the authors proposed a dynamic latent variable
modeling algorithm, and an auto-regressive mechanism has been embedded to carve out
dynamics in latent vectors. Recently, one can also find several other improvements, such
as a hybrid framework to automate fault detection and diagnosis that is based on moving
window principal component analysis (MWPCA) and Bayesian networks (BN) [10], a
fractal-based DKPCA (FDKPCA) [11], and a two-step localized KPCA (TSLKPCA) [12].

Despite the great success of the PCA methods, some issues may still arise in present-
day industrial process modeling and monitoring. First of all, consider the computation cost
of modeling voluminous data set; the caveat with KPCA is that a large data set can always
lead to a large kernel matrix for computation and storage, while for DPCA, the innate issue
is similar, due to the augmented data matrices. Second, as an essentially shallow model,
the effectiveness of PCA on feature extraction and knowledge representation can be rather
limited for decision making. Third, the monitoring of some methods are only intended for
fault detection; fault diagnosis has not been well formulated. Recently, as a promising alter-
native to this dilemma, the deep learning-based monitoring strategy has been embraced.
A deep neural network (DNN) is commonly designed with multiple layers between the
input and output layers. In this way, top layers enable the abstract composition of features
from lower layers, through which those task irrelevant features will be down-clamped
and informative features will be better organized [13]. As a result, deep networks can be
used to model highly nonlinear and dynamic objects and have made remarkable achieve-
ments in a wide range of industrial applications, including natural language processing
(NLP) [14], social network studies, and biology system longitudinal analyses [15]. For fault
detection and diagnosis, a new deep neural network, the multichannel one-dimensional
convolutional neural network (MC1-DCNN), is proposed to investigate feature learning
from high-dimensional process signals from the literature [16].

For the relevant research in process monitoring, one can find that autoencoders (AEs)
and variational autoencoders (VAEs), as the two primitive deep models, have been recently
applied in industrial systems. In the literature, [17] proposed the dynamic stacked auto-
encoder model to extract discriminative features for fault classification. For fault detection,
variant autoencoders such as denoising autoencoders and contractive autoencoders have
been evaluated in extracting nonlinear feature representations for the fault detection of in-
dustrial processes in [18]; the results show that both models can deliver simple and effective
performance. Technically, the VAE is the generalization of AEs, with regularization to avoid
overfitting and also to ensure that the latent space has good generative properties. Recently,
the variational autoencoder has been successfully developed for nonlinear process moni-
toring [19,20]. To further consider the temporal relations, in [21], a variational recurrent
autoencoder has been built, which takes both nonlinearities and dynamics into account.
To obtain the characteristics of an informational manifold with raw data, an adversarial
autoencoder is proposed in [22]. Recently, a new fault detection method, a convolutional
gated recurrent unit auto-encoder (CGRU-AE), for feature learning from process signals is
proposed in [23]. All these works have recognized that deep generative models can often
outperform shallow generative models in process monitoring tasks.

Despite the impressive merits of intelligent monitoring, one should still note that,
compared to the well-disposed PCA, the fault detection and diagnosis capabilities of VAE
and its variants have not been well formulated and investigated. In view of this, this
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work aims to provide a systematic monitoring flowchart and a comprehensive study for
deep VAE models. The contribution can be summarized with the following three aspects.
First, the fault detection schemes for deep models have been studied and discussed under
three different diagrams. Second, we propose two deep learning-based diagnosis methods,
namely, the deep contribution plot (dCP) and the deep reconstruction-based contribution
(dRBC) plot, for deep fault diagnosis. Third, the fault detection and diagnosis capabilities
have been established for the VAE variants, and then all deep monitoring paradigms are
comparatively studied on the TE process.

The rest of the paper is organized as follows. Section 2 gives the fundamental modeling
theory with the VAE variants. Then, in Section 3, we define the fault detection and fault
diagnosis mechanisms. A case study is conducted in Section 4. The last section features our
conclusions.

2. Process Modeling with VAE

Given the process data, X =
{

xk ∈ RD}N
k=1 from N observations. This section will

revisit three VAE variants for process modeling, namely, the static VAE model, the dynamic
VAE model, and the recurrent VAE model.

2.1. Static VAE

The static VAE is a probabilistic generative model based on a neural network. Suppose
there exists a latent variable z that generates the observation variable x, z ∈ Rd, d < D; the
goal is to determine a posterior distribution of the latent variable with Bayes’ rule:

p(z|x) = p(x|z)p(z)
p(x)

. (1)

However, the above denominator, p(x) =
∫

p(x|z)p(z)dz , is intractable due to the
high dimension integral. As an alternative solution, the variational inference is applied to
approximate p(z|x) with a tractable distribution q(z|x) , so that the Kullback–Leibler (KL)
divergence DKL[q(z|x)||p(z|x)] is minimized, which we have accomplished [24]:

DKL[q(z|x)||p(z|x)]
=
∫

q(z|x) log q(z|x)
p(z|x)dz

=
∫

q(z|x) log q(z|x)dz−
∫

q(z|x)[log p(x|z) + log p(z)− log p(x)]dz
=
∫

q(z|x) log q(z|x)
p(z) dz + log p(x)−

∫
q(z|x) log p(z|x)dz

= DKL[q(z|x)||p(z)] + log p(x)− Eq(z|x)[p(z|x)]

(2)

The above equation can be manipulated by maximizing the following objective loss
(also known as the evidence lower bound or ELBO),

lossvae = log p(x)− DKL[q(z|x)||p(z|x)]
= Eq(z|x)[p(x|z)]− DKL[q(z|x)||p(z)]
= lossrecon

vae + losskld
vae

(3)

where the left expectation term is the reconstruction loss and the right is the KL divergence
(KLD) loss. Let x̃ be the reconstructed input; the reconstruction loss can be realized by
the mean squared error 1

N ∑k ‖xk − x̃k‖2
2. The prior of the latent is usually defined as

p(z) = N(0, I). Penalizing the reconstruction encourages the distribution to accurately
describe the input, while penalizing the KL loss will encourage the distribution to have
zero means and sufficient variances for yielding a smoothed latent space. One can see
that the VAE objective induces the reconstruction and KL regularization terms from a
principled Bayesian perspective. Among them, the encoder and decoder networks are
built to approximate those two probability terms on the left as pθ(x|z) and qφ(z|x), where

qφ(z|x) = N
(

z; µφ(x), diag[σφ(x)]2
)

, and θ and φ are the parameters of the decoder and
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encoder networks. respectively. In order to allow the errors to be back-propagated through
the VAE network, the reparameterization trick is required; details can be found in [24].

2.2. Dynamic VAE

The dynamic VAE can only capture the high dimension and nonlinearity, but the
underlying dynamics are lost. An alternative technique for dynamic modeling is time-wise
augmentation or time lagging [25]. Instead of considering one sample xk at a time, time-
lagged dynamic VAE works on the τ time-shifted duplicate vectors of all the variables
xk(τ) = [xk−τ , xk−τ+1, . . . , xk], xk(τ) ∈ Rτ×D. In this way, we only need to flatten each
input window-size matrix xk(τ) into a vector x̃k(τ) ∈ RτD×1, the remaining part is identical
to the standard VAE:

lossdvae = Eqφ(zk |x̃k(τ))
[pθ(x̃k(τ)|zk)]− DKL

[
qφ(zk|x̃k(τ))

∣∣∣∣pθ(zk)
]
. (4)

The dynamic VAE can model dynamics, as both the auto-correlation and the cross-
correlation have been implicitly mapped into the latent space through time-wise data
augmentation. The apparent advantage of this approach is its simplicity. From the view
of system identification, the dynamic VAE is also analogous to dynamic PCA. One can
actually judge that, if process inputs are included, the entire time-lagged VAE model can
be implicitly regarded as a deep multivariate autoregressive (AR) or ARX model.

2.3. Recurrent VAE

The recurrent networks are designed with connections between nodes along a temporal
sequence so as to deal with sequential data, and nodes can be input, hidden, or output.
A traditional simple recurrent unit may suffer from exploding gradients and vanishing
gradients when back-propagating errors across many time steps [26]. For this reason,
two modern recurrent units, called the Long Short Term Memory (LSTM) and the Gated
Recurrent Unit (GRU), will be considered in this work. Both units have internal mechanisms
called gates that can regulate information flow and remember information for long time
periods without having to concern themselves with the gradient problem. We first introduce
the LSTM and GRU units, and then come to the LSTM-VAE and GRU-VAE.

2.3.1. LSTM

First, consider LSTM: different from the dynamic VAE, the temporal sequence is here
modeled with a recurrent unit. The LSTM unit is composed of a cell, an input gate, an
output gate, and a forget gate. For sample k in the input sequence, the LSTM performs the
following calculations at each time step [26]:

ik = σ(Wiixk + bii + Whihk−1 + bhi),
gk = tanh

(
Wigxk + big + Whghk−1 + bhg

)
,

fk = σ(Wi f xk + bi f + Wh f hk−1 + bh f ),
ok = σ(Wioxk + bio + Whohk−1 + bho),
ck = fk � ck−1 + ik � gk,
hk = ok � tanh(ck),

(5)

where gk, ck, and hk are the input state (or new memory cell state), cell state (or final
memory cell state), and hidden state; ik, fk, and ok are the input, forget, and output gates; σ
is the sigmoid function, and � is the Hadamard product.

The gate value is used to multiply the value of the state so as to regulate the information
flow for state updating. For LSTM, the input gate chooses what information is relevant to
add from the current step. The forget gate inspects what is relevant to keep from the prior
steps. The output gate determines what the next hidden state should be. The cell takes the
previous memory state ck−1 and performs element-wise multiplication with the forget gate.
In this way, the LSTM is enabled to remember values over long time intervals.
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2.3.2. GRU

The GRU is a variant of LSTM [27]. For each element in the input sequence, the GRU
performs the following calculations at each time step:

rk = σ(Wirxk + bir + Whrhk−1 + bhr),
ok = σ(Wioxk + bio + Whohk−1 + bho),
nk = tanh(Wknxk + bin + rk � (Whnhk−1 + bhn)),
hk = (1− ok)� nk + ok � hk−1,

(6)

where rk and ok are the reset and update gates, nk is the new memory generated, and hk
still refers to the hidden state. GRU has used the hidden state to transfer information. It has
only two gates, a reset gate and an update gate. The update gate functions quite similarly
to the forget and input gates of LSTM. It actually solves the problem of how much past
information should be carried forward and how much new information should be added
in, whereas the reset gate is used to settle on how important the past information is for
summarizing the new information memory.

2.4. Combining the Recurrent Unit with VAE

In this part, we show how to combine the recurrent unit with VAE. For input time
sequence xk(τ), the LSTM can output the cell state ck and hidden state hk. This work
uses the cell state as the compact representation of the current system state sk, so sk = ck,
while for GRU, only the hidden state can be used, and sk = hk. In this way, the rest of the
encoder layers can be readily connected to the output state sk of the recurrent unit so as
to extract the latent zk. The decoder has a similar structure to the encoder, except that the
recurrent unit is deployed at the decoder input, which is a latent vector. In order to align
with the input time sequence length, we simply use zero padding to reshape the latent
vector zk into a sequence z̃k(τ). Then, the state sequence flows into the recurrent unit for
state sequence reconstruction, and then goes into the rest of the decoder layers for input
reconstruction. Figure 1 shows the structure of GRU-VAE. Notice that the encoder has
included two GRU layers, followed by n-cascaded full connection layers, and then outputs
the mean and variance separately; the decoder’s architecture is inverted. The entire loss
function is similar with the dynamic VAE, which is:

lossrvae = Eqφ(zk |xk(τ))
[pθ(xk(τ)|zk)]− DKL

[
qφ(zk|xk(τ))

∣∣∣∣pθ(zk)
]
. (7)

Notice that φ here parameterizes the entire recurrent encoder, while θ contains the
parameter from the entire recurrent decoder.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 28 
 

 

the latent vector zk  into a sequence τ ( )z k . Then, the state sequence flows into the recur-

rent unit for state sequence reconstruction, and then goes into the rest of the decoder lay-
ers for input reconstruction. Figure 1 shows the structure of GRU-VAE. Notice that the 
encoder has included two GRU layers, followed by n-cascaded full connection layers, and 
then outputs the mean and variance separately; the decoder’s architecture is inverted. The 
entire loss function is similar with the dynamic VAE, which is: 

( ) ( ) ( ) ( )( )| | ( ) || .
| ( )

loss E p x z D q z x p zk k k k krvae KLq z xk k
τ τθ φ θτφ

  = −     (7) 

Notice that φ  here parameterizes the entire recurrent encoder, while θ  contains 
the parameter from the entire recurrent decoder. 

 
Figure 1. Structure of GRU-VAE. 

3. Process Monitoring with VAE and Variants 
In this section, we first define the fault detection methods, and then follow with the 

fault diagnosis mechanisms. For fault detection, three different ways will be introduced 
and comparatively discussed, while for fault diagnosis, the deep contribution plot and the 
deep reconstruction-based contribution plot will be developed. 

3.1. Fault Detection 
As a generative model, the fault detection charts can be commensurable with PCA. 

That is, we can monitor each sample from any of the latent, residual, and combined spaces. 
This part will introduce three detection implementations. 

3.1.1. Detection via Statistical Hypothesis 
Since the normal distribution is imposed on the latent space, one can borrow the same 

idea as PCA by using constructed statistics when making fault detection. This is also ex-

actly what has been done in [20]. Assume the latent feature for a new test sample xt  (

( )xt τ  for dynamic and recurrent VAEs) is zt : the 2T  statistic can be derived for all 
VAE variants as 

)2 ( 1
tT zT

t tx z−Σ=  (8) 

Figure 1. Structure of GRU-VAE.



Sensors 2022, 22, 227 6 of 26

3. Process Monitoring with VAE and Variants

In this section, we first define the fault detection methods, and then follow with the
fault diagnosis mechanisms. For fault detection, three different ways will be introduced
and comparatively discussed, while for fault diagnosis, the deep contribution plot and the
deep reconstruction-based contribution plot will be developed.

3.1. Fault Detection

As a generative model, the fault detection charts can be commensurable with PCA.
That is, we can monitor each sample from any of the latent, residual, and combined spaces.
This part will introduce three detection implementations.

3.1.1. Detection via Statistical Hypothesis

Since the normal distribution is imposed on the latent space, one can borrow the same
idea as PCA by using constructed statistics when making fault detection. This is also exactly
what has been done in [20]. Assume the latent feature for a new test sample xt (xt(τ) for
dynamic and recurrent VAEs) is zt: the T2 statistic can be derived for all VAE variants as

T2(xt) = zT
t Σ−1zt (8)

where Σ is the covariance matrix of the training data. The upper limit has been defined by
assuming the chi-square distribution χα

2(d), where d is the degree and α is the significance
level. Different from the latent space, there is no definite distribution for the residual space,
so here we follow [20], and only provide the T2 index.

3.1.2. Detection via Loss Density Evaluation

In traditional hypothesis test constructs, the χα
2(d) statistic should rely on the validity

of the latent assumption; such a mechanism can become infeasible if there exists a large
deviation in real practice. Essentially, the problem lies in how to derive the upper limit,
given the certain significance level. If we look back on the loss function, one can actually
see that the two loss terms measure different variation aspects: the KLD term indicates the
latent variation and the reconstruction manifests the residual variation. As a composite,
the entire loss is a weighted function of the two, which can be viewed as the combined
formulation of two spaces. In this regard, we can directly come up with a systematic
fault monitoring diagram by inspecting the three loss densities. To determine the upper
boundary of each loss of the training data, the kernel density estimation (KDE) can be
used [28].

3.1.3. Detection via Subnetwork

The above statistical test and loss inspection all require the distribution of latent/residual
projections, which should depend highly on the estimation validity. To get rid of this, we
introduce here a novel subnetwork detection method. The basic idea of subnetwork de-
tection is to build two subnetworks based on latent and residual projections, which can
automatically map the nominal latent or residual manifolds into the respective minimum
volumes of the hyperspheres. In this way, fault detection can be readily made by comparing
the distance between the sample and the hypersphere center.

First, consider the latent domain: the objective is designed to train the detection
network so that the following loss can be optimized:

lossld_vae =
N

∑
k=1

1
α · N

{
α · R2

ld +max
(

0,
∥∥∥ f ld

ς (zk)− cld

∥∥∥2

2
− R2

ld

)}
(9)
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For the dynamic VAE, one can define a similar formulation. Since the first time
sequence starts from τ, we have

lossld_vae =
N

∑
k=τ

1
a · (N − τ + 1)

{
α · R2

ld + max
(

0,
∥∥∥ f ld

ζ (zk)− cld

∥∥∥2

2
− R2

ld

)}
(10)

Here, α is the significance level, and f ld
ζ denotes that subnetwork f is configured with

parameter ζ. The cluster location center cld and radius Rld are trainable parameters and
can be self-tuned during the training process. One can infer that the loss optimization will
learn the subnetwork, such that the majority proportion (e.g., (1− α)100%) of the latent
features can be mapped around the center of the affiliated hypersphere. Once the network
has been trained, the boundary has also been determined. The output of a new test sample
f ld
ζ (zt) can now be directly used for fault detection. The test sample is regarded as faulty in

latent space if ‖ f ld
ζ (zt)− cld‖

2

2
− R2

ld ≥ 0.
The residual detection subnetwork can be built in an analogous way. First, the residual

is calculated as x̂k = xk − x̃k for each sample; then, the subnetwork is built for the static
VAE by optimizing the following loss:

lossrd_vae =
N

∑
k=1

1
a · N

{
α · R2

rd + max
(

0, ‖ f rd
ζ (x̂t)− crd‖

2

2
− R2

rd

)}
. (11)

For dynamic and recurrent VAEs, we also have:

lossrd_dvae =
N

∑
k=τ

1
a · (N − τ + 1)

{
α · R2

rd + max
(

0, ‖ f rd
ζ (x̂t)− crd‖

2

2
− R2

rd

)}
. (12)

Note that, for recurrent VAEs, one needs to first flatten the window-size residual
matrix into a vector by concatenating each time channel and then feeding the entire vector
into the subnetwork. After that, a test sample can be regarded as a fault in residual space if
‖ f rd

ζ (x̂t)− crd‖
2

2
− R2

rd ≥ 0.

3.1.4. Remarks on Three Fault Detection Methods

Essentially, all three detection methods share the same logic, and the fault has been
investigated from the latent and residual domains. A general fault detection flowchart has
been given in Figure 2. Technically, the traditional statistic method and the loss inspection
method are density-based methods. The advantage of density-based methods is that their
performance can be guaranteed. In contrast, the subnetwork method is formed within
the distance-based framework. By using the neural network as the detection module,
the detector can be trained effectively on large data with the stochastic gradient descent
optimizer, and can also be deployed flexibly on the VAE backbone for straightforward fault
detection, without resorting to density estimations. Additionally, the threshold can be well
determined once the network training is completed. However, one potential issue with this
method is that the detection performance can become inferior if the network is improperly
designed or badly trained. Through this remark, we hope to probe the pros and cons for
these fault detection methods, so as to provide an overall qualitative assessment before
practicing the fault detection.
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3.2. Fault Diagnosis

After the detection of a fault, diagnosis further estimates the fault size and location.
Generally speaking, fault detection undertakes the forward-flow information in the network
while diagnosis turns to the backward-flow evaluation. In this section, the contribution plot
method is first developed for fault localization. Then, the reconstruction-based contribution
is further proposed.

3.2.1. Deep Contribution Plot

As aforementioned, the deep networks are essentially deep functions assembled with
parameterized units under the differentiable programming paradigm. During the model
training, the optimizer aims at searching the hilly landscape for parameter space, as the
negative gradient points to the error descent direction in each iteration. By this reasoning,
the contribution plots for the test sample xt can be easily derived for the static VAE as:

Latent domain : dCPld(xi
t) =

∂losskld
vae(xt)

∂xi
t

,

Residual domain : dCPrd(xi
t) =

∂lossrecon
vae (xt)

∂xi
t

,

Combined domain : dCPcom(xi
t) =

∂lossvae(xt)

∂xi
t

,

(13)

where xi
t is the ith variable of xt, dCPld(xi

t), dCPrd(xi
t), and dCPcomx(xi

t) are the deep
contribution plots for the latent, residual, and combined space domains; each indicator
reports the potentially increased error with respect to the individual loss domain. One
can infer that the derivatives are easily obtained by the chain rule of gradients with back-
propagation in the multiplayer network. For dynamic and recurrent VAEs, one only has to
replace the input xt with a test sequence xt(τ), and the definitions of the contribution maps
remain the same; we omit them here for simplicity.

To have a further understanding, some discussions are made to compare with contri-
bution plots of PCA. First, we briefly revisit PCA. PCA seeks the principal and residual
subspace projections by performing the eigen-decomposition of the covariance matrix S as

S = [ P P̃ ]

[
Λ 0
0 Λ̃

]
[ P P̃ ] (14)

Then, the latent subspace x̂ and residual subspace x̃ can be projected with P and P̃ as{
x̂t = PPTxt = Cxt

x̃t = P̃P̃Txt = C̃xt
, (15)

The monitoring index for PCA is generally defined as

Index(xt) = xT
t Mxt, (16)
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where M is different for T2, SPE, and the combined index ϕ [4,28,29]:

M =


PΛ−1PT

C̃
C̃/δ2 + D/τ2

f or T2

f or SPE
f or ϕ

(17)

Accordingly, the contribution plot can be derived for each index by simply taking the
first derivative of (3), with respect to each variable, as CP(xt) = ∂Index(xt)

∂xi
. In this view,

the quadratic monitoring index acts like the loss function in (13), where the contribution
reveals the potentially increased loss in each of the three domains. Comparing this with the
above VAE definitions, one may also speculate that the contribution plots of the VAE and
PCA are closely connected, and the VAE plots take the PCA as a special case.

3.2.2. Deep Reconstruction-Based Contribution

The deep contribution plots are derived based on the one-step derivative of loss
functions, which may not always ensure the correctness of a diagnosis (see Figure 3). This
is due to two reasons. Firstly, the parameter optimization space can have multiple peaks,
and the one-step derivative may only point to a local extremism. Second, the deep model
is merely an approximation function of a real system, and hence the raw gradient is also
noisy for the contribution plot visualization.
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To clearly reveal the responsible features, the deep reconstruction-based contribution
(dRBC) approach is now proposed; the basic idea is also inspired by PCA [4]. Assume
a fault has happened in the ith sensor of sample xt: let ξ be the fault direction and g
be the fault magnitude; the entries assigned with ones in the direction vector indicate
faulty variable items and zeros imply normal variables. The reconstructed vector along
the direction is x̂t = xt − ξtgt. The task of reconstruction is to find ξtgt so that the fault
detection index is minimized.

In theory, the fault detection index can be any above-mentioned fault detection unit.
For this work, we recommend that the dRBC mechanism could be more effective under
the subnetwork detection strategy through end-to-end loss gradient propagation. The
reasons are comprehensible: On the one hand, the loss functions are the criterion for model
training. In other words, they are empirical indicators for judging the status of a complex
process. On the other hand, the backward inference by the gradients can be performed
on the entire network model with layer-by-layer inference using the chain rule. Therefore,
it is more desirable to use the loss function, rather than statistics, to make the diagnostic
improvement and interpretation.
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Technically, the dRBC objective is to push the index function toward the threshold.
Therefore, the general dRBC procedure for static VAEs can be formulated as to continuously
optimize the objective

min Index(xt − ξtgt), (18)

until Index(xt − ξtgt) ≤ Threshold is satisfied. Here, the ith element in gt is gi
t =

∂Index(xt)
∂xi

.
For dynamic VAEs, the objective is

min Index(x̃t(τ)− ξ̃tgt) (19)

For recurrent VAEs, the objective can be written as

min Index(xt(τ)− ΞtGt) (20)

where Ξt is a window-sized fault direction matrix at time t with length τ, and Gt is
the corresponding fault magnitude matrix. From the definition, one can judge that the
deep RBC can be regarded as the enhancement of the deep CP counterpart with multiple
optimizations.

3.2.3. The Deep RBC Implementation

Based on the above theory, this part presents the implementation details. During
the experiment, we have found that the RBC may usually take hundreds or thousands
of iterations to hit the convergence in practice. Hence, the main concern turns to the
real-time application of the deep RBC diagram. One can consider the iterative optimization
for each variable at a time, but the efficiency will be extremely low. As an alternative, a
novel network input retraining-based strategy is implemented that can optimize the whole
variable set. Specifically, let δt be the negative reconstruction term, which can be defined as

δt =


−ξtgt, for static VAE
−ξ̃tgt, for dynamic VAE
−Ξtgt, for recurrent VAE

(21)

The dRBC attempts to optimize δ so as to minimize the loss index, so we will modify
the VAE network input in two parts: the original input xt (or xt(τ) for dynamic and
recurrent VAEs) plus the negative reconstruction term δ. Accordingly, only δ is trainable,
while the rest of the network is still fixed as untrainable. Through this setting, the network
retraining procedure can be launched under the predefined optimizer and loss functions,
with the goal of searching for the input perturbation that can reduce the total model loss of
the reconstructed data.

Different than [4], where only a one-step derivative is required for the linear projection
PCA model, multiple derivative and updating steps should be engaged for the above loss
minimization, as our deep network is a highly nonlinear projection model. Please notice
that sometimes the fault may have large magnitudes, and the above optimization may not
always converge below the threshold within the affordable time. In this case, one may set
the maximum iteration number and obtain a trade-off solution for diagnosis.

The network input retraining strategy uses the entire deep function to estimate the un-
expected deviations from the normal status. Although the retraining procedure usually can
be quite fast, it is still noteworthy to introduce two tricks to make the further acceleration.
The first trick is to utilize the estimated deviation δt−1 from the last time as the potential
initialization for the current optimization. This is feasible, as most faults have temporal
accumulation effects. The second trick is to perform multithreaded programming, with
each thread bearing one retraining process. By assuming that the internal sampling is Ts
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and the worst estimation time elapsed for δ is Tδ, where Ts < Tδ, the required program
thread number Nthread can be estimated as

Nthread =

⌈
Tδ − Ts

Ts

⌉
(22)

where d.e is the ceiling function. In this way, one can ensure the immediate availability of
at least one empty thread for each new test sample, and the time lag for the diagnosis can
be fixed at Tδ − Ts for all samples without any time lagging accumulations.

4. Case Study

As a typical complex industrial process with nonlinear and dynamic characteristics,
the TE process was extracted from a real chemical plant and has been widely used for fault
simulation and process monitoring demonstrations [29,30]. In this section, the VAE and its
variants will be comparatively studied on the revised TE process [31].

4.1. Data and Model

The original process has 12 manipulated variables and 41 measurement variables. In
this study, we neglect those constant or quality variables, and a total of 31 variables have
been used as [32]. For model development, 10,000 samples are gathered under the normal
operation. For model validation, the explicit fault descriptions for all engaged 28 fault cases
can be found in [31]. Each fault is collected as a 1000-length data sequence and the fault
signals have been introduced after the 300th sampling time.

As for the deep model specifications, the architecture details for VAEs, dynamic VAEs,
and recurrent VAEs are given in Table 1, all models in this work are technically implemented
with python, and the library for deep learning is Pytorch. The abbreviations in the table
follow the definitions as:

• RNN(d) is the RNN unit (GRU or LSTM) with hidden dimension d;
• FC(m) is the full connection with m outputs;
• Flatten is the reshaping of the matrix into a vector;
• Padding is the zero padding operation.

Table 1. Deep architectures for all VAE models.

VAE Dynamic VAE GRU-VAE LSTM-VAE

Input xk xk(τ) xk(τ) xk(τ)

Preprocess – Flatten – –

Encoder

FC (400) FC (800) GRU (200) LSTM (200)
FC (400) FC (800) GRU (200) LSTM (200)

FC (20), FC (20) FC (20), FC (20) FC (800) FC (800)
FC (20), FC (20) FC (20), FC (20)

Decoder

FC (400) FC (800) Padding Padding
FC (400) FC (800) GRU (200) LSTM (200)

GRU (200) LSTM (200)
FC (800) FC (800)

4.2. Study on Fault Detection

In this part, the three introduced fault detection diagrams will be comparatively
studied. To set the upper control limits, tolerance rate α of false alarms is universally set
at the level of 0.03. The fault detection results for PCA, AE, VAE, dynamic VAE, GRU-
VAE, and LSTM-VAE have been listed in Tables 2–6, the false alarm rate (FAR) and (fault
detection rate) are used as performance monitoring indicators.

One can draw several major conclusions from the detection tables. First of all, from
the general view of the model architectures, the deep generative models of the AE and the
VAE greatly outperform the shallow model of PCA. This result reveals the competitive
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advantage of deep models for complex process modeling and representation, which, in turn,
brings great benefits to the monitoring venture. Second, given the same VAE archetype,
one can easily judge that the dynamic and recurrent deep models triumph over the static
counterpart. Both dynamic and recurrent VAEs impose the reasoning of spatial and
temporal domains to improve the fault detection abilities. In addition, LSTM-VAE and
GRU-VAE generally achieve similar detection results. Notice that although here we only
display the results by setting the weight ratio to 1:20 for the latent KL loss and reconstruction
loss in Equation (3), the same conclusion can be derived by varying different weight ratios,
as shown in Figure 4. The blue, orange, and green lines represent the detection rates
from different loss spaces under various weight ratios of KL/Reconstruction loss. One
can see that the overall detection rates of the residual and combined spaces are basically
at the same level, and both should outperform the latent space counterpart. Finally, if
one considers comparing those three monitoring methods for the VAE, one can find that
the T2 with a poor effect can only monitor the latent variations, which is not amenable
and sufficient in most fault cases. Alternatively, the loss density estimation method and
detection subnetwork method leverage both latent and residual spaces and will have more
desirable results. Separately, the latent detection subnetworks may not have the same
detection rates as the KLD loss density. However, the residual subnetworks notably show
comparable fault detection rates, as reported in dynamic and recurrent VAEs. Therefore,
our results demonstrate that both density-based and distance-based methods are favorable
for fault detection with deep VAE models.

Table 2. Fault detection by PCA and AE.

ID
PCA AE

T2 SPE Com lossAE subnetl subnetr

1 0.989 0.993 0.993 0.994 0.984 0.994
2 0.943 0.951 0.960 0.990 0.911 0.983
3 0.033 0.094 0.151 0.913 0.011 0.843
4 0.999 0.999 0.999 0.997 0.997 0.997
5 0.026 0.063 0.091 0.919 0.009 0.847
6 0.999 0.999 0.999 0.997 0.997 0.997
7 0.999 0.999 0.999 0.997 0.997 0.997
8 0.883 0.897 0.904 0.921 0.870 0.917
9 0.097 0.111 0.234 0.859 0.060 0.807

10 0.729 0.881 0.890 0.921 0.583 0.921
11 0.957 0.979 0.987 0.990 0.910 0.990
12 0.471 0.540 0.743 0.961 0.313 0.954
13 0.939 0.954 0.953 0.960 0.937 0.959
14 0.967 0.989 0.989 0.990 0.914 0.989
15 0.014 0.027 0.043 0.923 0.013 0.854
16 0.053 0.043 0.126 0.003 0.033 0.001
17 0.791 0.854 0.854 0.861 0.757 0.859
18 0.493 0.600 0.666 0.699 0.446 0.691
19 0.926 0.963 0.967 0.986 0.897 0.984
20 0.830 0.857 0.857 0.890 0.816 0.881
21 0.059 0.043 0.124 0.004 0.034 0.004
22 0.079 0.136 0.236 0.827 0.034 0.781
23 0.059 0.061 0.179 0.506 0.043 0.389
24 0.847 0.783 0.893 0.914 0.724 0.911
25 0.527 0.901 0.940 0.974 0.166 0.971
26 0.813 0.901 0.911 0.954 0.680 0.949
27 0.653 0.919 0.930 0.963 0.644 0.960
28 0.054 0.029 0.086 0.869 0.023 0.823

Average 0.579 0.627 0.668 0.849 0.529 0.831
FAR 0.023 0.017 0.030 0.010 0.007 0.010
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Table 3. Fault detection by VAE.

ID
Detection Index

T2 losskld lossrecon lossVAE subnetl subnetr

1 0.990 0.990 0.994 0.994 0.986 0.993
2 0.940 0.946 0.984 0.986 0.914 0.983
3 0.039 0.027 0.873 0.873 0.023 0.697
4 0.997 0.997 0.997 0.997 0.997 0.997
5 0.017 0.024 0.853 0.841 0.019 0.704
6 0.997 0.997 0.997 0.997 0.997 0.997
7 0.997 0.997 0.997 0.997 0.997 0.997
8 0.879 0.891 0.914 0.913 0.881 0.913
9 0.077 0.109 0.791 0.800 0.044 0.671

10 0.743 0.814 0.917 0.917 0.710 0.919
11 0.950 0.964 0.990 0.990 0.936 0.990
12 0.539 0.576 0.953 0.951 0.279 0.926
13 0.937 0.943 0.959 0.957 0.939 0.954
14 0.984 0.987 0.990 0.990 0.957 0.989
15 0.001 0.009 0.837 0.813 0.011 0.671
16 0.049 0.041 0.010 0.023 0.023 0.019
17 0.823 0.846 0.859 0.859 0.779 0.859
18 0.544 0.550 0.691 0.693 0.444 0.680
19 0.919 0.933 0.984 0.986 0.901 0.981
20 0.829 0.834 0.881 0.879 0.816 0.886
21 0.049 0.043 0.010 0.020 0.020 0.019
22 0.036 0.071 0.783 0.801 0.044 0.684
23 0.050 0.063 0.396 0.440 0.034 0.294
24 0.819 0.841 0.914 0.913 0.589 0.907
25 0.597 0.731 0.973 0.974 0.396 0.971
26 0.790 0.876 0.946 0.946 0.666 0.943
27 0.760 0.861 0.961 0.963 0.641 0.957
28 0.031 0.039 0.823 0.816 0.031 0.693

Average 0.585 0.607 0.831 0.833 0.538 0.796
FAR 0.007 0.010 0.013 0.012 0.009 0.020

Table 4. Fault detection by Dynamic VAE.

ID
Detection Index

T2 losskld lossrecon lossVAE subnetl subnetr

1 0.990 0.990 0.993 0.993 0.990 0.993
2 0.947 0.954 0.986 0.986 0.949 0.986
3 0.043 0.137 0.984 0.986 0.029 0.966
4 0.997 0.997 0.997 0.997 0.997 0.997
5 0.037 0.103 0.996 0.996 0.039 0.997
6 0.996 0.997 0.997 0.997 0.996 0.997
7 0.997 0.997 0.997 0.997 0.997 0.997
8 0.894 0.896 0.927 0.926 0.896 0.921
9 0.153 0.254 0.891 0.893 0.091 0.881

10 0.850 0.883 0.921 0.921 0.840 0.920
11 0.974 0.984 0.987 0.987 0.980 0.987
12 0.766 0.840 0.967 0.967 0.664 0.967
13 0.940 0.946 0.957 0.957 0.943 0.953
14 0.983 0.984 0.987 0.987 0.981 0.989
15 0.017 0.054 0.996 0.996 0.021 0.996
16 0.077 0.046 0.011 0.010 0.024 0.016
17 0.841 0.844 0.857 0.857 0.839 0.853
18 0.619 0.656 0.710 0.710 0.593 0.710
19 0.956 0.966 0.984 0.984 0.957 0.983
20 0.840 0.844 0.884 0.883 0.839 0.881
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Table 4. Cont.

ID
Detection Index

T2 losskld lossrecon lossVAE subnetl subnetr

21 0.076 0.044 0.007 0.011 0.021 0.021
22 0.126 0.256 0.870 0.871 0.057 0.861
23 0.114 0.124 0.566 0.583 0.043 0.506
24 0.867 0.887 0.910 0.911 0.801 0.907
25 0.819 0.894 0.970 0.970 0.721 0.970
26 0.897 0.914 0.957 0.957 0.874 0.954
27 0.869 0.946 0.963 0.963 0.793 0.960
28 0.070 0.156 0.924 0.924 0.059 0.926

Average 0.634 0.664 0.864 0.865 0.608 0.861
FAR 0.009 0.003 0.021 0.017 0.034 0.018

Table 5. Fault detection by LSTM-VAE.

ID
Detection Index

T2 losskld lossrecon lossVAE subnetl subnetr

1 0.987 0.986 0.991 0.991 0.974 0.993
2 0.931 0.941 0.981 0.983 0.913 0.986
3 0.019 0.097 0.977 0.977 0.010 0.981
4 0.996 0.996 0.997 0.997 0.996 0.997
5 0.011 0.101 0.996 0.996 0.010 0.997
6 0.994 0.993 0.997 0.997 0.991 0.997
7 0.996 0.997 0.997 0.997 0.994 0.997
8 0.854 0.857 0.923 0.923 0.844 0.924
9 0.097 0.104 0.883 0.883 0.036 0.887

10 0.829 0.840 0.921 0.921 0.790 0.923
11 0.964 0.984 0.987 0.987 0.924 0.990
12 0.560 0.587 0.966 0.966 0.346 0.966
13 0.934 0.937 0.957 0.957 0.936 0.960
14 0.229 0.963 0.987 0.987 0.097 0.987
15 0.007 0.046 0.996 0.996 0.009 0.996
16 0.040 0.031 0.016 0.016 0.019 0.011
17 0.831 0.830 0.854 0.854 0.829 0.860
18 0.584 0.624 0.691 0.691 0.506 0.699
19 0.910 0.939 0.983 0.983 0.881 0.987
20 0.823 0.834 0.879 0.879 0.816 0.880
21 0.047 0.036 0.021 0.023 0.019 0.031
22 0.034 0.120 0.873 0.873 0.014 0.879
23 0.060 0.084 0.636 0.641 0.019 0.761
24 0.821 0.847 0.910 0.910 0.667 0.913
25 0.544 0.823 0.971 0.971 0.376 0.976
26 0.877 0.894 0.954 0.954 0.797 0.960
27 0.761 0.921 0.960 0.960 0.666 0.961
28 0.024 0.066 0.923 0.924 0.006 0.930

Average 0.563 0.624 0.865 0.866 0.517 0.872
FAR 0.005 0.000 0.024 0.021 0.009 0.017

Table 6. Fault detection by GRU-VAE.

ID
Detection Index

T2 losskld lossrecon lossVAE subnetl subnetr

1 0.977 0.976 0.990 0.991 0.973 0.993
2 0.937 0.923 0.986 0.986 0.934 0.986
3 0.019 0.107 0.977 0.979 0.024 0.983
4 0.976 0.956 0.997 0.997 0.979 0.997
5 0.013 0.079 0.996 0.996 0.040 0.996
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Table 6. Cont.

ID
Detection Index

T2 losskld lossrecon lossVAE subnetl subnetr

6 0.997 0.981 0.997 0.997 0.994 0.997
7 0.997 0.997 0.997 0.997 0.999 0.997
8 0.870 0.880 0.926 0.926 0.873 0.930
9 0.110 0.171 0.881 0.881 0.086 0.887

10 0.866 0.893 0.924 0.924 0.873 0.929
11 0.779 0.589 0.987 0.987 0.789 0.989
12 0.653 0.723 0.966 0.966 0.584 0.969
13 0.933 0.957 0.954 0.956 0.943 0.956
14 0.723 0.439 0.987 0.987 0.761 0.987
15 0.016 0.050 0.996 0.996 0.021 0.996
16 0.064 0.047 0.007 0.007 0.046 0.024
17 0.839 0.640 0.854 0.854 0.817 0.860
18 0.543 0.604 0.697 0.699 0.553 0.710
19 0.944 0.961 0.983 0.983 0.943 0.986
20 0.836 0.844 0.880 0.880 0.836 0.883
21 0.051 0.046 0.016 0.017 0.044 0.036
22 0.073 0.224 0.870 0.870 0.056 0.874
23 0.069 0.079 0.680 0.686 0.060 0.779
24 0.809 0.764 0.910 0.910 0.766 0.911
25 0.664 0.601 0.970 0.970 0.601 0.969
26 0.889 0.906 0.956 0.957 0.881 0.957
27 0.364 0.327 0.960 0.960 0.374 0.964
28 0.023 0.116 0.924 0.924 0.043 0.929

Average 0.573 0.567 0.867 0.867 0.568 0.874
FAR 0.008 0.014 0.030 0.028 0.016 0.028
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Figure 4. Detection accuracy with different VAE loss weight ratios. (a) VAE, (b) Dynamic VAE, (c) 
GRU-VAE, (d) LSTM-VAE. 
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4.3. Study on Fault Diagnosis

After the fault detection, this part will make the comparative study of fault diagnosis
using the designed deep contribution plot and deep reconstruction-based contribution. To
comprehensively make the investigation, we will successively evaluate three impacting
factors: the models, the loss weights, and the epochs for deep reconstruction.

First, we consider the diagnosis results with different models. A total of four represen-
tative faults have been selected, and the ground truth heat maps are shown in Figure 5. As
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can be seen, faults 4 and 20 have relatively small magnitudes, while faults 17 and 13 are
faults with large magnitudes. In addition, faults 4 and 17 only happen in a single variable,
whereas 20 and 13 are multiple faults. To make the fair comparison among deep models,
the loss weights are fixed at 1:20 and the epochs in the deep reconstruction are all set at 3000.
With this setting, the derived contribution plots and RBC plots are shown in Figures 6–9.
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One can infer from the CP plots (Figures 6 and 7) that several diagnosis plots actu-
ally show large deviations from the fundamental truth. The PCA can usually obtain a
meaningful diagnosis in the residual and combined domains, but may, more or less, have
deviations against the truth plots in most faults due to the smearing effects. The deep
models have a similar issue, and one can speculate that the noisy gradients may even
severely overwhelm those informative gradient flows from the responsible fault nodes
during the back-propagation. Fortunately, as can be seen, such a noisy gradient problem
in deep models can be largely alleviated by using the devised RBC scheme. The deep
reconstruction is an enhanced implementation for contribution analysis with iterative opti-
mizations. Specifically, one can judge from Figures 8 and 9 that significant improvements
are found in all domains. Typically, the fault magnitude can be well determined once the
detection indicator has been pulled close to the threshold. Please note that the estimation
speed and accuracy are highly associated with both the model and the underlying fault
magnitude. To make the investigation, we use the combined domain as the example, and
the RBC contribution plots over various optimization epochs have been given in Figure 11.
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However, this is not the case for the residual and combined domains. Both domains can 
give rise to strong and accurate results in fault detection, but the loss index can be hardly 
regulated into the normal zone. This is particularly significant in large fault cases. 
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max epochs of 1000, 2000, 3000, 4000, and 5000: (a) Fault 4, (b) Fault 20, (c) Fault 17, (d) Fault 13.

One can see that the RBC plots from the static VAE can be very noisy even after deep
optimizations. By contrast, VAE variants with spatial-temporal compositions can perform
much better; this can be especially verified for GRU-VAE. Apart from that, one should
note that the estimated fault magnitude can match the fault well in around 3000 steps
for small faults such as 4 and 20. Using fault 20 as an example, the entire loss tendency
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after reconstruction under different optimization iterations has been shown in Figure 12.
One can judge that the latent domain can be successfully recovered to the normal status.
However, this is not the case for the residual and combined domains. Both domains can
give rise to strong and accurate results in fault detection, but the loss index can be hardly
regulated into the normal zone. This is particularly significant in large fault cases.
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For large faults, even 5000 steps can only lead to an approximated estimation. This
should be originated from the fact that the gradient values are very small during each
iteration, which, in turn, may lead the optimizer to get stuck easily into the local maximum
when disentangling the large fault. Nevertheless, compared with PCA and deep CP, which
may yield inappropriate conclusions, the deep RBC can achieve results with more refined
and desirable diagnosis charts. Ultimately, we can conclude here that the deep RBC charts
deployed under the GRU-VAE/LSTM-VAE archetype are very appealing and promising
for discerning abnormal events in large and complex industrial processes.

5. Conclusions

Deep networks are believed to hold great potential to resolve early fault detection
and accurate diagnosis. To attain that, this work focuses on the comprehensive study of
VAE and its variants (with LSTM and GRU compositions) on process monitoring. We first
establish three detection strategies, including statistics, loss density investigations, and
the subnetwork methods, for different monitoring domains. Then, the deep contribution
plot and reconstruction-based contribution plot have been proposed for fault diagnosis.
Finally, the deep modeling and monitoring techniques are comparatively evaluated on the
industrial TE benchmark. Through this work, we not only define a systematic monitoring
paradigm, but also help promote the understanding of deep VAE models in solving pressing
safety problems of complex processes.

While the main advantages of the deep learning-based monitoring method can be
easily seen from this work, there are several outlooks. As the future work, more efforts
will be made from two folds. On the one hand, diagnosis performance should be further
modified for large faults so as to enhance the deep model interpretability. On the other hand,
quantitative analysis is also required for the detectability and diagnosability analysis [32,33]
of various deep models. In this way, we hope that deep models can make a better service
on the monitoring of complex industrial process systems.
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Abbreviations
Abbreviations in alphabetical order
AE Autoencoder
AR Autoregressive
CNN Convolutional Neural Network
DNN Deep Neural Network
dCP deep Contribution Plot
dRBC deep Reconstruction-Based contribution
GRU Gated Recurrent Unit
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KDE Kernel Density Estimation
KLD Kullback Leibler Divergence
LSTM Long Short Time Memory
MWPCA Moving Window PCA
NLP Natural Language Processing
PCA Principal Component Analysis
SPM Statistical Process Monitoring
SPE Squared Prediction Error
TE Tennessee Eastman
Important notations and descriptions used in this work
Notation Description
X the process data
xk the kth observation variable
z a latent variable of the observation variable
D the dimension of the vector xk
x the observation variable
x̃ the reconstructed input
θ the parameter of decoder network
φ the parameter of encoder network
xk(τ) on the τ time-shifted duplicate vectors of all the variables
x̃k(τ) a vector obtained by the flattening of the matrix xk(τ)

gk the input state (or new memory cell state) at k time
ck cell state (or final memory cell state) at k time
hk hidden state at k time
ik input gate
fk forget gate
ok output gate/update gate
σ sigmoid function
rk reset gate
nk the new memory generated at k time
xt a new test sample
zt the latent representation for a new test sample
d number of latent variable (d < D)
α the significance level
f the subnetwork
ς the parameter of the subnetwork
f ld
ς the latent subnetwork configured with parameter ς

f rd
ς the residual subnetwork configured with parameter ς

cld the cluster location center of the minimum volume of the hypersphere for
latent projection

Rld the radius of the minimum volume of the hypersphere for latent projection
x̂k the residual for sample k
crd the cluster location center of the minimum volume of the hypersphere for

residual projection
Rrd the radius of the minimum volume of the hypersphere for residual projection
xi

t the ith variable of the test sample
P principal component projection matrix
P̃ residual projection matrix
ξ the fault direction
g the fault magnitude
x̂t the reconstructed vector
Ξt a window-sized fault direction matrix
Gt fault magnitude matrix
δt the negative reconstruction term
Ts the sampling internal
Tδ the worst estimation time elapsed for the negative reconstruction term
Nthread the required program thread number
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